Atlas Journal

Total Page:16

File Type:pdf, Size:1020Kb

Atlas Journal Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 6, Nov-Dec 2008 Previous Issue / Next Issue Genes BCL8 (B-cell CLL/lymphoma 8) (15q11). Silvia Rasi, Gianluca Gaidano. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 781-784. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL8ID781ch15q11.html CDC25A (Cell division cycle 25A) (3p21). Dipankar Ray, Hiroaki Kiyokawa. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 785-791. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC25AID40004ch3p21.html CDC73 (cell division cycle 73, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)) (1q31.2). Leslie Farber, Bin Tean Teh. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 792-797. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CDC73D181ch1q31.html EIF3C (eukaryotic translation initiation factor 3, subunit C) (16p11.2). Daniel R Scoles. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 798-802. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/EIF3CID44187ch16p11.html ELAC2 (elaC homolog 2 (E. coli)) (17p11.2). Yang Chen, Sean Tavtigian, Donna Shattuck. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 803-806. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ELAC2ID40437ch17p11.html FOXM1 (forkhead box M1) (12p13). Jamila Laoukili, Monica Alvarez Fernandez, René H Medema. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 807-813. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/FOXM1ID40631ch12p13.html PTCH2 (patched homolog 2 (Drosophila)) (1p34.1). Peter Zaphiropoulos. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 814-820. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/PTCH2ID41892ch1p34.html PTPN21 (protein tyrosine phosphatase, non-receptor type 21) (14q31.3). Antonio Feliciello. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 821-824. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/PTPN21ID41916ch14q21.html S100A13 (S100 calcium binding protein A13) (1q21.3). Atlas Genet Cytogenet Oncol Haematol 2008; 6 I Carlo Barone, Cinzia Bagalà, Matteo Landriscina. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 825-830. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/S100A13ID44197ch1q21.html TACSTD1 (tumor-associated calcium signal transducer 1) (2p21). Olivier Gires. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 831-836. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TACSTD1ID42459ch2p21.html TNC (tenascin C (hexabrachion)) (9q33.1). Martin Degen, Ruth Chiquet-Ehrismann. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 837-842. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TNCID42597ch9q33.html TNN (tenascin N) (1q25.1). Martin Degen, Ruth Chiquet-Ehrismann. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 843-847. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TNNID44209ch1q25.html VTCN1 (V-set domain containing T cell activation inhibitor 1) (1p13.1). Panduka Samarawardana, Kenneth R Shroyer. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 848-853. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/VTCN1ID44144ch1p13.html Leukaemias t(8;12)(q24;q22). Jean-Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 854-855. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0812q24q22ID2057.html t(7;21)(p22;q22). Jean-Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 856-857. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0721p22q22ID1449.html t(6;11)(q13;q23). Jean-Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 858-859. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0611q13q23ID1408.html inv(11)(p15q22). Cristina Morerio, Claudio Panarello. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 860-862. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/inv11p15q22ID1116.html t(4;11)(q35;q23). Jean-Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 863-864. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0411q35q23ID1423.html t(3;8)(q26;q24). Pei Lin. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 865-867. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0308q26q24ID1463.html t(1;9)(q24;q34). Etienne De Braekeleer, Marc De Braekeleer. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 868-871. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t0109q24q34ID2109.html t(12;13)(p13;q14). Jean-Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 872-874. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Anomalies/t1213p13q14ID1323.html Solid Tumours Atlas Genet Cytogenet Oncol Haematol 2008; 6 II Thyroid: Anaplastic (undifferentiated) carcinoma - updated. Sai-Ching Jim Yeung. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 875-880. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Tumors/AnaCarciThyroidID5069.html Cancer Prone Diseases Cartilage-hair hypoplasia (CHH). Pia Hermanns, Brendan Lee. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 881-887. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Kprones/CartilageHairHypoID10105.html Deep Insights Case Reports A case of trisomy 8 and loss of the Y-chromosome as secondary aberrations in a ten year old boy with de novo AML FAB M2 and t(16;21)(q24;q22). Jutta Bradtke, Peter Vorwerk, Jochen Harbott. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 888-891. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Reports/1621BradtkeID100031.html Educational Items Evolution. Robert Kalmes. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (6): 892-895. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Educ/EvolutionID30026ES.html © Atlas of Genetics and Cytogenetics in Oncology and Haematology X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching For comments and suggestions or contributions, please contact us [email protected]. Atlas Genet Cytogenet Oncol Haematol 2008; 6 III Atlas of Genetics and Cytogenetics in Oncology and Haematology BCL8 (B-cell CLL/lymphoma 8) Identity Other names BCL8A HGNC BCL8 Location 15q11 Location_base_pair Starts at 19130067 and ends at 19159209 bp from pter ( according to hg18- Mar_2006). DNA/RNA Description Gene of 86686 bp with 3 exons(1bp-222bp/84886bp-85041bp/86517bp-86686bp). The 5' part of exon 1 and the 3' part of exon 3 are non coding. Transcription Two alternative transcripts: a major transcript of 2.6Kb and a less expressed transcript of 4.5Kb, due to differential polyadenylation. Coding sequence: CDS 208-510. The direction of transcription is from telomere to centromere. Pseudogene Identified a family of evolutionarily conserved human genes with extensive homology to BCL8; these genes are BCL8B (chr.13), BCL8C (chr.22), BCL8D (chr.2), and BCL8E (chr.10). BCL8B is the most complete gene, whereas the other genes are truncated, can yield only sterile transcripts, and thus are probably pseudogenes. Protein Description 100 amino acids, predicted molecular weight of 19 kDa; predicted: similar to protein neurobeachin (Lysosomal trafficking regulator 2). Expression mRNA predominantly expressed in testis and prostate, with no transcripts normally found in hematopoietic tissues. Its expression in lymphoid tissues can be activated by chromosomal translocation or by other mechanisms in diffuse large B-cell lymphoma (DLBCL) patients. BCL8 expression was detected in all patients with 15q11-13 abnormalities and in a significant proportion of DLBCL patients. Function Probably produced truncated polypeptides with uncertain function. Homology Interspecies: homolog to N-terminal of Caenorhabditis elegans F10.f2.1 (59% homology) and to N-terminal of Drosophila melanogaster protein kinase A (PKA) anchoring protein RG (67% homology). Implicated in Entity t(14;15)(q32;q11) --> IghV - BCL8 Note Possibly other translocations of BCL8 involve other sites such as 22q11, 9p13, 1p32, 7p13, 12q24, and 15q22. Disease Translocations affecting BCL8 gene and various partners occur in about 4% of diffuse large B-cell lymphoma (DLBCL). Translocations involving the chromosomal region 15q11-13 have also been identified in non lymphoid tumors. Prognosis The effect of BCL8 expression on the prognosis of patients has yet to be investigated. Hybrid/Mutated The chromosomal translocation does not led to the formation of a hybrid gene. Gene Oncogenesis Chromosomal translocation in DLBCL causes activation of the BCL8 proto-oncogene by deregulated expression of BCL8. Breakpoints Atlas Genet Cytogenet Oncol Haematol 2008; 6 781 External links Nomenclature HGNC BCL8 1007 Entrez_Gene BCL8 606 B-cell CLL/lymphoma 8 Cards Atlas BCL8ID781ch15q11 GeneCards BCL8 Ensembl ENSG00000110987 [Gene_View] BCL8 [Vega] Genatlas BCL8 Genomic and cartography BCL8 - 15q11 chr15:19130067-19159209 - 15q11-q13 [Description] (hg18- GoldenPath Mar_2006) Ensembl BCL8 - 15q11-q13 [CytoView] NCBI Mapview OMIM 601889 Disease map [OMIM] HomoloGene BCL8 Gene and transcription Genbank AL832227 [ ENTREZ ] Genbank DA278599 [ ENTREZ ] RefSeq NC_000015
Recommended publications
  • Old Data and Friends Improve with Age: Advancements with the Updated Tools of Genenetwork
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445383; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Old data and friends improve with age: Advancements with the updated tools of GeneNetwork Alisha Chunduri1, David G. Ashbrook2 1Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA Abstract Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD’s recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis (‘gene friends’) and human PheWAS were used to further narrow candidates.
    [Show full text]
  • Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
    cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1.
    [Show full text]
  • Genome-Wide Analysis of Differentially Expressed Lncrna in Sporadic Parathyroid Tumors
    Osteoporosis International (2019) 30:1511–1519 https://doi.org/10.1007/s00198-019-04959-y ORIGINAL ARTICLE Genome-wide analysis of differentially expressed lncRNA in sporadic parathyroid tumors T. Jiang1 & B. J. Wei2,3 & D. X. Zhang1 & L. Li4 & G. L. Qiao5 & X. A. Yao1 & Z. W. Chen6 & X. Liu6 & X. Y. Du6 Received: 4 December 2018 /Accepted: 25 March 2019 /Published online: 10 April 2019 # International Osteoporosis Foundation and National Osteoporosis Foundation 2019 Abstract Summary Diagnosis of parathyroid carcinoma on histological examination is challenging. Thousands of differentially expressed lncRNAs were identified on the microarray data between parathyroid cancer and adenoma samples. Four lncRNAs were signif- icantly dysregulated in further validation. The BlncRNA score^ calculated from these lncRNAs differentiated parathyroid carcino- mas from adenomas. LncRNAs serve as biomarkers for parathyroid cancer diagnosis. Introduction Diagnosis of parathyroid carcinoma (PC) on histological examination is challenging. LncRNA profile study was conducted to find diagnostic biomarkers for PC. Methods LncRNA arrays containing 91,007 lncRNAs as well as 29,857 mRNAs were used to assess parathyroid specimen (5 carcinomas and 6 adenomas). Bioinformatics analyses were also conducted to compare the microarray results between parathyroid carcinomas and adenomas (PAs). Differentially expressed lncRNAs of 11 PCs and 31 PAs were validated by real-time quantitative PCR. Results On the microarray data between PC and PA samples (fold change ≥ 2, P < 0.05), 1809 differentially expressed lncRNAs and 1349 mRNAs also were identified. All carcinomas were clustered in the same group by clustering analysis using dysregulated lncRNAs or mRNAs. Four lncRNAs (LINC00959, lnc-FLT3-2:2, lnc-FEZF2-9:2, and lnc-RP11-1035H13.3.1-2:1) identified were significantly dysregulated in further RT-PCR validation.
    [Show full text]
  • Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J Formos Med Assoc 2010;109(9):632–640 Contents lists available at ScienceDirect Volume 109 Number 9 September 2010 ISSN 0929 6646 Journal of the Journal of the Formosan Medical Association Formosan Medical Association Knockdown of miR-21 as a novel approach for leukemia therapy Fluoroquinolone prophylaxis—an Asian perspective Downregulation of S100A13 blocks FGF-1 release Application of head-up tilt table testing in children Formosan Medical Association Journal homepage: http://www.jfma-online.com Taipei, Taiwan Original Article Effect of Human S100A13 Gene Silencing on FGF-1 Transportation in Human Endothelial Cells Renxian Cao,1* Bin Yan,2 Huiling Yang,2 Xuyu Zu,2 Gebo Wen,1* Jing Zhong2 Background/Purpose: The S100 protein is part of a Ca2+ binding protein superfamily that contains an EF- hand domain, which is involved in the onset and progression of many human diseases, especially the pro- liferation and metastasis of tumors. S100A13, a new member of the S100 protein family, is a requisite component of the fibroblast growth factor-1 (FGF-1) protein release complex, and is involved in human tumorigenesis by interacting with FGF-1 and interleukin-1. In this study, experiments were designed to determine the direct role of S100A13 in FGF-1 protein release and transportation. Methods: We successfully constructed the lentiviral vectors containing shRNA targeting the human S100A13 gene. Human umbilical vein endothelial cells (HUVECs) were transfected with lentiviral RNAi vectors for S100A13. Then immunofluorescence staining, real-time quantitative polymerase chain reac- tion and Western blotting were used to detect the inhibition efficiency of the vectors and to monitor the release and transportation of FGF-1 protein.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering.
    [Show full text]
  • Bioinformatics Analyses of Genomic Imprinting
    Bioinformatics Analyses of Genomic Imprinting Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Barbara Hutter Saarbrücken 2009 Tag des Kolloquiums: 08.12.2009 Dekan: Prof. Dr.-Ing. Stefan Diebels Berichterstatter: Prof. Dr. Volkhard Helms Priv.-Doz. Dr. Martina Paulsen Vorsitz: Prof. Dr. Jörn Walter Akad. Mitarbeiter: Dr. Tihamér Geyer Table of contents Summary________________________________________________________________ I Zusammenfassung ________________________________________________________ I Acknowledgements _______________________________________________________II Abbreviations ___________________________________________________________ III Chapter 1 – Introduction __________________________________________________ 1 1.1 Important terms and concepts related to genomic imprinting __________________________ 2 1.2 CpG islands as regulatory elements ______________________________________________ 3 1.3 Differentially methylated regions and imprinting clusters_____________________________ 6 1.4 Reading the imprint __________________________________________________________ 8 1.5 Chromatin marks at imprinted regions___________________________________________ 10 1.6 Roles of repetitive elements ___________________________________________________ 12 1.7 Functional implications of imprinted genes _______________________________________ 14 1.8 Evolution and parental conflict ________________________________________________
    [Show full text]
  • Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
    Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Nutrient Health and EROEN Compounds Resegsterixsteextics: Production * Gets Cartrai, Agairaxxxix
    US 2011 O153221A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0153221 A1 Stefanon et al. (43) Pub. Date: Jun. 23, 2011 (54) DIAGNOSTIC SYSTEM FOR SELECTING (52) U.S. Cl. .......................................................... 702/19 NUTRITION AND PHARMACOLOGICAL PRODUCTS FOR ANIMALS (57) ABSTRACT (76) Inventors: Bruno Stefanon, Martignacco (IT): W.Year Jean Dodds.Odds, Santa Monica,IVIon1ca, CA An analysis of the profile of a non-human animal comprises: a) providing a genotypic database to the species of the non (21) Appl. No.: 12/927,769 human animal Subject or a selected group of the species; b obtaining animal data; c) correlating the database of a) with (22) Filed:1-1. Nov. 19, 2010 the data ofb) to determinea relationshipp between the database of a) and the data of b); c) determining the profile of the Related U.S. Application Data animal based on the correlating step; and d) determining a (63)63) ContinuationConti offaroplication application No. 12/316.824,:4'. filed'O geneticmolecular profile dietary based signature on the being molecular a variation dietary of signature, expression the of Dec. 16, 2008, now Pat. No. 7,873,482. a set of genes which may differ for the genotype of each O O animal or a group of animals Nutrition and pharmalogical Publication Classification assessments are made. Reporting the determination is by the (51) Int. Cl. Internet, and payment for the report is obtained through the G06F 9/00 (2011.01) Internet. 38s. 4 gas registics, $88's *.icisixxxiiserscies: 8 texrigixi exsix * processire statisy • Essex: 88& goEffect onXXXXWWYYX Nutrient health and EROEN Compounds resegsterixsteextics: production * gets cartrai, agairaxxxix.
    [Show full text]