University of Alberta a Re-Examination of the Nominal

Total Page:16

File Type:pdf, Size:1020Kb

University of Alberta a Re-Examination of the Nominal University of Alberta A Re-examination of the Nominal Shortjaw Cisco (Coregonus zenifhicus) in Barrow Lake, Aiberta and Taxonornic Evaluation of Neighbo~gCisco Populations Mark Steinhilber O A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences Edmonton, Alberta Fa112000 National Library Bibliothèque nationale lei ,.a",, du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada Your file Vowe r6lëmw Our fiie Ncrre réUrence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies ofthis thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fÎom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author' s ou autrement reproduits sans son permission. autorisation. Abstract The morphology, ecology, and genetics of the putative Coregonus zenithicus (shortjaw cisco) in Barrow Lake, Alberta were exarnined to venfy the distinctiveness and specific identity of this population. Ciscoes from five nearby Mes provided comparative specimens for assessrnent of local variation, and sarnples of known C. zenithicus from eight lakes across North Arnenca were used to assist in identification. Of the six Alberta lakes sampled, four contâined syrnpatric cisco populations. Sympatric forrns in Ryan Lake and Unnamed Lake were believed to be C. artedi (lake cisco) in different stages of divergence. One forrn of the sympatric pair in Bocquene Lake may represent C. sardinella (least cisco). The low gillraker cisco in Barrow Lake conformed morphoIogically to C. zenithicus. Despite minor differences, the Barrow Lake C. zenithicus overlapped completely in principal component plots with known C. zenithicrts populations. Mitochondrial DNA d-loop sequence analysis was inconclusive but consistent with other studies examining genetic variation between C. zenithicus and C. artedi. The morphological and ecological data do not support an hypothesis of sympatric speciation. A scenario of secondary, post-Pleistocene contact between C. zenithicus and C. artedi in this lake is favoured. Acknowledgments I would like to thank my supervisor, Dr. Joseph. S. Nelson for his support, encourage- ment, and guidance during this study. 1 am especially grateful for the freedom to deter- mine the goals and direction of the projectand for the patience and understanding he demonstrated with respect to my other commitments. Thank you also to the other mem- bers of my supervisory cornmittee, Dr. Mark V. H. Wilson, Dr. Bill Tonn, and Dr. James Reist, for their advice and support. In addition to overall critiques of the study, Dr. Reist provided valuable information on coregonine taxonomy and statistical analyses. His active participation in this project, despite the logistic difficulty and expense of travel- ling from Winnipeg to Edmonton for supervisory meetings, is greatly appreciated. I am indebted to Dr. Philip H. R. Stepney, Director of the Provincial Museum of Alberta and Dr. W. Bruce McGillivray, Assistant Director, Curatorial and Collections Management, ProvinciaI Museum of Alberta for allowing me to pursue this project. Dr. McGillivray not only provided encouragement but also welcome advice on statistical procedures and systematics in general. This project would not have been possible without the technical assistance of Stephen Peterson and Matthew Thompson who worked long hours under difficult conditions to assist in the acquisition of specimens. 1 also thank Lianne Maiers of the Freshwater Institute, Department of Fisheries and Oceans Canada in Winnipeg for conducting the rnitochondrial DNA analysis of cisco samples from Barrow Lake. Dr. Gertie Hutchinson of the limnology laboratory at the University of Alberta (now retired) provided the equipment. analyses, and much needed advice for the gathering of water chemistry data. Wayne Roberts of the University of Alberta Museum of ZooIogy kindly provided access to museum specimens and collecting equipment and training in x-ray procedures. Finally, 1 thank rny wife, CoIleen, and children, Mandi and Matthew, for the sacrifices they have had to make over the pst few years. This research was supported in part by the Challenge Grants in Biodiversity Program, Department of Biologicai Sciences, University of Alberta, and the Alberta Conservation Association and in part by the Northem Scientific Training Program of the Department of Indian and Northem Affairs, Canadian Circumboreal Institute, University of Alberta. Additional field, laboratory, and clerical support was provided by the Provincial Museum of Alberta. Table of Contents Introduction .....................................................1 The Question .............................................. -1 Objective .................................................. 2 TheCoregoninae ............................................ 3 Species Concepts ........................................... -5 Species Definitions ......................................... 10 Morphological Markers of Coregonus artedi and C. zenirhicus Populations .................................... -13 Methods ...................................................... 25 StudyArea ............................................... 25 Specimen Acqiiisition ...................................... -30 Morphometrics and Meristics ..................................31 Character Independence and Redundancy ....................... -34 Statistical Analyses ........................................ -36 Ageing of Specimens ........................................43 Stomach Content Analysis ................................... -43 Environmental Data ......................................... 44 Genetic Analysis .......................................... -44 Results ...................................................... 45 Cornparison of Barrow Lake Ciscoes ........................... -45 Specific Identity of the Bmow Lake Low Gillraker Cisco ............60 Other Sympatric Alberta Cisco Populations .......................69 RyanLake ................................................ 69 BocqueneLake ............................................81 UnnamedLake ............................................ 90 Morphologicai Overvietv of al1 Northeastern Alberta Cisco Populations Examined . Discussion . Factors Confounding the Interpretation of Morphological Data . -103 The Origins of Sympatric Species . -116 Genetics of Barrow Lake Ciscoes . .129 Postglacial Dispersai and Zoogeography of C. zenithicus and C. artedi -133 Taxonomic Summary of Sympatric Northeastern Alberta Ciscoes . .137 Literature Cited . -139 List of Tables Table 1. Selected references and characters used in historical descriptions of C. artedi and C. zenithicus (and synonyms) ..................... 22 Table 2. Lake basin morphometry of the six lakes surveyed in this study ...... -28 Table 3. Water chemistry of the six lakes surveyed in this study ............. .29 Table 4. Efficacy of size removal using regression residual transformation .....-41 Table 5- Parameters of Barrow Lake cisco morphometnc data .............. -48 Table 6. Inter-population comparison of Barrow Lake cisco morphometrics andmeristics ............................................... 50 Table 7. Summary of sexual dimorphism in Barrow Lake ciscoes ............ -52 Table 8. Eigenvalues and eigenvectors of the first two principal components based on 13 morphometric characters from Barrow Lake ciscoes ...................................................- -54 Table 9. Variable positions in a 321 bp. segment of the mitochondrial DNA d-loop from C. artedi and C zenirhicus specimens examined in this study and by Bodaly et al. (1998), Reist et al. (1998), and Reed et al. (1998) ....-55 Table 10. Eigenvalues and eigenvectors from the principal components 2 and 3 based on 19 morphometric characters from al1 Alberta ciscoes exarnined ........................................... -6 1 Table 11. Cornparison of the holotypes of L macrognathus, L. athabascae, and L. entomophagus (Harper and Nichols 19 19) with known C. zenithicus and C. artedi. ................................... .63 Table 12. Meristic cornparison of C. zenithicus and C. artedi populations ......-65 Table 13. Eigenvdues and eigenvectors of the first three principal components based on six morphometric characters from al1 C. zenithicus and C. artedi populations ........................................ -72 Table 14. Parameters of Ryan Lake cisco morphometric data. ............... -74 Table 15. Inter-population comparison of Ryan Lake cisco morphometrics and meristics .............................................. -75 Table 16. Surnmary of sexual dimorphism in Ryan Lake high gillraker ciscoes . -77 Table 17. Eigenvalues and eigenvectors from the first two principal components based on 18 morphometric characters frorn
Recommended publications
  • North Wabasca Lake Fall Walleye Index Netting 2010
    Fall Walleye Index Netting at North and South Wabasca Lakes, Alberta, 2010 Fisheries Management Lesser Slave Area January 31, 2013 Fall Walleye Index Netting at North and South Wabasca Lakes, Alberta, 2010 Fisheries Biologist(s): Myles Brown, Kristy Wakeling Disclaimer This is a summary report prepared for public distribution by Alberta Environment and Sustainable Resource Development, Fisheries Management Branch. This report has been peer reviewed, but may be subject to revision pending further data analysis. Abstract North Wabasca Lake was surveyed most recently during September 19 th – 21 st,2010, using the Fall Walleye Index Netting (FWIN) protocol to assess the stock status, relative abundance, structure and reproduction (recruitment) of the Walleye ( Sander vitreus ) population as well as the northern pike ( Esox lucius ), yellow perch (Perca flavescens ) and lake whitefish ( Coregonus clupeaformis ) (ACA 2007). This information was used to evaluate the status of the current Sport Fishing Regulations for North Wabasca Lake to ensure they are in alignment with the stock status of the fish populations. North Wabasca Lake was last surveyed in 2006 using the FWIN proptocol, the data from the 2010 survey will be compared to the previous survey completed by the Alberta Conservation Association (ACA 2007) to identify any changes to the population since the original survey in 2006. In total 674 fish were captured in 12 full FWIN nets comprised of 112 Walleye, 117 Northern Pike, 100 Lake Whitefish, 19 Yellow Perch, 297 Cisco ( Coregonus artedi ), 1 Cisco x Whitefish hybrid, 12 Spottail Shinners ( Notropis hudsonius ), 30 White Suckers ( Catostomus commersoni ) and 1 Longnose Sucker (Catostomus catostomus ).
    [Show full text]
  • A Thesis Submitted to the G
    IMPACTS OF EXPOSURE TO OIL SANDS-DERIVED CONTAMINANTS ON THE WHITE SUCKER (CATOSTOMUS COMMERSONII) A Thesis Submitted to the Graduate Faculty in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Department of Biomedical Sciences Faculty of Veterinary Medicine University of Prince Edward Island Collin James Arens Charlottetown, P. E. I. June, 2017 © 2017, Arens i THESIS/DISSERTATION NON-EXCLUSIVE LICENSE Family Name: Arens Given Name, Middle Name (if applicable): Collin, James Full Name of University: University of Prince Edward Island Faculty, Department, School: Faculty of Veterinary Medicine, Department of Biomedical Sciences, Atlantic Veterinary College Degree for which thesis/dissertation Date Degree Awarded: June 26, 2017 was presented: Doctor of Philosophy Thesis/dissertation Title: IMPACTS OF EXPOSURE TO OIL SANDS-DERIVED CONTAMINANTS ON THE WHITE SUCKER (CATOSTOMUS COMMERSONII) Date of Birth. It is optional to supply your date of birth. If you choose to do so please note that the information will be included in the bibliographic record for your thesis/dissertation. August 17th 1981 In consideration of my University making my thesis/dissertation available to interested persons, I, Collin James Arens, hereby grant a non-exclusive, for the full term of copyright protection, license to my University, The University of Prince Edward Island: (a) to archive, preserve, produce, reproduce, publish, communicate, convert into any format, and to make available in print or online by telecommunication to the public for non- commercial purposes; (b) to sub-license to Library and Archives Canada any of the acts mentioned in paragraph (a). I undertake to submit my thesis/dissertation, through my University, to Library and Archives Canada.
    [Show full text]
  • Supporting Cisco (Coregonus Artedi) Restoration in the 1836 Treaty Waters of Lake Michigan
    Supporting Cisco (Coregonus artedi) Restoration in the 1836 Treaty Waters of Lake Michigan By: Albany Jacobson Eckert Jillian Mayer April Richards A project submitted in partial fulfillment of the requirements for the degrees of Master of Science at the School for Environment and Sustainability University of Michigan April 2018 Faculty Advisor: Sara Adlerstein-Gonzalez Associate Research Scientist University of Michigan Client: Natural Resources Department Little Traverse Bay Bands of Odawa Indians Harbor Springs, Michigan Acknowledgments Albany’s Acknowledgments I want to thank our advisor, Sara Adlerstein Gonzalez, for her unending guidance these past two years with our project. Chi-miigwetch also to Jason Smith at LTBB NRD for being our liaison to the tribe, and for lending technical support for my aging project. Miigwetch to Kevin Donner for his support with our interview project and my aging project as well. I am grateful to Tim O’Brien at USGS for talking to me about cisco and aging, and to Lynn Ogilvie for showing me otolith processing at the lab at USGS. Thank you to Jill Rice and Sue Deer Hall at UM SSD for providing me with ASL interpreters for our weekly group meetings, and with captioners for our interviews. Thank you so much to Kate Miller and Mary Reilly, and other CART providers, for transcribing the countless hours of interviews. Thank you to the UROP students, Kayla Musil and Jonah Eisenberg, for their help with analyzing the interviews, and especially to Kayla for help with aging the fish. Extremely grateful for the organizations that provided financial support, particularly Karie Slavik at the UM Biological Station for granting us with free room and board for the summer of 2017.
    [Show full text]
  • (Coregonus Zenithicus) in Lake Superior
    Ann. Zool. Fennici 41: 147–154 ISSN 0003-455X Helsinki 26 February 2004 © Finnish Zoological and Botanical Publishing Board 2004 Status of the shortjaw cisco (Coregonus zenithicus) in Lake Superior Michael H. Hoff1 & Thomas N. Todd2* 1) U.S. Geological Survey, Great Lakes Science Center, 2800 Lake Shore Drive East, Ashland, Wisconsin 54806, USA; present address: U.S. Fish and Wildlife Service, Fisheries Division, Federal Building, 1 Federal Drive, Ft. Snelling, Minnesota 55111, USA. 2) U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, Michigan 48105, USA (*corresponding author) Received 26 Aug. 2002, revised version received 7 Mar. 2003, accepted 9 Sep. 2003 Hoff, M. H. & Todd, T. N. 2004: Status of the shortjaw cisco (Coregonus zenithicus) in Lake Supe- rior. — Ann. Zool. Fennici 41: 147–154. The shortjaw cisco (Coregonus zenithicus) was historically found in Lakes Huron, Michigan, and Superior, but has been extirpated in Lakes Huron and Michigan appar- ently as the result of commercial overharvest. During 1999–2001, we conducted an assessment of shortjaw cisco abundance in fi ve areas, spanning the U.S. waters of Lake Superior, and compared our results with the abundance measured at those areas in 1921–1922. The shortjaw cisco was found at four of the fi ve areas sampled, but abundances were so low that they were not signifi cantly different from zero. In the four areas where shortjaw ciscoes were found, abundance declined signifi cantly by 99% from the 1920s to the present. To increase populations of this once economically and ecologically important species in Lake Superior, an interagency rehabilitation effort is needed.
    [Show full text]
  • COSSARO Candidate V, T, E Species Evaluation Form
    Ontario Species at Risk Evaluation Report for Shortnose Cisco (Coregonus reighardi) Committee on the Status of Species at Risk in Ontario (COSSARO) Assessed by COSSARO as Endangered November 2017 Final Cisco à museau court (Coregonus reighardi) Le cisco à museau court (Coregonus reighardi) est un Corégonidé nord-américain, et l’une des 10 espèces de ciscos du Canada. Historiquement, on trouvait cette espèce vivant en eaux profondes (de 22 à 110 mètres; Eshenroder et coll., 2016) dans le lac Huron, le lac Michigan et le lac Ontario. Cependant, on en sait très peu sur son historique et ses besoins en matière d’habitat. On croit que le déclin historique du cisco à museau court est attribuable à la surpêche, ainsi qu’à la compétition et à la prédation d’espèces de poissons non indigènes, qui sont des causes plus récentes (COSEPAC, 2017). La désignation de son statut se complique encore davantage en raison de la possibilité d’hybridation avec différentes espèces de ciscos des Grands Lacs, où certains poissons qui ne peuvent être associés à aucune espèce de ciscos pourraient toujours présenter des traits du cisco à museau court (Eshenroder et coll., 2016). Malgré l’échantillonnage intensif et ciblé, la dernière capture recensée d’un cisco à museau court clairement identifié a eu lieu en 1985 (baie Georgienne, lac Huron; COSEPAC, 2017). L’espèce est probablement disparue, mais comme seulement 32 ans se sont écoulés depuis la dernière capture, elle ne peut être classée dans cette catégorie. Le cisco à museau court est considéré comme étant en voie de disparition en Ontario en raison de sa faible population (< 250 individus).
    [Show full text]
  • Summary Report No
    Canadian Manuscript Report of Fisheries and Aquatic Sciences 2614 2002 Life History Characteristics Of Freshwater Fishes Occurring in the Northwest Territories and Nunavut, With Major Emphasis on Riverine Habitat Requirements by C.L. Evans1, J.D. Reist1 and C.K. Minns2 1. Department of Fisheries and Oceans, Arctic Fish Ecology and Assessment Research, Central and Arctic Division, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 Canada 2. Department of Fisheries and Oceans, Great Lakes Laboratory of Fisheries and Aquatic Sciences, Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, L7R 4A6 Canada. Her Majesty the Queen in Right of Canada, 2002 Cat. No. Fs 97-4/2614E ISSN 0706-6473 Correct citation of this publication: Evans, C.E., J.D. Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169 p. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... v LIST OF TABLES............................................................................................................ v ABSTRACT ...................................................................................................................viii RÉSUMÉ ........................................................................................................................viii INTRODUCTION............................................................................................................
    [Show full text]
  • Field Key to the Freshwater Fishes of British Columbia
    FIELD KEY TO THE FRESHWATER FISHES OF BRITISH COLUMBIA J.D. McPhail and R. Carveth Fish Museum, Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, B.C., Canada, V6T 1Z4 (604) 822-4803 Fax (604) 822-2416 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data McPhail, J. D. (John Donald) Field key to the freshwater, fishes of British Columbia Also available through the Internet. Previously issued: Field key to the freshwater fishes of British Columbia. Draft for 1994 field testing, 1994. Includes bibliographical references: p. ISBN 0-7726-3830-6 (Field guide) ISBN 0-7726-3844-6 (Computer file) 1. Freshwater fishes - British Columbia - Identification. I. Carveth, R. II. Resources Inventory Committee (Canada) III. Title. QL626.5.B7M36 1999 597.176'09711 C99-960109-1 Additional Copies of this publication can be purchased from: Government Publications Centre Phone: (250) 387-3309 or Toll free: 1 -800-663-6105 Fax: (250) 387-0388 www.publications.gov.bc.ca Digital Copies are available on the Internet at: http://www.for.gov. bc.ca/ric Text copyright © 1993 J.D. McPhail Illustrations copyright © 1993 D.L. McPhail All rights reserved. Design and layout by D.L. McPhail "Admitted that some degree of obscurity is inseparable from both theology and ichthyology, it is not inconsistent with profound respect for the professors of both sciences to observe that a great deal of it has been created by themselves." Sir Herbert Maxwell TABLE OF CONTENTS Introduction · i Region 1 - Vancouver Island 1 Region 2 - Fraser 27 Region 3 - Columbia 63 Region 4 - MacKenzie 89 Region 5 - Yukon 115 Region 6 - North Coast 127 Region 7 - Queen Charlotte Islands 151 Region 8 - Central Coast 167 Appendix 193 Acknowledgements .
    [Show full text]
  • Wesley Alan Larson [email protected] || Larsonlab.Wordpress.Com || @Wes Larson1 || 715-346-3150
    Wesley Alan Larson [email protected] || larsonlab.wordpress.com || @Wes_Larson1 || 715-346-3150 Current positions Assistant Unit Leader, U.S. Geological Survey Wisconsin Cooperative Fishery Research Unit, 2016-present Affiliate faculty, University of Wisconsin-Stevens Point, College of Natural Resources, 2016-present Education Ph.D. in Fisheries: University of Washington School of Aquatic & Fishery Sciences (UW SAFS), 2015 Dissertation title: Using genetic tools to inform management and study local adaptation in Pacific salmon Major advisor: Dr. Lisa Seeb B.S. in Marine Biology: University of California, Santa Cruz, 2009 Honors and Awards Genetics Section of the American Fisheries Society Early Career Award, 2018 W.F. Thompson Award for best student paper in fisheries science published in 2014, 2016 National Science Foundation Graduate Research Fellowship, 2012-2015 Faculty Merit Award, UW SAFS, 2013 Fellowship, UW SAFS H. Mason Keeler Endowment for Excellence, 2010-2011 Funded Research Grants Support for fisheries genetics research in Wisconsin. Funding agency: Wisconsin Department of Natural Resources. Duration: reoccurring. Total funding: approximately $150,000 per year. PI: W. Larson. Using genomics to delineate stock structure and create a standardized genetic resource for Great Lakes walleye. Funding Agency: Great Lakes Fishery Commission. Duration: 2019- 2020. Total funding: $195,671. PI: W. Larson. Using Genomics to improve stock structure resolution and assess recruitment dynamics of lake whitefish in Lake Michigan. Funding agency: Great Lakes Fishery Trust. Duration: 2019-2021. Total funding: $161,727. PI: W. Larson. Developing a high-throughput marker panel for lake sturgeon to standardize analyses across the Great Lakes. Funding Agency: Great Lakes Fish and Wildlife Restoration Act.
    [Show full text]
  • Alberta Shortjaw Cisco Recovery Plan 2013-2023
    Alberta Shortjaw Cisco Recovery Plan 2013-2023 Alberta Species at Risk Recovery Plan No. 32 Alberta Shortjaw Cisco Recovery Plan 2013-2023 Prepared by: Alberta Environment and Sustainable Resource Development January 2014 ISBN: 978-1-4601-1098-0 (Online Edition) ISSN: 1702-4900 (Online Edition) Cover photos: courtesy of Mark Steinhilber, Royal Alberta Museum For copies of this report, contact: Information Centre – Publications Alberta Environment and Sustainable Resource Development Main Floor, Great West Life Building 9920 – 108 Street Edmonton, Alberta, Canada T5K 2M4 Telephone: (780) 422-2079 OR Visit the Alberta Species at Risk Program web site at: http://esrd.alberta.ca/fish-wildlife/species-at-risk/ This publication may be cited as: Alberta Environment and Sustainable Resource Development. 2014. Alberta Shortjaw Cisco Recovery Plan 2013-2023. Alberta Environment and Sustainable Resource Development, Wildlife Management Branch, Alberta Species at Risk Recovery Plan No.32, Edmonton, AB. 22 pp. ii PREFACE Albertans are fortunate to share their province with an impressive diversity of wild species. Populations of most species of plants and animals are healthy and secure. However, a small number of species are either naturally rare or are now imperiled because of human activities. Recovery plans establish a basis for cooperation among government, industry, conservation groups, landowners and other stakeholders to ensure these species and populations are restored or maintained for future generations. Alberta’s commitment to the Accord for the Protection of Species at Risk and to the National Framework for the Conservation of Species at Risk, combined with requirements established under Alberta’s Wildlife Act and the federal Species at Risk Act, has resulted in the development of a provincial recovery program.
    [Show full text]
  • Coregonus Nigripinnis) in Northern Algonquin Provincial Park
    HABITAT PREFERENCES AND FEEDING ECOLOGY OF BLACKFIN CISCO (COREGONUS NIGRIPINNIS) IN NORTHERN ALGONQUIN PROVINCIAL PARK A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Arts and Science Trent University Peterborough, Ontario, Canada © Copyright by Allan Henry Miller Bell 2017 Environmental and Life Sciences M.Sc. Graduate Program September 2017 ABSTRACT Depth Distribution and Feeding Structure Differentiation of Blackfin Cisco (Coregonus nigripinnis) In Northern Algonquin Provincial Park Allan Henry Miller Bell Blackfin Cisco (Coregonus nigripinnis), a deepwater cisco species once endemic to the Laurentian Great Lakes, was discovered in Algonquin Provincial Park in four lakes situated within a drainage outflow of glacial Lake Algonquin. Blackfin habitat preference was examined by analyzing which covariates best described their depth distribution using hurdle models in a multi-model approach. Although depth best described their distribution, the nearly isothermal hypolimnion in which Blackfin reside indicated a preference for cold-water habitat. Feeding structure differentiation separated Blackfin from other coregonines, with Blackfin possessing the most numerous (50-66) gill rakers, and, via allometric regression, the longest gill rakers and lower gill arches. Selection for feeding efficiency may be a result of Mysis diluviana affecting planktonic size structure in lakes containing Blackfin Cisco, an effect also discovered in Lake Whitefish (Coregonus clupeaformis). This thesis provides insight into the habitat preferences and feeding ecology of Blackfin and provides a basis for future study. Keywords: Blackfin Cisco, Lake Whitefish, coregonine, Mysis, habitat, feeding ecology, hurdle models, allometric regression, Algonquin Provincial Park ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr.
    [Show full text]
  • Food‐Web Structure and Ecosystem Function in the Laurentian Great
    Received: 13 March 2018 | Revised: 14 September 2018 | Accepted: 18 September 2018 DOI: 10.1111/fwb.13203 REVIEW Food- web structure and ecosystem function in the Laurentian Great Lakes—Toward a conceptual model Jessica T. Ives1 | Bailey C. McMeans2 | Kevin S. McCann3 | Aaron T. Fisk4 | Timothy B. Johnson5 | David B. Bunnell6 | Kenneth T. Frank7 | Andrew M. Muir1 1Great Lakes Fishery Commission, Ann Arbor, Michigan Abstract 2Department of Biology, University of 1. The relationship between food-web structure (i.e., trophic connections, including Toronto, Mississauga, Ontario, Canada diet, trophic position, and habitat use, and the strength of these connections) and 3Department of Integrative ecosystem functions (i.e., biological, geochemical, and physical processes in an Biology, University of Guelph, Guelph, Ontario, Canada ecosystem, including decomposition, production, nutrient cycling, and nutrient 4Great Lakes Institute for Environmental and energy flows among community members) determines how an ecosystem re- Research, University of Windsor, Windsor, Ontario, Canada sponds to perturbations, and thus is key to understanding the adaptive capacity of 5Glenora Fisheries Station, Ontario Ministry a system (i.e., ability to respond to perturbation without loss of essential func- of Natural Resources and Forestry, Picton, tions). Given nearly ubiquitous changing environmental conditions and anthropo- Ontario, Canada genic impacts on global lake ecosystems, understanding the adaptive capacity of 6US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan food webs supporting important resources, such as commercial, recreational, and 7Department of Fisheries and subsistence fisheries, is vital to ecological and economic stability. Oceans, Bedford Institute of Oceanography, Ocean Sciences Division, 2. Herein, we describe a conceptual framework that can be used to explore food- Dartmouth, Nova Scotia, Canada web structure and associated ecosystem functions in large lakes.
    [Show full text]
  • Integrated Assessment Cisco (Coregonus Artedi) Restoration in Lake Michigan FACT SHEET: Management/Restoration Efforts in the Great Lakes
    Integrated Assessment Cisco (Coregonus artedi) Restoration in Lake Michigan FACT SHEET: Management/Restoration Efforts in the Great Lakes General In the Great Lakes Basin, a number of tools are available to manage Cisco stocks including restoration when populations are depleted. Active tools that have Been used include harvest regulations, habitat protection and enhancement, and population enhancement and re-introduction via stocking. Cisco management in each lake is the purview of individual jurisdictions. Regulation of commercial and recreational fisheries in the Great Lakes is under the authority of eight individual U. S. states, the Canadian province of Ontario (Fig.1), and triBal governments. In the United States Great Lakes, three intertribal organizations regulate treaty-based harvest on ceded lands and water beyond the reservations: the Great Lakes Indian Fish and Wildlife Commission, the Chippewa Ottawa Resource Authority and the 1854 Treaty Authority (CORA 2000, Kappen et al 2012). Four treaties reserve triBal fishing rights including suBsistence fishery in Michigan, Wisconsin and Minnesota. In the Canadian Great Lakes, the Aboriginal Communal Fishing Licences Regulations provides communal fishing licenses as a management tool for Aboriginal fisheries, which are found on all lakes except Lake Erie. This fact sheet summarizes cisco management for each lake excluding harvest regulations for tribal fisheries which are not aligned with one lake (Fig. 2). Figure 1. Great Lakes bordering states (GLIN.net) 1 Integrated Assessment Cisco (Coregonus artedi) Restoration in Lake Michigan FACT SHEET: Management/Restoration Efforts in the Great Lakes Figure 2 .Treaty-ceded waters in the Great Lakes with tribal fishing rights reaffirmed based on 1836, 1842, and 1854 treaties between Native American tribes and the U.S.
    [Show full text]