Internal Combustion Engine (Edited from Wikipedia)

Total Page:16

File Type:pdf, Size:1020Kb

Internal Combustion Engine (Edited from Wikipedia) Internal Combustion Engine (Edited from Wikipedia) SUMMARY An internal combustion engine is an engine in which combustion, or the burning of fuel, occurs on the inside. It is a machine that makes large pressure increases inside a sealed box (cylinder). The pressure increase pushes a rod which is attached to a wheel. The rod pushes the wheel and makes it spin around. The spinning wheel is attached to other wheels, such as four car wheels, with a belt or a chain. The engine is very strong and can make all the wheels move. Engines need oil to make them slippery or the moving parts would grind together and stick. Parts of a car engine are measured to 0.01 of a millimeter and some engine parts fit together very tightly. Internal differs from external combustion where the fire is outside the engine, such as a steam engine. Most road vehicles use the internal combustion engine today, and most of those use the four-stroke engine. Rocket and jet engines are combustion engines but they do not turn wheels. The fire in their combustion chamber pushes gases rapidly out the back, which pushes the rocket forward. HISTORY Various scientists and engineers contributed to the development of internal combustion engines. In 1791 2, John Barber developed a turbine. In 1794 Thomas Mead patented a gas engine. Also in 1794 Robert Street patented an internal combustion engine, which was also the first to use liquid fuel (gasoline), and built an engine around that time. In 1798, John Stevens designed the first American internal combustion engine. In 1807, Swiss engineer François Isaac de Rivaz built an internal combustion engine ignited by electric spark. In 1823, Samuel Brown patented the first internal combustion engine to be applied industrially. Father Eugenio Barsanti, was an Italian engineer, who together with Felice Matteucci of Florence invented the first real internal combustion engine in 1853. Their patent 1 request was granted in London on June 12, 1854, and published in London's Morning Journal under the title "Specification of Eugene Barsanti and Felix Matteucci, Obtaining Motive Power by the Explosion of Gasses". In 1860, Belgian Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nikolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nikolaus Otto, working with Gottlieb Daimler and Wilhelm Maybach, patented the compressed charge, four-cycle engine. Nikolaus Otto was born on 14 June 1832 in Germany. He was the youngest of six children. His father died in 1832. He began school in 1838. After six years of good performance he moved to high school until 1848. He did not complete his studies but was cited for good performance. His main interest in school had been in science and technology but nevertheless he graduated after three years as a business apprentice in a small merchandise company. After completing his apprenticeship he moved to Frankfurt where he worked for Philipp Jakob Lindheimer as a salesman of "colonial goods" and agricultural products (he was a grocery salesman). Otto worked for various companies. First was IC Alpeter and then in 1860 for Carl Mertens. He traveled throughout Western Germany and sold colonial goods - coffee, tea, rice, and sugar. In late autumn of 1860 Otto and his brother learned of a novel gas (illuminating gas) engine that Jean Joseph Etienne Lenoir had built in Paris. The brothers built a copy of the Lenoir engine and applied for a patent in Jan 1861 for a liquid fueled engine based on the Lenoir (Gas) engine with the Prussian Ministry of Commerce but it was rejected. The Otto engine which is the predecessor of the modern engine is Otto's fourth design. In 1879, Karl Benz patented a reliable two-stroke gas engine. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched the first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft. 2 FOUR STROKES The Otto engine was designed as a stationary engine and in the action of the engine, the stroke is an upward or downward movement of a piston in a cylinder. Used later in an adapted form as an automobile engine, four strokes are involved: (1) downward intake stroke—coal-gas and air enter the piston chamber, (2) upward compression stroke—the piston compresses the mixture, (3) downward power stroke—ignites the fuel mixture by flame and later electric spark, (4) upward exhaust stroke—releases exhaust gas from the piston chamber. Otto only sold his engine as a stationary motor. APPLICATIONS Reciprocating piston engines are by far the most common power source for land and water vehicles, including automobiles, motorcycles, ships and to a lesser extent, locomotives (some are electrical but most use Diesel engines). Rotary engines of the Wankel design are used in some automobiles, aircraft and motorcycles. Where very high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines or Wankel engines. Powered aircraft typically uses an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts; both of which are types of turbines. In addition to providing propulsion, airliners may employ a separate ICE as an auxiliary power unit. Wankel engines are fitted to many unmanned aerial vehicles. ICEs drive some of the large electric generators that power electrical grids. They are found in the form of combustion turbines in combined cycle power plants with a typical electrical output in the range of 100 MW to 1 GW. The high temperature exhaust is used to boil and superheat water to run a steam turbine. Thus, the efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion turbine alone. In combined cycle power plants efficiencies in the range of 50% to 60% are typical. In a smaller scale Diesel generators are used for backup power and for providing electrical power to areas not connected to an electric grid. Small engines (usually 2 ‐stroke gasoline engines) are a common power source for lawnmowers, string trimmers, chain saws, leafblowers, pressure washers, snowmobiles, jet skis, outboard motors, mopeds, and motorcycles. 3.
Recommended publications
  • Mechnova February 2021 Vol 9, Issue 1
    VIMAL JYOTHI ENGINEERING COLLEGE, CHEMPERI MECHNOVA FEBRUARY 2021 VOL 9, ISSUE 1 KNOW A FAMOUS MECHANICAL ENGINEER-SERIES 16 FELICE MATTEUCCI Felice Matteucci (February 12, 1808 – September 13, 1887) was an Italian hydraulic engineer who co-invented an internal combustion engine with Eugenio Barsanti. Born in Lucca, Tuscany, Matteucci studied hydraulic and mechanical engineering, first in Paris, then in Florence. In 1851 he met Father Barsanti and appreciated his ideas for a new type of engine. They worked together to turn the primary concept into a manufacturable item, eventually developing a model suitable for mass production VISION “To become a centre of excellence in Mechanical Engineering, producing innovative and creative mechanical engineers to meet the global challenges” MISSION ➢ To provide a platform to the students towards attaining quality education in Mechanical Engineering. ➢ To educate students about professional & ethical responsibilities and train them to build leadership and entrepreneurship qualities for their career development. ➢ To create opportunities and guide students in acquiring career oriented jobs in the field of Mechanical Engineering MECHNOVA FEBRUARY 2021 Page 1 Inside this issue: • Famous Mechanical Engineers • Vision, Mission • Workshop on “MATLAB In Interdisciplinary Engineering Research” • Faculty Achievements • Proposal submitted under Modernisation and Removal of Obsolescence (MODROB) • Programmes attended by Faculty • Paper Publications • Student Achievements • Placement • PEOs • POs and PSOs MECHNOVA FEBRUARY 2021 Page 2 WORKSHOP ON “MATLAB IN INTERDISCIPLINARY ENGINEERING RESEARCH” The Department of Mechanical Engineering, VJEC organised a three weeks online Hands on Workshop on “MATLAB in Interdisciplinary Engineering Research” from 14th December 2020 to 02nd January 2021 with a sessions from 05.00 pm to 07.00 pm.
    [Show full text]
  • 2.The First Internal Combustion Engine
    The Piston Engine Revolution The First Internal Combustion Engine G Ricci, P Gasparini, P Lazzerini, R Lazzerini, F Viola Barsanti and Matteucci Foundation Synopsis Two Italian scientists/engineers developed the first internal combustion engine using the free-piston principle. Patents were established in various countries and a working engine was manufactured and ran successfully for several years at a railway station in Florence and before the engines of Lenoir and of Otto and Langen. Other engines were developed but the chaotic political and social conditions during the reunification of Italy created problems in promoting their engine and defending their patents. The death of Barsanti, whilst supervising the production of the engine at Cockerill’s plant at Seraing, Belgium, coupled with Matteucci’s ill-health effectively ended the engine’s promotion and development. Lenoir’s engine introduced at this time was commercially successful but much less efficient than Barsanti and Matteucci’s engine, and it was left to Otto and Langen, using a very similar free-piston design, to establish an efficient internal combustion engine. KEYWORDS: Barsanti, Matteucci, Lenoir, Otto and Langen, First gas engine. Abbot Eugenio Barsanti from Pietrasanta Lucca, a gifted mathematician and physicist, was drawn towards his invention of a gas engine after studying a new concept electric pistol, which was originally used by inventor Alessandro Volta to study the behaviour of Marsh Gas. Barsanti used metal instead of glass, completed the pistol with an upper cork plug, with a flexible bottom end, and used a device to create an internal spark (Figure 1). He completed various experiments from which he realized that he had identified an energy source ready to be used practically.
    [Show full text]
  • A Review on Internal Combustion Engines
    International Journal of Research in Engineering, Science and Management 790 Volume-1, Issue-10, October-2018 www.ijresm.com | ISSN (Online): 2581-5792 A Review on Internal Combustion Engines T.Z. Quazi1, Chaitesh Mhatre2, Soham Khanolkar3, Pranay Patil4, Sanil Pawar5 1Professor and HOD, Dept. of Automobile Engineering, Saraswati College of Engineering, Kharghar, India 2,3,4,5Student, Dept. of Automobile Engineering, Saraswati College of Engineering, Kharghar, India Abstract—The Internal combustion engines are devices that physicist, Christian Huygens (but never built) generate work using the products of combustion as the working 1807 – An internal combustion engine that used a fluid rather than as a heat transfer medium. To produce work, the mixture of hydrogen and oxygen for fuel was invented combustion is carried out in a manner that produces high-pressure combustion products that can be expanded through a turbine or by Francois Issac de Rivaz of Switzerland. He also piston. The engineering of these high pressure systems introduces designed a car for his engine- the first IC powered a number of features that profoundly influence the formation of automobile, which was, however, a very unsuccessful pollutants. Internal combustion engines are most commonly used design for mobile propulsion in vehicles and portable machinery. In 1824 – An old Newcomen steam engine was adopted mobile equipment, internal combustion is advantageous since it can provide high power-to-weight ratios together with excellent to burn gas, by English engineer, Samuel Brown fuel energy density. Generally using fossil fuel (mainly petroleum), which he used to briefly power a vehicle up Shooter’s these engines have appeared in transport in almost all vehicles hill in London (automobiles, trucks, motorcycles, boats, and in a wide variety of 1858 – Belgian-born engineer, Jean Joseph Etienne aircraft and locomotives).
    [Show full text]
  • Internal Combustion Engine
    AccessScience from McGraw-Hill Education Page 1 of 15 www.accessscience.com Internal combustion engine Contributed by: Neil MacCoull, Donald L. Anglin Publication year: 2014 A prime mover that burns fuel inside the engine, in contrast to an external combustion engine, such as a steam engine, which burns fuel in a separate furnace. See also: ENGINE . Most internal combustion engines are spark-ignition gasoline-fueled piston engines. These are used in automobiles, light- and medium-duty trucks, motorcycles, motorboats, lawn and garden equipment, and light industrial and portable power applications. Diesel engines are used in automobiles, trucks, buses, tractors, earthmoving equipment, as well as marine, power-generating, and heavier industrial and stationary applications. This article describes these types of engines. For other types of internal combustion engines see GAS TURBINE ; ROCKET PROPULSION ; TURBINE PROPULSION . The aircraft piston engine is fundamentally the same as that used in automobiles but is engineered for light weight and is usually air-cooled. See also: RECIPROCATING AIRCRAFT ENGINE . Engine types Characteristics common to all commercially successful internal combustion engines include (1) the compression of air, (2) the raising of air temperature by the combustion of fuel in this air at its elevated pressure, (3) the extraction of work from the heated air by expansion to the initial pressure, and (4) exhaust. Four-stroke cyc le. William Barnett first drew attention to the theoretical advantages of combustion under compression in 1838. In 1862 Beau de Rochas published a treatise that emphasized the value of combustion under pressure and a high ratio of expansion for fuel economy; he proposed the four-stroke engine cycle as a means of accomplishing these conditions in a piston engine ( Fig.
    [Show full text]
  • Counterpoise Defined Final
    A WHITE PAPER DESCRIBING THE INTERNAL COMBUSTION ENGINE’S FINAL MODIFICATION THE COUNTERPOISE BI-RADIAL ENGINE Authored by Del Wolverton Chief Science Officer/Founder WolvertonBailey, Inc. SUMMARY This is the year, 2017, that we celebrate 140 years since Dr. Nikolas Otto patented the four-stroke internal combustion engine in 1877. His gasoline engine serves as the origin of the “Otto Cycle” which is used as the basis for seven internal combustion engine variants today. For purposes of this white paper, the four-cylinder Otto engine will be used as the “reference engine.” Since Dr. Otto’s engine was built around the origin of the four-stroke-cycle of the pistons, this allows us to have a piston per cycle. Many changes have taken place during the past century in the size and shape of the engine as designed for various uses, however, this original four-stroke cycle is still used even in the latest internal combustion engine, the Counterpoise Bi-Radial Engine. This discussion will first describe the “basis” Otto Cycle, providing a simple, “math-free” description of each of the four strokes in the cycle. Then, in order to help understand the operation, power, and weight advantages gained in the evolution, the author will take you through the existing variants, all the way to the latest internal combustion engine—complete with the final patented design, the WBI Counterpoise Bi-Radial Engine. CONTENTS Single-Piston of the Otto Cycle ..................................................................................................... 2 The Four
    [Show full text]
  • The Newcomen Society
    The Newcomen Society for the history of engineering and technology Welcome! This Index to volumes 1 to 32 of Transactions of the Newcomen Society is freely available as a PDF file for you to print out, if you wish. If you have found this page through the search engines, and are looking for more information on a topic, please visit our online archive (http://www.newcomen.com/archive.htm). You can perform the same search there, browse through our research papers, and then download full copies if you wish. By scrolling down this document, you will get an idea of the subjects covered in Transactions (volumes dating from 1920 to 1960 only), and on which pages specific information is to be found. The most recent volumes can be ordered (in paperback form) from the Newcomen Society Office. If you would like to find out more about the Newcomen Society, please visit our main website: http://www.newcomen.com. The Index to Transactions (Please scroll down) GENERAL INDEX Advertising puffs of early patentees, VI, 78 TRANSACTIONS, VOLS. I-XXXII Aeolipyle. Notes on the aeolipyle and the Marquis of Worcester's engine, by C.F.D. Marshall, XXIII, 133-4; of Philo of 1920-1960 Byzantium, 2*; of Hero of Alexandria, 11; 45-58* XVI, 4-5*; XXX, 15, 20 An asterisk denotes an illustrated article Aerodynamical laboratory, founding of, XXVII, 3 Aborn and Jackson, wood screw factory of, XXII, 84 Aeronautics. Notes on Sir George Cayley as a pioneer of aeronautics, paper J.E. Acceleration, Leonardo's experiments with Hodgson, 111, 69-89*; early navigable falling bodies, XXVIII, 117; trials of the balloons, 73: Cayley's work on airships, 75- G.E.R.
    [Show full text]
  • History of the Internal Combustion Engine
    1 2 THE HISTORY OF THE INTERNAL COMBUSTION ENGINE Sorin RAŢIU1 1UNIVERSITY « POLITEHNICA » TIMIŞAORA FACULTY OF ENGINEERING HUNEDOARA ABSTRACT The article presents a brief outline of the history of the internal combustion engine industry. Engine design and car design were integral activities, almost all of the engine designers mentioned in the article also designed cars, and a few went on to become major manufacturers of automobiles. All of these inventors and more made notable improvements in the evolution of the internal combustion vehicles. KEYWORDS history, internal combustion engine 1. INTRODUCTION An internal combustion engine is any engine that uses the explosive combustion of fuel to push a piston within a cylinder - the piston's movement turns a crankshaft that then turns the car wheels via a chain or a drive shaft. The different types of fuel commonly used for car combustion engines are gasoline (or petrol), diesel, and kerosene. Many people claimed the invention of the internal combustion engine in the 1860's, but only one has the patent on the four stroke operating sequence. In 1867, Nikolaus August Otto, a German engineer, developed the four-stroke "Otto" cycle, which is widely used in transportation even today. Otto developed the four-stroke internal combustion engine when he was 34 years old. The Diesel Engine came about in 1892 by another German engineer, Rudolph Diesel. The Diesel engine is designed heavier and more powerful than gasoline engines and utilizes oil as fuel. Diesel engines are a commonly used in heavy machinery, locomotives, ships, and some automobiles. It is important to mention that the basic operating principles of these engines have been around for more than a hundred years and they are still in place.
    [Show full text]
  • Chapter 12 the Laws of Thermodynamics Animals Have
    Chapter 12 The Laws of Thermodynamics Animals have been doing work using biologic form of energy since their inception. What has it take so long to get machines to do work and how do they do it? Work and the Ideal gas. Work done at constant pressure P See figure 12.1 page Assume the pressure is constant in the cylinder and it piston is depressed Δy W=Fd=FΔy =PAΔy=PΔV work at constant pressure. It takes work to compress a gas so work is done on the gas when the volume is decreased. Eg. The gas has more energy If the gas expands it volume increases and we get work out of the gas (the piston can do work like move a car). Eg The gas has less energy. Example 12.1 page 386 All you want to know about PV diagrams. See Quick Quiz 12.1 page 387 for times when pressure is not constant. Dr. Popp’s statement of the First Law the Thermodynamics ΔU=± Q ±W In words the change of internal energy in any reversible process (ΔU=3/2nRΔT) Is equal to the heat add or removed and the work done by the gas or on the gas € € Q is plus if we add heat and minus if heat is removed W is plus if we do work on the gas (compress it ) and minus if the gas does work (expands) Example 12.3 page 289 Specific heat at constant volume Analogy with solids Q=mcΔT, ΔU=3/2nRΔT=nCvΔT where Cv =3/2R and is the specific heat a constant volume.
    [Show full text]
  • The Development of the Single Sleeve Valve Two-Stroke Engine Over the Last 110 Years
    energies Review The Silent Path: The Development of the Single Sleeve Valve Two-Stroke Engine over the Last 110 Years Robert Head * and James Turner Mechanical Engineering, Faculty of Engineering and Design, University of Bath, Bath BA2 7AY, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-0789-561-7437 Abstract: At the beginning of the 20th century the operational issues of the Otto engine had not been fully resolved. The work presented here seeks to chronicle the development of one of the alternative design pathways, namely the replacement for the gas exchange mechanism of the more conventional poppet valve arrangement with that of a sleeve valve. There have been several successful engines built with these devices, which have a number of attractive features superior to poppet valves. This review moves from the initial work of Charles Knight, Peter Burt, and James McCollum, in the first decade of the 20th century, through the work of others to develop a two-stroke version of the sleeve- valve engine, which climaxed in the construction of one of the most powerful piston aeroengines ever built, the Rolls-Royce Crecy. After that period of high activity in the 1940s, there have been limited further developments. The patent efforts changed over time from design of two-stroke sleeve-drive mechanisms through to cylinder head cooling and improvements in the control of the thermal expansion of the relative components to improve durability. These documents provide a foundation for a design of an internal combustion engine with potentially high thermal efficiency. Keywords: two-stroke; sleeve valves; patents Citation: Head, R.; Turner, J.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,480,536 B2 Weiss Et Al
    USOO8480536B2 (12) United States Patent (10) Patent No.: US 8,480,536 B2 Weiss et al. (45) Date of Patent: Jul. 9, 2013 (54) HYBRID DRIVE HAVING ASEPARATING 6,722,332 B2 * 4/2004 Kojima ...................... 123,179.3 CLUTCHWHICH ASSISTSA DIRECT START 6,807,934 B2 10/2004 Kataoka et al. 6,931,318 B2 * 8/2005 Kaita et al. .................... TO1,113 7,013,213 B2 * 3/2006 McGee et al. ... 701 113 (75) Inventors: Ruediger Weiss, Moetzingen (DE); 7,074,156 B2 * 7/2006 Graf et al. ......................... 477/5 Mario Kustosch, Vaihingen/Enz (DE) 7,079,942 B2* 7/2006 McGee et al. ... ... 701 113 7,085,631 B2 * 8/2006 McGee et al. .................. TO1/22 (73) Assignee: Robert Bosch GmbH. Stuttgart (DE) 7, 160,225 B2 1/2007 Berger et al. 7.213,665 B2 * 5/2007 Yamaguchi et al. ....... 18Of 65.27 7,214,156 B2 * 5/2007 Oliver ............................... 475/8 (*) Notice: Subject to any disclaimer, the term of this 7,216,729 B2 * 5/2007 Syed et al. ......... ... 180/65.28 patent is extended or adjusted under 35 7,273,119 B2 * 9/2007 Tsuneyoshi et al. ....... 180/65.28 U.S.C. 154(b) by 964 days. 7.350,602 B2 * 4/2008 Colvin et al. ...... ... 180/65.28 7,370,715 B2* 5/2008 Colvin et al. .. ... 180/65.28 (21) Appl. No.: 12/162,819 7,380,620 B2 * 6/2008 Suzuki ........ ... 180/65.28 7,407,026 B2 * 8/2008 Tamor ......... ... 180/65.28 7.469,667 B2 * 12/2008 Leone et al.
    [Show full text]
  • The Counterpoise Bi-Radial Engine
    A WHITE PAPER DESCRIBING THE INTERNAL COMBUSTION ENGINE’S FINAL IMPROVEMENT THE COUNTERPOISE BI-RADIAL ENGINE Authored by Del Wolverton Chief Science Officer/Founder WolvertonBailey Innovations, Inc. SUMMARY This is the year that we celebrate 140 years since Dr. Nikolas Otto patented the four-stroke internal combustion engine in 1877. His gasoline engine serves as the origin of the “Otto Cycle” which is used as the basis for the six internal combustion engine variants today. For purposes of this white paper, the 4-cylinder Otto engine will be used as the “reference engine.” Since Dr. Otto’s engine was built around the origin of the 4-stroke-cycle of the pistons, this allows us to have a piston per cycle. Many changes have taken place during the past century in the size and shape of the engine as designed for various uses, however, this original 4-stroke cycle is still used in the latest internal combustion engine just patented in 2016. The discussion in this white paper will first describe the Otto Cycle, providing a simple, math- free description of each of the four strokes. Then, in order to help understand the operation, power, and weight advantages gained in the evolution, the author will then take you through the five existing variants, plus the newly patented latest and final design improvement—the Counterpoise Bi-Radial Engine. CONTENTS Single-Piston of the Otto Cycle ..................................................................................................... 2 The 4 Strokes ...............................................................................................................................
    [Show full text]
  • Müh 100 Mühendisliğe Giriş
    CHAPTER 1 THE ENGINEER 1.1. INTRODUCTION The root of the word “engineer” derives from “engine” and “ingenious” both of which come from the Latin root “ingenerate” meaning “to create”. “Mühendis” in Turkish derives from “hendese” which means “geometry” and thus mühendis is the one who makes dimensional calculations. “Hendesehane” means “School of Engineering”. Engineers are individuals who combine knowledge of science, mathematics and economics to solve technical problems that confront society. Main difference between scientists and engineers is the cost analysis. Early in human history, there were no formal schools to teach engineering. Early engineers were those, “Alaylı” in Turkish, who had a gift for manipulating the physical world to achieve a practical goal. Often, it would be learned through apprenticeship with experienced practitioners. Current engineers are educated, “Okullu” in Turkish, in mathematics, science and economics. According to ABET (Accreditation Board for Engineering and Technology, USA) engineers must demonstrate that they have: (a) an ability to apply knowledge of mathematics, science, and engineering, (b) an ability to design and conduct experiments, as well as to analyze and interpret data, (c) an ability to design a system, component, or process to meet desired needs, (d) an ability to function on multi-disciplinary teams, (e) an ability to identify, formulate, and solve engineering problems, (f) an understanding of professional and ethical responsibility, (g) an ability to communicate effectively, (h) the broad education necessary to understand the impact of engineering solutions in a global and societal context, (i) a recognition of the need for, and an ability to engage in life-long learning, (j) a knowledge of contemporary issues, (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
    [Show full text]