Review of the Molecular Genetics of Basal Cell Carcinoma; Inherited Susceptibility, Somatic Mutations, and Targeted Therapeutics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hedgehog Signaling Is Evolutionarily Conserved Cilium-Independent
Downloaded from genesdev.cshlp.org on August 14, 2009 - Published by Cold Spring Harbor Laboratory Press Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved Miao-Hsueh Chen, Christopher W. Wilson, Ya-Jun Li, et al. Genes Dev. 2009 23: 1910-1928 Access the most recent version at doi:10.1101/gad.1794109 Supplemental http://genesdev.cshlp.org/content/suppl/2009/07/23/23.16.1910.DC1.html Material References This article cites 97 articles, 47 of which can be accessed free at: http://genesdev.cshlp.org/content/23/16/1910.full.html#ref-list-1 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genes & Development go to: http://genesdev.cshlp.org/subscriptions Copyright © 2009 by Cold Spring Harbor Laboratory Press Downloaded from genesdev.cshlp.org on August 14, 2009 - Published by Cold Spring Harbor Laboratory Press Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved Miao-Hsueh Chen,1,3 Christopher W. Wilson,1,3 Ya-Jun Li,1 Kelvin King Lo Law,2 Chi-Sheng Lu,1 Rhodora Gacayan,1 Xiaoyun Zhang,2 Chi-chung Hui,2 and Pao-Tien Chuang1,4 1Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA; 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. -
Strategies to Increase ß-Cell Mass Expansion
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents ................................................................................................. -
Mir-338-3P Is Regulated by Estrogens Through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (Cafs)
cells Article miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs) Adele Vivacqua 1,*, Anna Sebastiani 1, Anna Maria Miglietta 2, Damiano Cosimo Rigiracciolo 1, Francesca Cirillo 1, Giulia Raffaella Galli 1, Marianna Talia 1, Maria Francesca Santolla 1, Rosamaria Lappano 1, Francesca Giordano 1, Maria Luisa Panno 1 and Marcello Maggiolini 1,* 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; [email protected] (A.S.); [email protected] (D.C.R.); [email protected] (F.C.); [email protected] (G.R.G.); [email protected] (M.T.); [email protected] (M.F.S.); [email protected] (R.L.); [email protected] (F.G.); [email protected] (M.L.P.) 2 Regional HospitalCosenza, 87100 Cosenza, Italy; [email protected] * Correspondence: [email protected] (A.V.); [email protected] (M.M.); Tel.: +39-0984-493-048 (A.V.); +39-0984-493-076 (M.M.) Received: 12 October 2018; Accepted: 7 November 2018; Published: 9 November 2018 Abstract: Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. -
Genetic Mutations Underlying Phenotypic Plasticity in Basosquamous Carcinoma Audris Chiang1,2,7, Caroline Z
See related commentary on pg 2258 ORIGINAL ARTICLE Genetic Mutations Underlying Phenotypic Plasticity in Basosquamous Carcinoma Audris Chiang1,2,7, Caroline Z. Tan1,7, Franc¸ois Kuonen1, Luqman M. Hodgkinson1, Felicia Chiang3, Raymond J. Cho4, Andrew P. South5,JeanY.Tang1, Anne Lynn S. Chang1, Kerri E. Rieger1,6, Anthony E. Oro1 and Kavita Y. Sarin1 Basosquamous carcinoma (BSC) is an aggressive skin neoplasm with the features of both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While genetic drivers of BCC and SCC development have been extensively characterized, BSC has not been well studied, and it remains unclear whether these tumors orig- inally derive from BCC or SCC. In addition, it is unknown which molecular pathways mediate the reprog- ramming of tumor keratinocytes toward basaloid or squamatized phenotypes. We sought to characterize the genomic alterations underlying sporadic BSC to elucidate the derivation of these mixed tumors. We identifed frequent Hedgehog (Hh) pathway mutations in BSCs, implicating Hh deregulation as the primary driving event in BSC. Principal component analysis of BCC and SCC driver genes further demonstrate the genetic similarity between BCC and BSC. In addition, 45% of the BSCs harbor recurrent mutations in the SWI/SNF complex gene, ARID1A, and evolutionary analysis revealed that ARID1A mutations occur after PTCH1 but before SCC driver mutations, indicating that ARID1A mutations may bestow plasticity enabling squamatization. Finally, we demonstrate mitogen-activated protein kinase pathway activation and the loss of Hh signaling associated with the squamatization of BSCs. Overall, these results support the genetic derivation of BSCs from BCCs and highlight potential factors involved in modulating tumor reprogramming between basaloid and squamatized phenotypes. -
Core Lab Brochure
CHOOSE THE MOST TRUSTED LONG-READ TECHNOLOGY FOR YOUR CORE Sequence with Confidence The Sequel® II and IIe Systems are powered by Single Molecule, Real-Time (SMRT®) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust. SMRT SEQUENCING IS SMART BUSINESS HiFi Reads: PacBio is the only sequencing technology to offer highly accurate long reads. Because HiFi reads are extremely accurate, downstream analysis is simplified and streamlined, requiring less compute time than the error-prone long reads of other technologies. High Throughput: The Sequel II and IIe Systems have high data yields on robust, highly automated platforms to increase productivity and reduce project costs. Efficient and Easy-To-Use Workflows: Our end-to-end solutions feature library preparation in <3 hours and many push- button analysis workflows, so you can run projects quickly and easily. Support: All of our products are backed by a global team of scientists, bioinformaticians, and engineers who stand ready to provide you with outstanding service. OUTSTANDING PERFORMANCE AND RELIABILITY 99% of runs on the Sequel II System completed successfully Sequel II Systems provide reliable performance with the total bases produced by the PacBio fleet steadily increasing, and 99% of runs completed successfully. “In our experience, the Sequel II System was essentially production-ready right out of the box. We have used it for a range of applications and sample types — from human genome sequencing to metagenome and microbiome profiling to non-model plant and animal genomes — and results have been very good.” — Luke Tallon, Director of the Genomics Resource Center at Maryland Genomics pacb.com/Sequel SMRT SEQUENCING APPLICATIONS – EFFICIENT AND COST EFFECTIVE The Sequel II and IIe Systems support a wide range of applications, each adding unique value to a sequencing study. -
Detection of Driver Mutations in FFPE Samples from Patients with Verified Malignant Melanoma
Neoplasma 2019; 66(1): 33–38 33 doi:10.4149/neo_2018_180115N31 Detection of driver mutations in FFPE samples from patients with verified malignant melanoma B. MALICHEROVA1,2,#,*, T. BURJANIVOVA1,2,#, E. MINARIKOVA3, I. KASUBOVA1,2, T. PECOVA3, M. BOBROVSKA4, I. HOMOLA5, Z. LASABOVA1,2,6, L. PLANK1,2,4 1Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Commenius University in Bratislava (JFM CU), Slovakia; 2Division of Oncology JFM CU, Martin, Slovakia; 3Clinic of Dermatovenerology, Jessenius Faculty of Medicine and University Hospital in Martin, Martin, Slovakia; 4Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Martin, Slovakia; 5Depart- ment of Plastic Surgery, Jessenius Faculty of Medicine and University Hospital in Martin, Martin, Slovakia; 6Department of Molecular Biology, JFM CU, Martin Slovakia *Correspondence: [email protected] #Contributed equally to this work. Received January 15, 2018 / Accepted April 24, 2018 Malignant melanoma is an oncological disease characterized by etiologic heterogeneity and it has increasing incidence and mortality in the Slovak Republic. While it is treated surgically in combination with chemotherapy, targeted therapy, and immunotherapy, malignant melanomas can ulcerate and are susceptible to infections. These are highly aggressive cancers with metastasis, and recent studies have shown the presence of mutations in RAC1, PPP6C and STK19 genes in melanoma patients. Mutations in these genes are driver mutations; important in oncogenesis and providing selective advantage to tumor cells. The aim of our study is to establish a method to detect driver mutations in formalin-fixed, paraffin embedded (FFPE) tissue DNA. We applied Sanger sequencing to detect driver somatic mutations in RAC1, PPP6C, STK19 and BRAF genes in patients with malignant melanoma. -
Peptide, Peptidomimetic and Small Molecule Based Ligands Targeting Melanocortin Receptor System
PEPTIDE, PEPTIDOMIMETIC AND SMALL MOLECULE BASED LIGANDS TARGETING MELANOCORTIN RECEPTOR SYSTEM By ALEKSANDAR TODOROVIC A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 Copyright 2006 by Aleksandar Todorovic This document is dedicated to my family for everlasting support and selfless encouragement. ACKNOWLEDGMENTS I would like to thank and sincerely express my appreciation to all members, former and past, of Haskell-Luevano research group. First of all, I would like to express my greatest satisfaction by working with my mentor, Dr. Carrie Haskell-Luevano, whose guidance, expertise and dedication to research helped me reaching the point where I will continue the science path. Secondly, I would like to thank Dr. Ryan Holder who has taught me the principles of solid phase synthesis and initial strategies for the compounds design. I would like to thank Mr. Jim Rocca for the help and all necessary theoretical background required to perform proton 1-D NMR. In addition, I would like to thank Dr. Zalfa Abdel-Malek from the University of Cincinnati for the collaboration on the tyrosinase study project. Also, I would like to thank the American Heart Association for the Predoctoral fellowship that supported my research from 2004-2006. The special dedication and thankfulness go to my fellow graduate students within the lab and the department. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................ -
Recent Advances in Signaling Pathways Comprehension As Carcinogenesis Triggers in Basal Cell Carcinoma
Journal of Clinical Medicine Review Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma Mircea Tampa 1,2, Simona Roxana Georgescu 1,2,*, Cristina Iulia Mitran 3, Madalina Irina Mitran 3, Clara Matei 1, Cristian Scheau 4 , Carolina Constantin 5,6 and Monica Neagu 5,6,7 1 Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (M.T.); [email protected] (C.M.) 2 Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania 3 Department of Microbiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (C.I.M.); [email protected] (M.I.M.) 4 Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] 5 Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; [email protected] (C.C.); [email protected] (M.N.) 6 Colentina Clinical Hospital, 020125 Bucharest, Romania 7 Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania * Correspondence: [email protected] Received: 18 July 2020; Accepted: 16 September 2020; Published: 18 September 2020 Abstract: Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. -
Next-Generation Sequencing
Tinhofer et al. Radiation Oncology (2015) 10:183 DOI 10.1186/s13014-015-0481-x REVIEW Open Access Next-generation sequencing: hype and hope for development of personalized radiation therapy? Ingeborg Tinhofer1,2*, Franziska Niehr1,2, Robert Konschak1,2, Sandra Liebs2, Matthias Munz3, Albrecht Stenzinger4, Wilko Weichert4,5, Ulrich Keilholz6 and Volker Budach1,2 Abstract The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology. Introduction and Wong et al. [11]. We will instead focus on key achieve- Recent technological advances in DNA sequencing with ments in cancer genetics and potential clinical applications of greater speed and resolution at lower costs has provided this innovative technique in the field of radiation oncology. new insights in cancer genetics. The next-generation se- quencing (NGS) technology is tremendously facilitating the in-depth genome-wide search for genetic alterations The advantages of NGS which might significantly contribute to aggressive and/or Next-generation sequencing has rapidly been evolv- treatment-resistant phenotypes of cancers, thereby es- ing within the last decade [10]. -
Loss of the PTCH1 Tumor Suppressor Defines a New
Banerjee et al. J Transl Med (2019) 17:246 https://doi.org/10.1186/s12967-019-1995-z Journal of Translational Medicine RESEARCH Open Access Loss of the PTCH1 tumor suppressor defnes a new subset of plexiform fbromyxoma Sudeep Banerjee1,2, Christopher L. Corless3, Markku M. Miettinen4, Sangkyu Noh1, Rowan Ustoy1, Jessica L. Davis3, Chih‑Min Tang1, Mayra Yebra1, Adam M. Burgoyne5 and Jason K. Sicklick1* Abstract Background: Plexiform fbromyxoma (PF) is a rare gastric tumor often confused with gastrointestinal stromal tumor. These so‑called “benign” tumors often present with upper GI bleeding and gastric outlet obstruction. It was recently demonstrated that approximately one‑third of PF have activation of the GLI1 oncogene, a transcription factor in the hedgehog (Hh) pathway, via a MALAT1‑GLI1 fusion protein or GLI1 up‑regulation. Despite this discovery, the biology of most PFs remains unknown. Methods: Next generation sequencing (NGS) was performed on formalin‑fxed parafn‑embedded (FFPE) samples of PF specimens collected from three institutions (UCSD, NCI and OHSU). Fresh frozen tissue from one tumor was utilized for in vitro assays, including quantitative RT‑PCR and cell viability assays following drug treatment. Results: Eight patients with PF were identifed and 5 patients’ tumors were analyzed by NGS. An index case had a mono‑allelic PTCH1 deletion of exons 15–24 and a second case, identifed in a validation cohort, also had a PTCH1 gene loss associated with a suspected long‑range chromosome 9 deletion. Building on the role of Hh signaling in PF, PTCH1, a tumor suppressor protein, functions upstream of GLI1. Loss of PTCH1 induces GLI1 activation and down‑ stream gene transcription. -
Profiling G Protein-Coupled Receptors of Fasciola Hepatica Identifies Orphan Rhodopsins Unique to Phylum Platyhelminthes
bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Profiling G protein-coupled receptors of Fasciola hepatica 2 identifies orphan rhodopsins unique to phylum 3 Platyhelminthes 4 5 Short title: Profiling G protein-coupled receptors (GPCRs) in Fasciola hepatica 6 7 Paul McVeigh1*, Erin McCammick1, Paul McCusker1, Duncan Wells1, Jane 8 Hodgkinson2, Steve Paterson3, Angela Mousley1, Nikki J. Marks1, Aaron G. Maule1 9 10 11 1Parasitology & Pathogen Biology, The Institute for Global Food Security, School of 12 Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn 13 Road, Belfast, BT9 7BL, UK 14 15 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 16 17 3 Institute of Integrative Biology, University of Liverpool, Liverpool, UK 18 19 * Corresponding author 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G protein-coupled receptors (GPCRs) are established drug targets. Despite their 24 considerable appeal as targets for next-generation anthelmintics, poor understanding 25 of their diversity and function in parasitic helminths has thwarted progress towards 26 GPCR-targeted anti-parasite drugs. -
Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering.