Poaceae) in Japan to Project Potential Habitats Under 1.5°C–4.0°C Global Warming

Total Page:16

File Type:pdf, Size:1020Kb

Poaceae) in Japan to Project Potential Habitats Under 1.5°C–4.0°C Global Warming Received: 7 February 2017 | Revised: 31 July 2017 | Accepted: 13 September 2017 DOI: 10.1002/ece3.3471 ORIGINAL RESEARCH Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C–4.0°C global warming Kohei Takenaka Takano1,2,3 | Kenshi Hibino4,5,6 | Ayaka Numata1 | Michio Oguro1,2 | Masahiro Aiba1 | Hideo Shiogama7 | Izuru Takayabu5 | Tohru Nakashizuka1,8 1Graduate School of Life Sciences, Tohoku University, Sendai, Japan Abstract 2Forestry and Forest Products Research Rapid expansion of exotic bamboos has lowered species diversity in Japan’s ecosys- Institute, Tsukuba, Japan tems by hampering native plant growth. The invasive potential of bamboo, facilitated 3Nagano Environmental Conservation by global warming, may also affect other countries with developing bamboo indus- Research Institute, Nagano, Japan 4University of Tsukuba, Tsukuba, Japan tries. We examined past (1975–1980) and recent (2012) distributions of major exotic 5Meteorological Research Institute, Tsukuba, bamboos (Phyllostachys edulis and P. bambusoides) in areas adjacent to 145 weather Japan stations in central and northern Japan. Bamboo stands have been established at 17 6 Institute of Industrial Science, University of sites along the latitudinal and altitudinal distributional limit during the last three dec- Tokyo, Tokyo, Japan 7National Institute for Environmental Studies, ades. Ecological niche modeling indicated that temperature had a strong influence on Tsukuba, Japan bamboo distribution. Using mean annual temperature and sun radiation data, we re- 8 Research Institute for Humanity and Nature, produced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver op- Kyoto, Japan erating characteristic curve) = 0.92). These results infer that exotic bamboo distribution Correspondence has shifted northward and upslope, in association with recent climate warming. Then, Kohei T. Takano, Nagano Environmental Conservation Research Institute, Nagano, we simulated future climate data and projected the climate change impact on the po- Japan. tential habitat distribution of invasive bamboos under different temperature increases Email: [email protected] (i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habi- Funding information tats in central and northern Japan were estimated to increase from 35% under the Program for Risk Information on Climate Change (SOUSEI Program), Social current climate (1980–2000) to 46%–48%, 51%–54%, 61%–67%, and 77%–83% Implementation Program on Climate Change under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the Adaptation Technology (SI-CAT), and GRENE- ei program by the Ministry of Education, risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 Culture, Sports, Science, and Technology- times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation Japan (MEXT); Environment Research and Technology Development Fund (S-15-2 and adaptation are necessary: bamboo planting must be carefully monitored in pre- Predicting and Assessing Natural Capital and dicted potential habitats, which covers most of Japan. Ecosystem Services (PANCES)) of the Ministry of the Environment-Japan, (MOE); JSPS KAKENHI Grant Number JP17H03835. KEYWORDS bioclimatic envelope modeling, invasive plants, non-hydrostatic regional climate model (NHRCM), RCP8.5 scenario, species distribution modeling, The Paris Agreement This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 9848 | www.ecolevol.org Ecology and Evolution. 2017;7:9848–9859. TAKANO ET AL. | 9849 1 | INTRODUCTION Onozawa, & Otsuki, 2010; Fukushima, Usui, Ogawa, & Tokuchi, 2015; Shinohara & Otsuki, 2015), damage farmlands and artificial Climate change has caused geographical distribution shifts among forests (Arao, Kondo, & Honma, 2003), as well as increase the risk of many plants (e.g., Lenoir & Svenning, 2015; Parmesan & Yohe, 2003; sediment disasters (Hiura, Arikawa, & Bahadur, 2004). Global warm- Walther et al., 2007), including invasive species (Bradley, Blumenthal, ing will exacerbate these dangers by facilitating distribution shifts of Wilcove, & Ziska, 2010), thus threatening numerous ecosystems bamboo forests to new areas (Song et al., 2013; Zhang, Liu, Sun, & (WWF, 2016). For example, Acacia nilotica (L.) Delile (Fabaceae) has Wang, 2011). become highly invasive in several parts of the world, and global climate Historically, Japanese people have mainly introduced and used change is likely to increase markedly the plant’s potential distribution two exotic bamboos (Poaceae), moso (Phyllostachys edulis (Carrière) in Australia (Kriticos, Sutherst, Brown, Adkins, & Maywald, 2003). Houzeau de Lehaie) and madake (P. bambusoides Siebold et Zuccarini), Therefore, sustainable ecosystem management requires projections in managed plantations (See Study species Section in Materials and on the risk of invasive species expanding their distribution under cli- Methods and Figure 1 for details). mate change. Applications include food (mainly for moso), handicraft (mainly Bamboo is an economically important plant, but some species for madake) and building materials, horticulture, and protection of have the potential to become invasive. A highly versatile plant, bam- houses against wind or fire, as well as river- wall reinforcement (e.g., boo is used for food, building materials, horticulture, paper, textiles, Okutomi, 2005b). However, cheaper bamboo imports, heavy labor and charcoal, among numerous other applications (FAO, 2010). Since costs, and the lack of successors to bamboo plantations caused the the 1980s, the bamboo industry has developed rapidly in Asia, while Japanese bamboo industry to decline in the 1970s (Nakashima, 2001). also spreading to Africa and the Americas (FAO, 2007). Bamboo for- Consequently, many bamboo plantations have been abandoned and ests are estimated to cover a total area of 31.5 million ha and account are now left unmanaged, eventually invading the adjacent native veg- for about 0.8% of the total global forest area (FAO, 2010). etation (Nishikawa et al., 2005; Okutomi, Shinoda, & Fukuda, 1996; Bamboo is one of the fastest growing plants on earth (daily growth Suzuki, 2015). rate of 30–120 cm), reaching their final height of 5–25 m in a single, Currently, southern and central Japan are the most affected by in- 2- to 4- month growing season (He, Cui, Zhang, Duan, & Zeng, 2013). vasive bamboos, but anticipated global warming may cause the prob- Bamboo growth can have major implications for conservation and lem to spread north in the coming decades. Potentially serious risks environmental management. For example, some researchers expect also exist in other Asian, African, and Latin American countries with bamboo to play an important role in climate change mitigation through burgeoning bamboo industries. For sustainable management of exotic carbon sequestration (Lobovikov, Schoene, & Lou, 2012; Song et al., bamboo forests and adjacent ecosystems under global warming, we 2011). must understand the growth conditions and how climate change af- Because of their rapid growth rate, however, bamboo plants are fects potential habitats of major bamboo species. highly likely to prevent the growth of other plants and decrease spe- Someya, Takemura, Miyamoto, and Kamada (2010) conducted cies diversity (Chou & Yang, 1982; Larpkern, Moe, & Totland, 2011; the first comprehensive study estimating the distribution probabil- Searashi, Maru, Otori, & Nishii, 1989; Yamaguchi & Inoue, 2004; but ity of exotic bamboo (Phyllostachys) forests throughout Japan, in re- see Lin et al., 2014). Additionally, the expansion of invasive bam- lation to major environmental variables (i.e., climatic elements, soil boo forests can change terrestrial water and nutrient cycles (Chiwa, type, land- use type, and topography). Their study incorporated GIS FIGURE 1 Natural distribution of the genus Phyllostachus and the range of our study area 9850 | TAKANO ET AL. data of vegetation maps with other ecological data. The best explan- Moso bamboo is the most abundant bamboo species in the world, atory variables were warmth index (Kira, 1945), annual precipitation, extensively distributed in southeast and south Asia (Du et al., 2009). maximum snow depth, soil type, and land- use type. A similar study in Moso bamboo is the most important species in the southern Chinese China (Zhang et al., 2011) also mapped the potential habitats of moso bamboo industry, and moso plantations exceed 3.8 million ha, repre- bamboo using presence and pseudo- absence data, predicting that senting 70% of the bamboo area in China (FAO, 2007). According to the potential distribution of moso bamboo will expand up to 266 km previous studies in China, the primary environmental factors that con- northward and increase 13.9% in area by 2070–2099 under SRES A2 trol moso bamboo distribution and growth are temperature (Xu & Qin, (BCCR- BCM2.0) scenario. 2003), precipitation (annual range: 800–2,000 mm: Xu & Qin, 2003; However, both extrapolating occurrence data from vegetation Zhou, 1991; but see Gu et al., 2010), and soil conditions (sandy soil maps and creating pseudo- absence data
Recommended publications
  • In Vitro Bioassay of Allelopathy in Four Bamboo Species; Bambusa Multiplex, Phyllostachys Bambusoides, P
    American Journal of Plant Sciences, 2017, 8, 1699-1710 http://www.scirp.org/journal/ajps ISSN Online: 2158-2750 ISSN Print: 2158-2742 In Vitro Bioassay of Allelopathy in Four Bamboo Species; Bambusa multiplex, Phyllostachys bambusoides, P. nigra, Sasa kurilensis, Using Sandwich Method and Protoplast Co-Culture Method with Digital Image Analysis Shinjiro Ogita1,2, Hamako Sasamoto3,4* 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan 2Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Japan 3Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Japan 4Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Japan How to cite this paper: Ogita, S. and Sa- Abstract samoto, H. (2017) In Vitro Bioassay of Allelopathy in Four Bamboo Species; Bam- Moderately strong allelopathic activities were found in four bamboo species, busa multiplex, Phyllostachys bambusoides, Bambusa multiplex cv. Houraichiku; Phyllostachys bambusoides cv. Madake; P. nigra, Sasa kurilensis, Using Sandwich P. nigra cv. Hachiku; Sasa kurilensis cv. Chishimazasa, which are of different Method and Protoplast Co-Culture Method with Digital Image Analysis. American classification or of different ecological distributions, using the “Sandwich Journal of Plant Sciences, 8, 1699-1710. Method”, which assays the dried leaves on growth of lettuce seedlings. Only https://doi.org/10.4236/ajps.2017.87117 small difference of activity was found among the four bamboo species. In ad- dition, “Protoplast Co-culture Method” for assay of allelopathy in a 50 µL liq- Received: May 17, 2017 uid medium using a 96 well culture plate, was applied to the suspension cul- Accepted: June 20, 2017 Published: June 26, 2017 tures of the four bamboo species.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Phyllostachys Aurea (Golden Bamboo)
    Green Gone Bad Featured Ornamental Plant: Phyllostachys aurea (Golden Bamboo) Some exotic ornamental plants behave badly when they escape from the place they are planted. Infestations of these plants have negative impacts on natural environments. One of these plants is Phyllostachys aurea; common name: Golden Bamboo. Phyllostachys aurea, or Golden bamboo, is native to Southeast China and is a member of the grass family. In 1882, Golden Bamboo was introduced into the United States, specifically Alabama. Grown for its screening abilities, golden bamboo provides visual as well as noise barriers. Golden Bamboo is fast growing and can quickly colonize an area if not contained. Several hundred species of bamboo have been imported into this country for use as ornamental plants. Twenty-four of these are in the genus Phyllostachys, the most invasive of these plants. Phyllostachys aurea is one of the most common bamboos in the United States. The plant can reach a height over 40 feet. Culms (stems) are typically green, but will turn yellow when exposed to sunlight. Short swollen internodes at the base of the culms are a characteristic used to distinguish Golden bamboo from other bamboos. The leaves are lanceolate in shape, roughly 15 cm long and 1 to 2 cm wide. Golden bamboo flowers infrequently and may not flower for several decades. P. aurea spreads by rhizomes and culms grow from side shoots at alternate nodes of the rhizome. Rapid growth in all directions from the point of establishment and tolerance of a wide variety of conditions enable Phyllostachys aurea to Infestation invade and threaten natural areas.
    [Show full text]
  • Growing Bamboo for Commercial Purposes in the Southeastern US
    SREF-FH-011 March 2019 overall increase in the diameter Growing Bamboo for Commercial Purposes in the of new culms as a bamboo grove matures. Likewise, an individual culm Southeastern U.S.: FAQs will not increase in height after the first season, but culms emerging in AUTHORED BY: DAVID COYLE, NANCY LOEWENSTEIN, DEAH subsequent years will be taller. Culms LIEURANCE, RYAN BEAN, YANSHU LI, STEPHEN ENLOE, AND can put on additional branches over PUSKAR KHANAL time, thereby increasing the amount of leaves available for photosynthesis and growth of the grove. Self-shading Introduction HOW DOES BAMBOO will eventually limit this potential GROW? increase in carbon gain from Golden bamboo (Phyllostachys photosynthesis. Culm walls continue aurea), planted as an ornamental and Bamboo has an interesting growth to harden for several years until historically for use as fishing poles, is pattern. Bamboo creates groves, reaching maturity. Bamboos flower a familiar sight spreading beyond old in which all of the culms (stems) irregularly, sometimes decades apart. homesteads. Sometimes confused are clones of the original planting. Many species flower gregariously with native river canes (Arundinaria Bamboo culms emerge from a (meaning all the culms on a single spp.), golden bamboo is one of over dense rhizome system which is clonal plant, and all the plants of the 1,400 species of fast-growing, woody, generally located within the upper same species around them, flower evergreen grasses in the subfamily 12 inches of soil. Rhizomes are and produce seed at the same time) 3 Bambusoideae (Poaceae) . Bamboos modified underground stems that while others flower sporadically.
    [Show full text]
  • Bamboo: an Underutilized Resource with Extensive Application Possibilities
    Bamboo: An Underutilized Resource with Extensive Application Possibilities Melanie Harrison-Dunn1 and Michael Hotchkiss2 1 USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA 2 USDA, ARS, Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA The USDA Collection The USDA Temperate Bamboo Collection was first Introduction established in Savannah, Georgia in 1919. Its humble Bamboo comprises a diverse set of ~115 genera with beginnings began as a small one acre grove of Japanese Uses of Bamboo ~1070 species within the Poaceae family. Although Timber Bamboo (Phyllostachys bambusoides). The station morphologically similar to other grasses in several aspects, was then known as the Barbour Lathrop Plant Introduction • Bioenergy crop bamboo has distinct features such as woody culms and broad Station. The collection grew over the next few decades • Textiles (eg. flooring, veneers, plywood, etc) leaves that distinguish it from other grasses. Bamboo into a valuable collection increasing in number of genera • Fabric (comparable to silk) naturally occurs in both tropical and temperate climates with and species. The bamboo was moved to the Southeastern • Forage the majority of species being tropical in origin. There are two Fruit and Tree Nut Station in Byron, Georgia between 1976 • Ornamental main types of bamboo based on the growing habit of the and 1980. • Edible shoots rhizomes - sympodial and monopodial. In sympodial species • Musical instruments (runners), the rhizomes are long and thin and spread out The collection in Byron is maintained by the USDA Plant • Bows and arrows rapidly. In monopodial species (clumpers), the rhizomes are Genetic Resources Conservation Unit which is a part of • Common household items (eg.
    [Show full text]
  • 1 503-647-2700 Front Page- Need Hi
    front page- need Hi res closeup www.bamboogarden.com 1 503-647-2700 Forward by Ted Meredith Bamboo Garden is very special. Founded in 1984, Bamboo Garden has a diverse collection of more than 300 bamboo species and forms on 20 pastoral acres near North Plains, Oregon. Here mature bamboo groves are cast in a beautiful natural setting of rolling hills, ponds, mountain stream, and wooded backdrop. Customers of the nursery are offered golf cart tours of the extensive grounds. Europe has a number of splendid bamboo gardens, and a few very famous ones that are connected with a bamboo nursery, where one can see many species of bamboo in mature natural groves and then have the opportunity to purchase the same bamboos for one’s own garden. America now has an equivalent in the Bamboo Garden. Owner Ned Jaquith, an ardent bamboo enthusiast, has introduced countless people to the world of bamboo and served as a mentor to countless more---myself included. Nothing seems to please Ned more than introducing another person to bamboo. His welcom- ing enthusiasm carries through to the Bamboo Gar- den’s knowledgeable staff, who are adept at discuss- ing bamboos with experts and novices alike. Nursery manager Noah Bell oversees the operation, includ- ing nursery, office, and sales. Maintenance foreman Reveriano Ramirez directs bamboo propagation and care. Bamboo Garden is an impressive operation with many fine people in key roles working to make it so. Like Bamboo Garden, the Bamboo Garden catalog is something special too. The bamboos are beautifully photographed and described (Noah and Ned did most of the photography themselves) with clear illustra- tions that show how to maintain bamboo (credit to Charissa Brock for illustrations and layout design) .
    [Show full text]
  • Bambusa Vulgaris Global Invasive
    FULL ACCOUNT FOR: Bambusa vulgaris Bambusa vulgaris System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Liliopsida Cyperales Poaceae Common name Synonym Arundarbor arundinacea , (Retz.) Kuntze Arundarbor bambos , Kuntze, Rev. Gen. Pl. 2, 1891 Arundarbor blancoi , (Steudel) Kuntze 1891 Arundarbor fera , (Miquel) Kuntze 1891 Arundarbor fera , Rumphius 1743 Arundarbor monogyna , (Blanco) Kuntze 1891 Arundo bamboa , Miller 1768 Arundo bambos , L. Arundo fera , Oken 1841 Bambos arundinacea , Retz. Bambusa arundinacea , var. picta Moon 1824 Bambusa auriculata , Kurz ex Cat. Hort. Bot. Calc., 1864 Bambusa balcooa , Roxburgh 1832 Bambusa bambos , (L.) Voss Bambusa blancoi , Steudel 1854 Bambusa capensis , Rupr. Bambusa fera , Miquel 1857 Bambusa humilis , Reichenbach ex. Ruprecht 1839 Bambusa madagascariensis , hort. ex A. & C. Rivi?re 1878 Bambusa mitis , Blanco 1837 Bambusa monogyna , Blanco 1837 Bambusa sieberi , Grisebach 1864 Bambusa striata , Lodd. Bambusa surinamensis , Ruprecht 1839 Bambusa thouarsii , Kunth 1822 Bambusa tuldoides , Munro Bambusa vasaria , Herbier Hamilton Dendrocalamus balcooa , (Roxburgh) Voigt 1845 Leleba vulgaris , (Schrader ex Wendland) Nakai 1933 Nastus thouarsii , (Kunth) Raspail 1825 Nastus viviparus , Raspail 1825 Phyllostachys striata , (Lodd. ex Lindl.) Nakai Similar species Summary Bambusa vulgaris is the most widespread member of its genus, and has long been cultivated across the tropics and subtropics. It prefers lowland humid habitats, but tolerates a wide range of climatic conditions and soil types. It commonly naturalises, forming monospecific stands along river banks, roadsides and open ground. Global Invasive Species Database (GISD) 2021. Species profile Bambusa vulgaris. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=1399 [Accessed 06 October 2021] FULL ACCOUNT FOR: Bambusa vulgaris view this species on IUCN Red List Species Description Although Bambusa vulgaris is taxonomically a grass, its habit is tree-like.
    [Show full text]
  • Phyllostachys Aurea (Golden Bamboo, Fishpole Bamboo)
    No. 10 March 2010 Phyllostachys aurea (Golden Bamboo, Fishpole Bamboo) Initial Introduction and Expansion in Range There have been hundreds of bamboo species introduced into the United States from various countries. In North Carolina, most of the cultivated bamboo species are in the genus Phyllostachys, and the most commonly cultivated species that is naturalizing is Phyllostachys aurea. Introduced from China in the late 1800s, P. aurea is found throughout the southeastern United States from Maryland, south to Florida, west to Louisiana and Arkansas, and northwest to Oregon. This plant is still widely promoted and sold as an ornamental and to be used for privacy fences. Although P. aurea rarely flowers, infestations can rapidly spread through rhizomes, often forming dense, monotypic thickets. Description and Biology • Although a member of the Grass Family, P. aurea is a woody, perennial, reed-like plant that can reach heights up to 30 feet. • Golden to green stems (canes) are hollow with solid joints and measure between 1 and 6 inches in diameter. • Lance-shaped leaves are arranged alternately along the stem in fan-like clusters. • Rarely produces flowers and fruit. • Can be confused with Arundinaria gigantea (giant cane), a native throughout the United States, but this plant usually only reaches a height of 6 to 8 feet. Habitats Susceptible to Invasion Phyllostachys aurea thrives in full sun but is also able to grow and spread in sparsely wooded forests. It is commonly found in suburban woodlands, around old home sites and along roads. It seems to spread most rapidly in moist soils. Prevention and Control As tempting as it may be to plant P.
    [Show full text]
  • Plant List 2020.Xlsx
    Clumping Plant List SPECIES Container Price Bambusa beecheyana var. pubescens 15, 25-gallon $75, 125 Bambusa chungii 15, 25-gallon $75, 125 Bambusa chungii var. barbelatta 15, 25-gallon $75, 125 Bambusa dissimilis 15, 25-gallon $75, 125 Bambusa dolichoclada 'Blue' 15, 25-gallon $75, 125 Bambusa eutuldoides 15, 25-gallon $75, 125 Bambusa eutuldoides 'Viridivittata' 15, 25-gallon $75, 125 Bambusa lako 15-gallon $85 Bambusa malingensis 'Sea Breeze' 15, 25-gallon $75, 125 Bambusa multiplex 'Hedge' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Alphonse Karr' 7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Chinese Goddess' 3,7,15,25, 50,100 $15, 25, 50, 100, 175 Bambusa multiplex 'Fernleaf' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Giant Culm' 7-gallon $40 Bambusa multiplex 'Golden Godddess' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Goldstripe' call for availability Bambusa multiplex 'Laos' 7,15,25-gallon $30, $60, 120 Bambusa multiplex 'Midori Green' 15-gallon $75 Bambusa multiplex 'Rosa' call for availability Bambusa multiplex 'Silverstripe' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex Silverstripe 'Luckystripe' 15, 25-gallon $80, 120 Bambusa multiplex 'Stripestem Fernleaf' call for availability Bambusa multiplex 'Superhedge' call for availability Bambusa multiplex 'Tiny Fern' 3-gallon $15 Bambusa multiplex 'Willowy' call for availability Bambusa oldhamii 15, 25-gallon $75, 125 Bambusa oldhamii 'Hirose' 15, 25-gallon $75, 125 Bambusa pervariabilis 15, 25-gallon $75, 125 Bambusa pervariabilis 'Viridistriatus'
    [Show full text]
  • Internode Morphometrics and Allometry of Tonkin Cane Pseudosasa Amabilis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Received: 1 July 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3483 ORIGINAL RESEARCH Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis Liang Cheng1 | Cang Hui2 | Gadi V. P. Reddy3 | Yu-Long Ding1 | Pei-Jian Shi1 1Department of New Energy Science and Technology, Bamboo Research Institute, Abstract Nanjing Forestry University, Nanjing, Jiangsu, Pseudosasa amabilis (McClure) (Poales: Gramineae) is a typical bamboo species natu- China rally distributed in large area of south China and famous for its culm strength. Although 2Centre for Invasion Biology, Department of Mathematical Sciences, African Institute bamboos were found to share the same development rule, the detailed internode mor- for Mathematical Sciences, Stellenbosch phology of bamboo culm was actually not fully expressed. We explored internode University, Matieland, South Africa morphology of P. amabilis using 11 different physical parameters in different dimen- 3Western Triangle Agricultural Research Centre, Montana State University, Conrad, sions (1–4). As Taylor’s power law (TPL) is generally applicable to describe relationship MT, USA between mean and variance of population density, here we used TPL to evaluate the Correspondence differences between internodes, and further, the relationship between dimension and Pei-Jian Shi, Department of New Energy TPL. Results showed that length (L), hollow radius (HR), hollow area (HA), hollow Science and Technology, Bamboo Research Institute, Nanjing Forestry University, Nanjing, cylinder volume (HCV), total cylinder volume (TCV), density (De), and weight (W) Jiangsu, China. all presented positive skewed distribution in varying degrees.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Bamboo Running Bamboo: Running Bamboo Are Those That Spread Easily
    Bamboo Running Bamboo: Running bamboo are those that spread easily. Running bamboos can be very aggressive, taking over large areas. In addition, once established spreading bamboo can be very difficult to completely remove. Running bamboo should be chosen carefully and for areas where it can be contained. Hibanobambusa tranquilans ‘Shiroshima’ - An aggressive runner that is best in containers. It can reach 15 ft tall with canes that are 1 in. in diameter. They like part shade but can tolerate full sun with good watering. Nice wide variegated leaves. Indocalamus tessellatus – A relatively small bamboo with large leaves. It is about 6 feet tall with leaves up to 2 feet long. Canes are generally less then ½ in. in diameter. Prefers part to full shade. More easily contained then most running bamboos. Phyllostachys atrovaginata – A vigorous grower that tolerates year-round or seasonal wet/boggy soil. Can reach 30 ft tall. Canes are about 2.5 inches and have a sandalwood-like fragrance when rubbed. It likes full sun and it is edible. Phyllostachys aurea – Golden bamboo is a very popular variety in the Pacific Northwest. Yellowish canes reach about 20 feet tall and 1 inch in diameter. It likes full sun and is edible. Phyllostachys aureosulcata ‘Alata’ – A large bamboo that gets to 25 feet tall. Green 2 in. diameter canes have a zig-zag appearance on lower canes. It likes full sun and is edible. Phyllostachys bissetii – A very hardy type of bamboo that would be suitable for protected sites in Eastern Oregon. Very dark green variety. It reaches a height of 25 feet with canes that are 1 in.
    [Show full text]