(Coregonus Zenithicus) in Lake Superior
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sturgeon Research in NY 2017. NY Chapter, American Fisheries Society
Citation: 2017. Brooking, Thomas E. Sturgeon Research in NY 2017. NY Chapter, American Fisheries Society. Annual Meeting Abstracts. Feb. 1-3, 2017. Buffalo, NY. 45 pp. Thursday February 2, 2017 Keynote Speakers 8:35 AM-9:20 AM Title: Lake Sturgeon recovery: Optimism for long-term success Author: Ron Bruch Affiliation: Fisheries Chief (retired), Wisconsin Dept. of Natural Resources Contact: [email protected] Abstract: Biologists who have worked with Lake Sturgeon are all aware of the devastating declines in abundance and habitat the species experienced in the Great Lakes and elsewhere throughout its range in North America in the late 1800s and early 1900s. Yet today in the early part of the 21st Century Lake Sturgeon populations overall enjoy much greater protection from over-exploitation, and have greater opportunities for recovery and sustainability throughout their range than they have experienced since the early 19th Century. A combination of factors including: increased attention over the last 30-40 years by state and provincial governments to effectively manage harvest and conduct proper assessments, increased public awareness of LS and their extreme vulnerability to overexploitation, improvements in assessment techniques, improvement in LS propagation techniques and stocking strategies, exponential expansion of population studies and research, increasing awareness and efforts to improve habitat and water quality, and the formation of the North American Sturgeon and Paddlefish and World Sturgeon Conservation Societies have all contributed to greater protection and recovery potential. While these are all positive steps that collectively should allow many LS populations to continue or start down the road to recovery, there are still waters and populations that may not be getting the attention needed to allow their recovery to occur. -
2016 Lakewide Assessment Plan Survey Report
2016 Lakewide Assessment Plan Survey Report Report Number: 2017-04 Suggested Citation: Breeggemann, J. J., T. J. Treska, S. D. Hanson, and R. M. Wehse. 2017. 2016 Lakewide Assessment Plan Survey Report. Green Bay Fish and Wildlife Conservation Office Report number: 2017-04. March 2017 Table of Contents Introduction .................................................................................................................................................. 4 Methods ........................................................................................................................................................ 6 Field Sampling ........................................................................................................................................... 6 Lab Processing ........................................................................................................................................... 6 Data Analyses ............................................................................................................................................ 7 Results ........................................................................................................................................................... 8 Discussion ................................................................................................................................................... 10 References ................................................................................................................................................. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Scale Structure, Age and Growth in the Freshwater Carp, Labeo Calbasu (Pisces/Cyprinidae) from Harike Wetland, India
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons Journal of the Indian Fisheries Association 71 31, 2004, 71-80 SCALE STRUCTURE, AGE AND GROWTH IN THE FRESHWATER CARP, LABEO CALBASU (PISCES/CYPRINIDAE) FROM HARIKE WETLAND, INDIA N. K. Bhatia and A. Dua Aqua,tic Biology Lab., Zoology Department, Guru Nanak Dev University, Amritsar, Punjab 143 005. ABSTRACT Age structure and growth profile based on the scale studies of 468 specimens ranging from 17-62 em total length of Labeo calbasu (Hamilton) from Harike wetland (30°13'N, 75° 12'E), Punjab, India have been described. the present study showed better growth in terms of two important growth parameters namely index of species average size and population weight growth intensity. Two distinct phases in its life history have been described that indicates the optimum exploitation of this species from this waterbody. Harvestable size is found to be fish of 34 em total length. The detailed structural elaboration of scale (normal, regenerated, lateral line) has also been done using scanning electron microscopy (SEM). Keywords: Scale, SEM, Age, Growth, Stock Management. INTRODUCTION Being an important commercial :tish, this species has been studied by several Labeo calbasu (Hamilton) is a widely _workers. Alikunhi (1957) and Pathak distributed major carp inhabiting most of (1975) studied different aspects of its the southern regions of Asia including biology. Rao and Rao (1972), Gupta and India, Pakistan, Bangladesh, Myanmar, Jhingran (1973), Johal and Kingra (1988), Nepal, Thailand and South-Western China Tandon et al. (1989), Johal et al. -
Lake Superior Food Web MENT of C
ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans. -
COSSARO Candidate V, T, E Species Evaluation Form
Ontario Species at Risk Evaluation Report for Shortnose Cisco (Coregonus reighardi) Committee on the Status of Species at Risk in Ontario (COSSARO) Assessed by COSSARO as Endangered November 2017 Final Cisco à museau court (Coregonus reighardi) Le cisco à museau court (Coregonus reighardi) est un Corégonidé nord-américain, et l’une des 10 espèces de ciscos du Canada. Historiquement, on trouvait cette espèce vivant en eaux profondes (de 22 à 110 mètres; Eshenroder et coll., 2016) dans le lac Huron, le lac Michigan et le lac Ontario. Cependant, on en sait très peu sur son historique et ses besoins en matière d’habitat. On croit que le déclin historique du cisco à museau court est attribuable à la surpêche, ainsi qu’à la compétition et à la prédation d’espèces de poissons non indigènes, qui sont des causes plus récentes (COSEPAC, 2017). La désignation de son statut se complique encore davantage en raison de la possibilité d’hybridation avec différentes espèces de ciscos des Grands Lacs, où certains poissons qui ne peuvent être associés à aucune espèce de ciscos pourraient toujours présenter des traits du cisco à museau court (Eshenroder et coll., 2016). Malgré l’échantillonnage intensif et ciblé, la dernière capture recensée d’un cisco à museau court clairement identifié a eu lieu en 1985 (baie Georgienne, lac Huron; COSEPAC, 2017). L’espèce est probablement disparue, mais comme seulement 32 ans se sont écoulés depuis la dernière capture, elle ne peut être classée dans cette catégorie. Le cisco à museau court est considéré comme étant en voie de disparition en Ontario en raison de sa faible population (< 250 individus). -
Extinction Rates in North American Freshwater Fishes, 1900–2010 Author(S): Noel M
Extinction Rates in North American Freshwater Fishes, 1900–2010 Author(s): Noel M. Burkhead Source: BioScience, 62(9):798-808. 2012. Published By: American Institute of Biological Sciences URL: http://www.bioone.org/doi/full/10.1525/bio.2012.62.9.5 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Articles Extinction Rates in North American Freshwater Fishes, 1900–2010 NOEL M. BURKHEAD Widespread evidence shows that the modern rates of extinction in many plants and animals exceed background rates in the fossil record. In the present article, I investigate this issue with regard to North American freshwater fishes. From 1898 to 2006, 57 taxa became extinct, and three distinct populations were extirpated from the continent. Since 1989, the numbers of extinct North American fishes have increased by 25%. From the end of the nineteenth century to the present, modern extinctions varied by decade but significantly increased after 1950 (post-1950s mean = 7.5 extinct taxa per decade). -
Spawning Distribution of Bering Ciscoes in the Yukon River
Transactions of the American Fisheries Society 144:292–299, 2015 American Fisheries Society 2015 ISSN: 0002-8487 print / 1548-8659 online DOI: 10.1080/00028487.2014.988881 ARTICLE Spawning Distribution of Bering Ciscoes in the Yukon River Randy J. Brown* and David W. Daum1 U.S. Fish and Wildlife Service, 101 12th Avenue, Room 110, Fairbanks, Alaska 99701, USA Abstract Bering Ciscoes Coregonus laurettae are anadromous salmonids with known spawning populations only in the Yukon, Kuskokwim, and Susitna rivers in Alaska. A commercial fishery for the species was recently initiated at the mouth of the Yukon River, inspiring a series of research projects to enhance our understanding of the exploited population. This study was designed to delineate the geographic spawning distribution of Bering Ciscoes in the Yukon River. One hundred radio transmitters per year in 2012 and 2013 were deployed in prespawning Bering Ciscoes at a site located 1,176 km upstream from the sea. A total of 160 fish survived fish wheel capture and tagging, avoided harvest and predation after tagging, and continued migrating upstream to their spawning destinations. Approximately 79% migrated to spawn in the upper Yukon Flats, upstream from the mouth of the Porcupine River, and 21% migrated to spawn in the lower Yukon Flats. Locating the Bering Cisco spawning area, which is almost entirely encompassed by the Yukon Flats National Wildlife Refuge, enhances our ability to protect it from anthropogenic disturbance and enables future biological research on the spawning population. Conservation of migratory fish in large rivers requires an removing gravel from fish spawning habitats has been shown understanding of habitat use across a species’ range and the to reduce spawning success (Fudge and Bodaly 1984; Meng ability to manage anthropogenic impacts to essential habitats and Muller€ 1988), which could jeopardize the viability of such as migration routes and spawning areas (Gross 1987; affected populations. -
Ours to Save: the Distribution, Status & Conservation Needs of Canada's Endemic Species
Ours to Save The distribution, status & conservation needs of Canada’s endemic species June 4, 2020 Version 1.0 Ours to Save: The distribution, status & conservation needs of Canada’s endemic species Additional information and updates to the report can be found at the project website: natureconservancy.ca/ourstosave Suggested citation: Enns, Amie, Dan Kraus and Andrea Hebb. 2020. Ours to save: the distribution, status and conservation needs of Canada’s endemic species. NatureServe Canada and Nature Conservancy of Canada. Report prepared by Amie Enns (NatureServe Canada) and Dan Kraus (Nature Conservancy of Canada). Mapping and analysis by Andrea Hebb (Nature Conservancy of Canada). Cover photo credits (l-r): Wood Bison, canadianosprey, iNaturalist; Yukon Draba, Sean Blaney, iNaturalist; Salt Marsh Copper, Colin Jones, iNaturalist About NatureServe Canada A registered Canadian charity, NatureServe Canada and its network of Canadian Conservation Data Centres (CDCs) work together and with other government and non-government organizations to develop, manage, and distribute authoritative knowledge regarding Canada’s plants, animals, and ecosystems. NatureServe Canada and the Canadian CDCs are members of the international NatureServe Network, spanning over 80 CDCs in the Americas. NatureServe Canada is the Canadian affiliate of NatureServe, based in Arlington, Virginia, which provides scientific and technical support to the international network. About the Nature Conservancy of Canada The Nature Conservancy of Canada (NCC) works to protect our country’s most precious natural places. Proudly Canadian, we empower people to safeguard the lands and waters that sustain life. Since 1962, NCC and its partners have helped to protect 14 million hectares (35 million acres), coast to coast to coast. -
Field Key to the Freshwater Fishes of British Columbia
FIELD KEY TO THE FRESHWATER FISHES OF BRITISH COLUMBIA J.D. McPhail and R. Carveth Fish Museum, Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, B.C., Canada, V6T 1Z4 (604) 822-4803 Fax (604) 822-2416 © The Province of British Columbia Published by the Resources Inventory Committee Canadian Cataloguing in Publication Data McPhail, J. D. (John Donald) Field key to the freshwater, fishes of British Columbia Also available through the Internet. Previously issued: Field key to the freshwater fishes of British Columbia. Draft for 1994 field testing, 1994. Includes bibliographical references: p. ISBN 0-7726-3830-6 (Field guide) ISBN 0-7726-3844-6 (Computer file) 1. Freshwater fishes - British Columbia - Identification. I. Carveth, R. II. Resources Inventory Committee (Canada) III. Title. QL626.5.B7M36 1999 597.176'09711 C99-960109-1 Additional Copies of this publication can be purchased from: Government Publications Centre Phone: (250) 387-3309 or Toll free: 1 -800-663-6105 Fax: (250) 387-0388 www.publications.gov.bc.ca Digital Copies are available on the Internet at: http://www.for.gov. bc.ca/ric Text copyright © 1993 J.D. McPhail Illustrations copyright © 1993 D.L. McPhail All rights reserved. Design and layout by D.L. McPhail "Admitted that some degree of obscurity is inseparable from both theology and ichthyology, it is not inconsistent with profound respect for the professors of both sciences to observe that a great deal of it has been created by themselves." Sir Herbert Maxwell TABLE OF CONTENTS Introduction · i Region 1 - Vancouver Island 1 Region 2 - Fraser 27 Region 3 - Columbia 63 Region 4 - MacKenzie 89 Region 5 - Yukon 115 Region 6 - North Coast 127 Region 7 - Queen Charlotte Islands 151 Region 8 - Central Coast 167 Appendix 193 Acknowledgements . -
Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium Coulterii) Author(S): Taylor R
Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium coulterii) Author(s): Taylor R. Stewart and Derek H. OgleOwen T. Gorman and Mark R. Vinson Source: The American Midland Naturalist, 175(1):24-36. Published By: University of Notre Dame DOI: http://dx.doi.org/10.1674/amid-175-01-24-36.1 URL: http://www.bioone.org/doi/full/10.1674/amid-175-01-24-36.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Am. Midl. Nat. (2016) 175:24–36 Age, Growth, and Size of Lake Superior Pygmy Whitefish (Prosopium coulterii) 1 TAYLOR R. STEWART AND DEREK H. OGLE Department of Natural Resources, Northland College, Ashland, Wisconsin 54806 AND OWEN T. GORMAN AND MARK R. VINSON U. S. Geological Survey, Great Lakes Science Center, Lake Superior Biological Station, Ashland, Wisconsin 54806 ABSTRACT.—Pygmy Whitefish (Prosopium coulterii) are a small, glacial relict species with a disjunct distribution in North America and Siberia. -
Status and Trends of Prey Fish Populations in Lake Michigan (2004)
Lake Michigan Committee March 22, 2005 Status and Trends of Prey Fish Populations in Lake Michigan, 20041 Charles P. Madenjian, David B. Bunnell, Timothy J. Desorcie, Jeffrey D. Holuszko, and Jean V. Adams U. S. Geological Survey Great Lakes Science Center 1451 Green Road Ann Arbor, Michigan 48105 Abstract The Great Lakes Science Center (GLSC) has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven to nine index transects. The resulting data on relative abundance, size structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the lake-wide survey were completed in 2004. Alewife abundance decreased substantially between 2003 and 2004, as estimated lake-wide biomass dropped from 43.234 kilotonnes (kt) (1 kt = 1000 metric tons) in 2003 to 13.721 kt in 2004. Catch of adult alewives in 2004 was dominated by the 1998 year- class. Lake-wide biomasses of bloater, deepwater sculpin, slimy sculpin, and rainbow smelt in 2004 were estimated at 34.321 kt, 26.519 kt, 3.658 kt, and 1.854 kt, respectively. Bloater biomass drastically declined between 1989 and 2004. Abundance of juvenile bloaters in 2004 was the highest juvenile bloater abundance observed since 1991. Rainbow smelt biomass declined during 1992-1997, and has remained low since 1997. Deepwater sculpin biomass has shown neither an increasing nor decreasing trend from 1990 to 2004.