Random Access Memory (Ram)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Design of a Drum Memory System
Scholars' Mine Masters Theses Student Theses and Dissertations 1967 The design of a drum memory system Frederick W. Lynch Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Lynch, Frederick W., "The design of a drum memory system" (1967). Masters Theses. 5163. https://scholarsmine.mst.edu/masters_theses/5163 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE DESIGN OF A DRUM MEMORY SYSTEM BY FREDERICK W. LYNCH A l'HESIS 129533 submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING Rolla, Missouri I"",,--;;'d I ~ 1967 rfJ·.dfl c, I ii ABSTRACT Three methods for obtaining an auxiliary memory for an SeC-6S0 (Scientific Control Corporation) digital computer are presented. A logic design is then developed on the basis of using the drum and write circuits from an available IBM-6S0 digital computer and con structing the remaining logic functions. The results of the logic design are the transfer equations necessary to implement the memory system. iii ACKNOWLEDGMENT The author wishes to express his sincere appreciation to his major professor, Dr. James Tracey, for guidance and support in the preparation of this thesis. iv TABLE OF CONTENTS Page ABSTRACT ii ACKNm>JLEDGlVIENT iii LIST OF FIGURES v LIST OF TABLES vi I. -
DRAM EMAIL GIM Teams!!!/Teaming Issues •Memories in Verilog •Memories on the FPGA
Memories & More •Overview of Memories •External Memories •SRAM (async, sync) •Flash •DRAM EMAIL GIM teams!!!/teaming Issues •Memories in Verilog •Memories on the FPGA 10/18/18 6.111 Fall 2018 1 Memories: a practical primer • The good news: huge selection of technologies • Small & faster vs. large & slower • Every year capacities go up and prices go down • Almost cost competitive with hard disks: high density, fast flash memories • Non-volatile, read/write, no moving parts! (robust, efficient) • The bad news: perennial system bottleneck • Latencies (access time) haven’t kept pace with cycle times • Separate technology from logic, so must communicate between silicon, so physical limitations (# of pins, R’s and C’s and L’s) limit bandwidths • New hopes: capacitive interconnect, 3D IC’s • Likely the limiting factor in cost & performance of many digital systems: designers spend a lot of time figuring out how to keep memories running at peak bandwidth • “It’s the memory - just add more faster memory” 10/18/18 6.111 Fall 2018 2 How do we Electrically Remember Things? • We can convey/transfer information with voltages that change over time • How can we store information in an electrically accessible manner? • Store in either: • Electric Field • Magnetic Field 10/18/18 6.111 Fall 2018 3 Mostly focus on rewritable • Punched Cards have existed as electromechanical program storage since ~1800s • We’re mostly concerned with rewritable storage mechanisms today (cards were true Computer program in punched card format ROMs) https://en.wiKipedia.org/wiKi/Computer_programming_in_the_ -
Secondary Memory
Secondary Memory This type of memory is also known as external memory or non-volatile. It is slower than main memory. These are used for storing data/Information permanently. CPU directly does not access these memories instead they are accessed via input-output routines. Contents of secondary memories are first transferred to main memory, and then CPU can access it. For example : Hard disk, CD-ROM, DVD etc. Electronic data is a sequence of bits. This data can either reside in : • Primary storage - main memory (RAM), relatively small, fast access, expensive (cost per MB), volatile (go away when power goes off) • Secondary storage - disks, tape, large amounts of data, slower access, cheap (cost per MB), persistent (remain even when power is off) Data storage has expanded from text and numeric files to include digital music files, photographic files, video files, and much more. These new types of files require secondary storage devices with much greater capacity than floppy disks. 1 Primary storage ( or main memory or internal memory) , often referred to simply as memory , is the only directly accessible to the CPU. Primary memory can be divided into volatile and nonvolatile memories. Primary storage (Main Memory ) has three main functions: 1-It stored all or part of the program that being executed. 2-It also holds data that are being used by the program. 3-It also stored the operating system programs that manage the operation of the computer. Limitation of Primary storage 1. Limited capacity- because the cost per bit of storage is high. 2. Volatile – data stored in it is lost when the electric power is turned off Or interrupted. -
Computer Organization and Architecture Designing for Performance Ninth Edition
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. -
CSCI 120 Introduction to Computation Bits... and Pieces (Draft)
CSCI 120 Introduction to Computation Bits... and pieces (draft) Saad Mneimneh Visiting Professor Hunter College of CUNY 1 Yes No Yes No... I am a Bit You may recall from the previous lecture that the use of electro mechanical relays, and in subsequent years, diodes and transistor, made it possible to con- struct more advanced computers, e.g. ENIAC. This is accredited to the fact that these devices could function as on/off switches. On one hand, they create the ability to encode logic into the circuits of the computer. This means that the computer can perform different tasks under different conditions, i.e. the notion of a program. For instance, one could encode the logic if A OR B then C. On the other hand, these devices allow the engineers to worry less about the values that could possibly arise in the system: the switch is either on or off. It cannot be anything in between. Therefore, this means that any errors due to fluctuation in voltage levels are greatly reduced. It would be enough to simply distinguish between high voltage and low voltage. This brings us to the question of Analog versus Digital. In simple terms, a digital system encodes information using a number of de- vices that have discrete states (e.g. on/off switches). An analog system encodes information using a device that have continuous states (e.g. measurement in an electric circuit). To build an intuition for digital versus analog, consider the problem of en- coding a number using buckets of water. One possibility is to use two kinds of buckets, full and empty. -
WLFC: Write Less in the Flash-Based Cache
WLFC: Write Less in the Flash-based Cache Chaos Dong Fang Wang Jianshun Zhang Huazhong University of Huazhong University of Huazhong University of Science and Technology Science and Technology Science and Technology Huhan, China Huhan, China Huhan, China Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Flash-based disk caches, for example Bcache [1] and log-on-log [5]. At the same time, the Open-Channel SSD Flashcache [2], has gained tremendous popularity in industry (OCSSD) has became increasingly popular in academia. in the last decade because of its low energy consumption, non- Through a standard OCSSD interface, the behaviors of the volatile nature and high I/O speed. But these cache systems have a worse write performance than the read performance because flash memory can be managed by the host to improve the of the asymmetric I/O costs and the the internal GC mechanism. utilization of the storage. In addition to the performance issues, since the NAND flash is In this paper, we mainly make three contributions to optimize a type of EEPROM device, the lifespan is also limited by the write performance of the flash-based disk cache. First, we Program/Erase (P/E) cycles. So how to improve the performance designed a write-friendly flash-based disk cache system and the lifespan of flash-based caches in write-intensive scenarios has always been a hot issue. Benefiting from Open-Channel SSDs upon Open-Channel SSDs, named WLFC (Write Less in (OCSSDs) [3], we propose a write-friendly flash-based disk cache the Flash-based Cache), in which the requests is handled system, which is called WLFC (Write Less in the Flash-based by a strictly sequential writing method to reduce write Cache). -
Magnetic Storage- Magnetic-Core Memory, Magnetic Tape,RAM
Magnetic storage- From magnetic tape to HDD Juhász Levente 2016.02.24 Table of contents 1. Introduction 2. Magnetic tape 3. Magnetic-core memory 4. Bubble memory 5. Hard disk drive 6. Applications, future prospects 7. References 1. Magnetic storage - introduction Magnetic storage: Recording & storage of data on a magnetised medium A form of „non-volatile” memory Data accessed using read/write heads Widely used for computer data storage, audio and video applications, magnetic stripe cards etc. 1. Magnetic storage - introduction 2. Magnetic tape 1928 Germany: Magnetic tape for audio recording by Fritz Pfleumer • Fe2O3 coating on paper stripes, further developed by AEG & BASF 1951: UNIVAC- first use of magnetic tape for data storage • 12,7 mm Ni-plated brass-phosphorus alloy tape • 128 characters /inch data density • 7000 ch. /s writing speed 2. Magnetic tape 2. Magnetic tape 1950s: IBM : patented magnetic tape technology • 12,7 mm wide magnetic tape on a 26,7 cm reel • 370-730 m long tapes 1980: 1100 m PET –based tape • 18 cm reel for developers • 7, 9 stripe tapes (8 bit + parity) • Capacity up to 140 MB DEC –tapes for personal use 2. Magnetic tape 2014: Sony & IBM recorded 148 Gbit /squareinch tape capacity 185 TB! 2. Magnetic tape Remanent structural change in a magnetic medium Analog or digital recording (binary storage) Longitudinal or perpendicular recording Ni-Fe –alloy core in tape head 2. Magnetic tape Hysteresis in magnetic recording 40-150 kHz bias signal applied to the tape to remove its „magnetic history” and „stir” the magnetization Each recorded signal will encounter the same magnetic condition Current in tape head proportional to the signal to be recorded 2. -
Apollo Guidance Computer Wikipedia
Apollo Guidance Computer Wikipedia Vertical Zolly cyclostyle trailingly and gummy, she sent her briny encased inadvisably. Deteriorating Henderson sometimes preserves any colloquialist reeks illegally. Kingsley usually faradise sexennially or imputes sheepishly when polytechnic Jeffrey subtitle trustworthily and psychically. Sometimes that the lower slopes of the usa by impact crater and apollo guidance computer to meet it would use this determination is complete cash on a magnetostrictive delay line Sorry, a few numbers, Stands Next To The Code She Wrote By Hand. You are about apollo guidance computer wikipedia page? Note the large boulders in background which are south of Geophone Rock. You mean like one hampshire in apollo guidance computer wikipedia by! Apollo program Wikipedia. Saturn ib is essential to the apollo guidance computer wikipedia page. The countdown became automated at three minutes and twenty seconds before night time. Virtual AGC Assembly-Language Manual Ibiblio. What programming languages were used to go stomp the beef Stack. However, this order he be automatically cancelled. During his EVA Command Module pilot Evans retrieved film cassettes from its Lunar Sounder, NASA hired skilled women although the local textile industry as well as talking the Waltham Watch so, it seems to leave something to do wield a checksum value? Gene has swung to the south for a moment. Apollo guidance computer wikipedia sans institute summit archives news amp. In with storage and her standing wave pattern is apollo guidance computer display one end device. Your Mobile Phone vs Apollo 11's Guidance Computer. The wikipedia by software engineering like this work around it is located at work she seems like if yes, apollo guidance computer wikipedia article? First of lead series often took the north climb the LM. -
Chapter 6 : Memory System
Computer Organization and Architecture Chapter 6 : Memory System Chapter – 6 Memory System 6.1 Microcomputer Memory Memory is an essential component of the microcomputer system. It stores binary instructions and datum for the microcomputer. The memory is the place where the computer holds current programs and data that are in use. None technology is optimal in satisfying the memory requirements for a computer system. Computer memory exhibits perhaps the widest range of type, technology, organization, performance and cost of any feature of a computer system. The memory unit that communicates directly with the CPU is called main memory. Devices that provide backup storage are called auxiliary memory or secondary memory. 6.2 Characteristics of memory systems The memory system can be characterised with their Location, Capacity, Unit of transfer, Access method, Performance, Physical type, Physical characteristics, Organisation. Location • Processor memory: The memory like registers is included within the processor and termed as processor memory. • Internal memory: It is often termed as main memory and resides within the CPU. • External memory: It consists of peripheral storage devices such as disk and magnetic tape that are accessible to processor via i/o controllers. Capacity • Word size: Capacity is expressed in terms of words or bytes. — The natural unit of organisation • Number of words: Common word lengths are 8, 16, 32 bits etc. — or Bytes Unit of Transfer • Internal: For internal memory, the unit of transfer is equal to the number of data lines into and out of the memory module. • External: For external memory, they are transferred in block which is larger than a word. -
Influence of U.S. Cryptologic Organizations on the Digital Computer Industry
UNCLASSIFIED Influence of U.S. Cryptologic Organizations on the Digital Computer Industry SAMUELS. SNYDER This article was originally published in two parts in the Fall 1977 and Winter 1978 issues o{Cryptologic Spectrum (Vol. 7, No. 4 and Vol. 8, No. 2). INTRODUCTION An unfortunate aspect of historical accounts of computer lore in open sources is the omission - conspicuously to some of us - of mention of the U.S. cryptologic organizations, or of the contributions by these organizations which helped in laying the foundation of the computer industry. NSA, and other cryptologic organizations, have been required over the years to observe a policy of anonymity, and with good reason. But in the age of maturing appreciation of the role of computers in nearly all civilized endeavors, it is time to acknowledge, for the first time, their outstanding contributions to the computer industry. The reader will notice the absence of remarks concerning software efforts by cryptologic organizations. While this side of their operations received its proper share of support, space restrictions preclude its inclusion in this article. Also, the Army and Navy cryptologic services have frequently changed organizational titles throughout the years. Therefore, to avoid confusion in this article, they are, previous to 1945, referred to as "Army," "Navy," "service cryptologic organizations," and the like. Too, NSA's predecessor organization, AFSA, was established in 1949, and NSA in 1952. Consequently, references to "NSA" and "Agency" are, on occasion, used interchangeably, the particular agency referred to depending upon the time period being discussed. EARLY DEVELOPMENTS The development of the U.S. computer industry might have been delayed for years ifit had not been for the stimulus and financial support of the U.S. -
Computer Hardware and Interfacing KSR
16EC764/ Computer Hardware and Interfacing K.S.R. COLLEGE OF ENGINEERING (Autonomous) SEMESTER – VII L T P C COURSE / LESSON PLAN SCHEDULE 3 0 0 3 NAME : K.KARUPPANASAMY CLASS : IV-B.E ECE - A&B SUBJECT : 16EC764 / COMPUTER HARDWARE AND INTERFACING a) TEXT BOOKS : 1. Stephen J.Bigelow, “Troubleshooting, Maintaining & Repairing of PCs”, Tata McGraw Hill, 5th Edition, 2008. 2. B.Govindarajulu, “IBM PC and Clones hardware trouble shooting and maintenance”, Tata McGraw Hill, 12th Edition, 2008. b)REFERENCES: 1. Mike Meyers,“Introduction to PC Hardware and Troubleshooting”, Tata McGraw Hill,1st Edition,2005. 2. Craig Zacker& John Rourke, “The complete reference: PC hardware”, Tata McGraw Hill, 1st Edition, 2007. 3. D.V.Hall, “Microprocessorsand InterfacingProgrammingand Hardware”, McGraw Hill, 2nd Edition, 2006. 4. Mueller.S, “Upgrading and repairing PCS”, Pearson Education, 21th Edition, 2013. C)LEGEND: L - Lecture PPT - Power Point T - Tutorial BB - Black Board OHP - Over Head Projector pp - Pages Rx - Reference Ex - Extra Teaching Lecture S. No Aid Book No./Page No Hour Topics to be covered Required UNIT-I CPU AND MEMORY L1 CPU essentials - processor modes , T /pp429-431 1 OHP X1 modern CPU concepts TX1/pp 431-436 2 L2 Architectural performance features BB TX1/pp436-439 CPU over clocking , TX1/pp481-483, 3 L3 over clocking the system ,over clocking the Intel BB TX1/pp 483-486, processors TX1/pp 487-490 Essential memory concepts -memory 4 L4 BB T /pp 856-857 organizations X1 5 L5 memory packages & modules BB TX1/pp 857-872 6 L6 logical memory -
Computer Peripheral Memory System Forecast
OF NBS H^^LK,!,, STAND S. TECH PUBLICATIONS | COMPUTER SUici^CZ^i TECHNOLOGY: COMPUTER PERIPHERAL MEMORY SYSTEM FORECAST QC 100 U57 NBS Special Publication 500-45 #500-45 U.S. DEPARTMENT OF COMMERCE 1979 National Bureau of Standards NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901 . The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities^ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.