Optical Computing: a 60-Year Adventure Pierre Ambs

Total Page:16

File Type:pdf, Size:1020Kb

Optical Computing: a 60-Year Adventure Pierre Ambs Optical Computing: A 60-Year Adventure Pierre Ambs To cite this version: Pierre Ambs. Optical Computing: A 60-Year Adventure. Advances in Optical Technologies, 2010, 2010, pp.1-15. 10.1155/2010/372652. hal-00828108 HAL Id: hal-00828108 https://hal.archives-ouvertes.fr/hal-00828108 Submitted on 30 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hindawi Publishing Corporation Advances in Optical Technologies Volume 2010, Article ID 372652, 15 pages doi:10.1155/2010/372652 Research Article Optical Computing: A 60-Year Adventure Pierre Ambs Laboratoire Mod´elisation Intelligence Processus Syst`emes, Ecole Nationale Sup´erieure d’Ing´enieurs Sud Alsace, Universit´e de Haute Alsace, 12 rue des Fr`eres Lumi`ere, 68093 Mulhouse Cedex, France Correspondence should be addressed to Pierre Ambs, [email protected] Received 15 December 2009; Accepted 19 February 2010 Academic Editor: Peter V. Polyanskii Copyright © 2010 Pierre Ambs. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Optical computing is a very interesting 60-year old field of research. This paper gives a brief historical review of the life of optical computing from the early days until today. Optical computing generated a lot of enthusiasm in the sixties with major breakthroughs opening a large number of perspectives. The period between 1980 and 2000 could be called the golden age with numerous new technologies and innovating optical processors designed and constructed for real applications. Today the field of optical computing is not ready to die, it has evolved and its results benefit to new research topics such as nanooptics, biophotonics, or communication systems. 1. Introduction and the future of electronics. Caulfield wrote in 1998 an interesting and enlightening paper on the perspectives in The knowledge of some history of sciences is useful for optical computing [7] where he discusses this competi- understanding the evolution of a research domain, its tion between optics and electronics and shows that there successes and failures. Optical computing is an interesting were three phases, first “ignorance and underestimation”of candidate for a historical review. This research field is electronics then “awakening and fear inferiority” and now also named optical information processing, and now the “realistic acceptance that optical computing and electronics are terms of information optics or information photonics are eternal partners”. frequently used, reflecting the evolution of the domain. The purpose of this paper is to show a short history of Optical computing is approximately 60 years old and it is optical computing from the origin until today. This historical a well-defined domain with its own specialized conferences, overview will show that the first years generated a lot of sections in the scientific journals and its own research enthusiasm regarding the potential of optics for information programs and funding. It was also very active worldwide and processing, this period was followed by a small slowdown therefore it is impossible in the frame of a paper to describe before the golden age that started around 1980 until the all the research results. Numerous books were written on the beginning of the new century. subject, for example, the following books describe the state of Section 2 presents the basic principles of optical infor- the art of optical computing at the time of their publication mation processing, Section 3 gives a historical review of in 1972 [1], in 1981-82 [2, 3], in 1989 [4], and in 1998-99 the research from the first years until 1980 and Section 4 [5, 6]. describes the research activity from 1980 to 2004. Section 5 Since optical computing is such a well defined field over shows the evolution of the domain until today. such a long period of time, it is interesting to study its evolution and this study can be helpful to understand why some research domains were very successful during only a 2. Fundamentals of Optical Information limited period of time while other have generated numerous Processing applications that are still in use. From the beginning there was a lot of questioning about the potential of optics for Optical information processing is based on the idea of using computing whereas there was no doubt about the potential all the properties of speed and parallelism of the light in 2 Advances in Optical Technologies order to process the information at high-data rate. The most promising application of optical processors and there- information is in the form of an optical signal or image. fore the following two architectures of optical correlators The inherent parallel processing was often highlighted as were proposed. one of the key advantage of optical processing compared to Figure 2(a) shows the basic correlator called 4-f since the electronic processing using computers that are mostly serial. distance between the input plane and the output plane is Therefore, optics has an important potential for processing four times the focal length of the lenses. This very simple largeamountofdatainrealtime. architecture is based on the work of Marechal´ and Croce [9] The Fourier transform property of a lens is the basis in 1953 on spatial filtering and was developed during the of optical computing. When using coherent light, a lens following years by several authors [10, 11]. performs in its back focal plane the Fourier transform The input scene is displayed in the input plane which of a 2D transparency located in its front focal plane. Fourier transform is performed by Lens 1. The complex The exact Fourier transform with the amplitude and the conjugated of the Fourier transform of the reference is phase is computed in an analog way by the lens. All the placed in the Fourier plane and therefore multiplied by the demonstrations can be found in a book published in 1968 by Fourier transform of the input scene. Lens 2 performs a Goodman [8] and this book is still a reference in the field. second Fourier transform that gives in the output plane The well-known generic architecture of optical processors the correlation between the input scene and the reference. and the architectures of the optical correlators will be Implementing a complex filter with the Fourier transform presented successively. of the reference was the main challenge of this set-up, and Vander Lugt proposed in 1964 to use a Fourier hologram of the reference as a filter [12]. Figures 2(b) and 2(c) show 2.1. Optical Processor Architecture. Thearchitectureofa respectively, the output correlation peak for an autocorrela- generic optical processor for information processing is given tion when the correlation filter is a matched filter and when in Figure 1. it is a phase only filter [13]. The processor is composed by three planes: the input In 1966, Weaver and Goodman [14] presented another plane, the processing plane, and the output plane. optical correlator architecture, the joint transform correlator The data to be processed are displayed in the input (JTC) that is represented by Figure 3(a). The two images, plane, most of the time this plane will implement an the reference r(x, y) and the scene s(x, y)areplacedside electrical to optical conversion. A Spatial Light Modulator by side in the input plane that is Fourier transformed by (SLM) performs this conversion. The input signal can be the first lens. The intensity of the joint spectrum is detected 1D or 2D. An acousto-optic cell is often used in the case and then its Fourier transform is performed. This second of a 1D input signal and 2D SLMs for 2D signals. The Fourier transform is composed by several terms including different types of 2D SLMs will be described later. In the the crosscorrelations between the scene and the reference. early years, due to the absence of SLMs, the input plane Using a SLM this Fourier transform can be implemented consisted of a fixed slide. Therefore the principles and optically as shown on Figure 3(a). Figure 3(b) shows the the potential of optical processors could be demonstrated output plane of the JTC when the reference and the scene but no real-time applications were possible, making the are identical [13]. Only the two crosscorrelation peaks are processor most of the time useless for real life applica- of interest. To have a purely optical processor, the CCD tions. camera can be replaced by an optical component such as an The processing plane can be composed of lenses, optically addressed SLM or a photorefractive crystal. One of holograms (optically recorded or computer generated) or the advantages of the JTC is that no correlation filter has to be nonlinear components. This is the heart of the processing, computed, therefore the JTC is the ideal architecture for real- and in most optical processors, this part can be performed at time applications such as target tracking where the reference the speed of the light. has to be updated at a high-data rate. A photodetector, a photodetector array or a camera com- Figures 2 and 3 represent coherent optical processors. poses the output plane where the results of the processing are Incoherent optical processors were also proposed: the infor- detected.
Recommended publications
  • Chemical Engineering Education Graduate Education in Chemical Engineering
    I • N • D • E • X GRADUATE EDUCATION ADVERTISEMENTS Akron, Uni versity of. .......... , .... ... .................. 321 Iowa State Uni versity .................. ... ....... ....... 360 Pensylvania State Uni versity ........................ 395 Alabama, University of ................................ 322 Johns Hopkins University .... .... .. .... .... .......... 361 Pittsburgh, University of .............................. 396 Alabama, Huntsville; Uni versity of.. .... .. ..... 323 Kansas, University of ............................... .... 362 Polytechnic University .. .... ... .... ........... .. ..... .. 397 Alberta, Uni versity of .. ........ .... .. .... ... ..... ..... .. 324 Kansas State University ............... ... ...... ........ 363 Princeton University ....................... .......... .. .. 398 Arizona, University of ....... .. .... .. .... ... .. ... ....... 325 Kentucky, Uni versity of ........................ .. ..... 364 Purdue University .. ........... ... ... ....... ... .... .... ... 399 Arizona State University ..... .. ... ...... ..... ......... 326 Lamar University .. ... ..... ..... ......... ........... .. ..... 430 Rensselaer Polytechnic Institute .... ...... .... ... .. 400 Auburn Uni versity .. ..... .. ... ..... .. .............. .... ... 327 Laval Universite ...................... ........... ...... .. .. 365 Rhode Island, University of.. .... ..... .. ... ..... .. ... 435 Bri gham Young Uni versity .............. ... .. ..... ... 427 Lehigh University .................................. .... ... 366 Rice University
    [Show full text]
  • Denys I. Bondar
    Updated on July 15, 2020 Denys I. Bondar Assistant Professor, Department of Physics and Engineering Physics, Tulane University, 2001 Percival Stern Hall, New Orleans, Louisiana, USA 70118 office: 4031 Percival Stern Hall e-mail: [email protected] phone: +1 (504) 862 8701 web: Google Scholar, Research Gate, ORCiD Education Ph. D. in Physics 01/2007{12/2010 Department of Physics and Astronomy, • University of Waterloo, Waterloo, Ontario, Canada Ph. D. thesis [arXiv:1012.5334]: supervisor: Misha Yu. Ivanov; co-supervisor: Wing-Ki Liu M. Sc. and B. Sc. in Physics with Honors 09/2001{06/2006 • Uzhgorod National University, Uzhgorod, Ukraine B. Sc. in Computer Science 09/2001{06/2006 • Transcarpathian State University, Uzhgorod, Ukraine Awards, Grants, and Scholarships Young Faculty Award DARPA 2019{2021 Army Research Office (ARO) grant W911NF-19-1-0377 2019{2021 Defense University Research Instrumentation Program (DURIP) 2018 Humboldt Research Fellowship for Experienced Researchers 2017-2020 Air Force Young Investigator Research Program 2016-2019 Los Alamos Director's Fellowship (declined) 2013 President's Graduate Scholarship (University of Waterloo) 2010 Ontario Graduate Scholarship 2010 International Doctoral Student Awards (University of Waterloo) 2007-2010 Award of Recognition at the All-Ukrainian Contest of Students' Scientific Works 2006 Current Research Interests • Quantum technology • Optics including quantum, ultrafast, nonlinear, and incoherent • Optical communication and sensing • Nonequilibrium quantum statistical mechanics 1 • Many-body
    [Show full text]
  • Underwater Transformer
    ALL ABOARD THE THE LAST A FORGOTTEN MICROGRIDS HYDROGEN TRAIN TRANSISTOR? REVOLUTION GO MOBILE Fuel cells go the Nanosheet devices and Why switching power A new and cleaner extra mile the end of Moore’s Law supplies triumphed way to power a ferry P. 06 P. 30 P. 36 P. 42 THIS UNTETHERED HALF HUMANOID WILL WORK ON OFFSHORE OIL RIGS AND GO DEEPER THAN FOR THE FOR THE TECHNOLOGY INSIDERTECHNOLOGY | 08.19 HUMAN DIVERS INSIDER P. 22 08.19 THE UNDERWATER TRANSFORMER Subscriber Address Box Zurich Instruments ∏ Arbitrary Waveform Generators ∏ Impedance Analyzers ∏ Lock-in Amplifiers ∏ Quantum Computing Control Systems experience LabOne LabOne® provides users with a platform independent instrument control including proven measurement methodo- logies. It's designed to offer a great amount of flexibility for instrument usage and assures quick and efficient ope- ration. The browser based user interface provides an outstanding toolset for time and frequency domain analysis as well as sophisticated support to set up control loops, making noise measure- ments or to interpret measurement data. Let's discuss your application Intl. +41 44 515 0410 USA 855-500-0056 (Toll Free) [email protected] www.zhinst.com CONTENTS_08.19 THE UNDER- WATER 30 THE LAST 36 THE QUIET 42 HAPPINESS IS 06 NEWS SILICON REMAKING OF A HYBRID-ELECTRIC 14 RESOURCES TRANSFORMER TRANSISTOR COMPUTER POWER FERRY 04 OPINION The next step in SUPPLIES The retrofitted 52 PAST FORWARD A startup founded by ex-NASA the evolution of the Here’s how the ship offers a clean, engineers wants to upend subsea transistor is the compact and efficient quiet ride for 4,500 nanosheet device.
    [Show full text]
  • Nanosystems, Edge Computing, and the Next Generation Computing Systems
    sensors Review Nanosystems, Edge Computing, and the Next Generation Computing Systems Ali Passian * and Neena Imam Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] Received: 30 July 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle.
    [Show full text]
  • Apollo Guidance Computer Wikipedia
    Apollo Guidance Computer Wikipedia Vertical Zolly cyclostyle trailingly and gummy, she sent her briny encased inadvisably. Deteriorating Henderson sometimes preserves any colloquialist reeks illegally. Kingsley usually faradise sexennially or imputes sheepishly when polytechnic Jeffrey subtitle trustworthily and psychically. Sometimes that the lower slopes of the usa by impact crater and apollo guidance computer to meet it would use this determination is complete cash on a magnetostrictive delay line Sorry, a few numbers, Stands Next To The Code She Wrote By Hand. You are about apollo guidance computer wikipedia page? Note the large boulders in background which are south of Geophone Rock. You mean like one hampshire in apollo guidance computer wikipedia by! Apollo program Wikipedia. Saturn ib is essential to the apollo guidance computer wikipedia page. The countdown became automated at three minutes and twenty seconds before night time. Virtual AGC Assembly-Language Manual Ibiblio. What programming languages were used to go stomp the beef Stack. However, this order he be automatically cancelled. During his EVA Command Module pilot Evans retrieved film cassettes from its Lunar Sounder, NASA hired skilled women although the local textile industry as well as talking the Waltham Watch so, it seems to leave something to do wield a checksum value? Gene has swung to the south for a moment. Apollo guidance computer wikipedia sans institute summit archives news amp. In with storage and her standing wave pattern is apollo guidance computer display one end device. Your Mobile Phone vs Apollo 11's Guidance Computer. The wikipedia by software engineering like this work around it is located at work she seems like if yes, apollo guidance computer wikipedia article? First of lead series often took the north climb the LM.
    [Show full text]
  • Development of a First-Generation Miniature Multiple Reference Optical Coherence Tomography Imaging Device
    Development of a first-generation miniature multiple reference optical coherence tomography imaging device Paul M. McNamara Roshan Dsouza Colm O’Riordan Seán Collins Peter O’Brien Carol Wilson Josh Hogan Martin J. Leahy Paul M. McNamara, Roshan Dsouza, Colm O’Riordan, Seán Collins, Peter O’Brien, Carol Wilson, Josh Hogan, Martin J. Leahy, “Development of a first-generation miniature multiple reference optical coherence tomography imaging device,” J. Biomed. Opt. 21(12), 126020 (2016), doi: 10.1117/1.JBO.21.12.126020. Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 01/02/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Biomedical Optics 21(12), 126020 (December 2016) Development of a first-generation miniature multiple reference optical coherence tomography imaging device Paul M. McNamara,a,b,* Roshan Dsouza,a,b Colm O’Riordan,c Seán Collins,c Peter O’Brien,c Carol Wilson,b Josh Hogan,b and Martin J. Leahya aNational University of Ireland, School of Physics, Tissue Optics and Microcirculation Imaging Group, National Biophotonics and Imaging Platform, Galway H91 CF50, Ireland bCompact Imaging Inc., 897 Independence Avenue, Suite 5B, Mountain View, California 94043, United States cIrish Photonic Integration Centre (IPIC), Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork T12 R5CP, Ireland Abstract. Multiple reference optical coherence tomography (MR-OCT) is a technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short scan range of a miniature voice coil motor on which the scanning mirror is mounted.
    [Show full text]
  • Advances in Photonic Devices Based on Optical Phase-Change Materials
    molecules Review Advances in Photonic Devices Based on Optical Phase-Change Materials Xiaoxiao Wang 1, Huixin Qi 1, Xiaoyong Hu 1,2,3,*, Zixuan Yu 1, Shaoqi Ding 1, Zhuochen Du 1 and Qihuang Gong 1,2,3 1 Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics & Department of Physics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China; [email protected] (X.W.); [email protected] (H.Q.); [email protected] (Z.Y.); [email protected] (S.D.); [email protected] (Z.D.); [email protected] (Q.G.) 2 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China * Correspondence: [email protected] Abstract: Phase-change materials (PCMs) are important photonic materials that have the advantages of a rapid and reversible phase change, a great difference in the optical properties between the crystalline and amorphous states, scalability, and nonvolatility. With the constant development in the PCM platform and integration of multiple material platforms, more and more reconfigurable photonic devices and their dynamic regulation have been theoretically proposed and experimentally demonstrated, showing the great potential of PCMs in integrated photonic chips. Here, we review the recent developments in PCMs and discuss their potential for photonic devices. A universal overview of the mechanism of the phase transition and models of PCMs is presented. PCMs have injected new life into on-chip photonic integrated circuits, which generally contain an optical switch, Citation: Wang, X.; Qi, H.; Hu, X.; an optical logical gate, and an optical modulator.
    [Show full text]
  • Effect of Low-Level Laser Therapy On
    Ann Appl Sport Sci 9(2): e912, 2021. http://www.aassjournal.com; e-ISSN: 2322–4479. 10.29252/aassjournal.912 ORIGINAL ARTICLE Effect of Low-Level Laser Therapy on Muscle Strength and Endurance and Post-Exercise Recovery of Young Adult: A Double- Blind, Placebo-Controlled, Randomized Clinical Trial 1Amir Hosein Abedi Yekta, 2Faraj Tabeii, 1Shahin Salehi, 3Mohammad-Reza Sohrabi, 1Mehrshad Poursaeidesfahani, 4Mohammad Hassabi*, 1Nina Hazegh*, 1Behnaz Mahdaviani 1Department of Sports Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.2Department of Nuclear Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.3Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.4Taleghani Hospital, Research Development committee, Department of Sports Medicine, Shahid Beheshti University of medical Sciences, Tehran, Iran. Submitted 29 July 2020; Accepted in final form 30 October 2020. ABSTRACT Background. Recovery or post-exercise rehabilitation is an essential part of exercise training. Low-level Laser Therapy (LLLT) is a modality increasing interest for recovery because of having a conservative and non-aggressive method. LLLT also decreases the production of fatigue-related biomechanical markers, such as lactate, C-reactive protein (CRP), and Creatine kinase (CK). Objectives. To investigate the effect of low-level laser therapy on muscle strength and endurance and post-exercise recovery of young adults between 20-35 years old. Methods. Fifty subjects were enrolled in this double-blind, placebo-controlled, randomized clinical trial study. Three days after the familiarization session, the subjects were divided into two groups via block randomization: the first group received pre-exercise laser at 810 nm, 60mW, and 60Hz frequency for 30 seconds on three point’s rectus femoris muscle.
    [Show full text]
  • Optical Memristive Switches
    J Electroceram DOI 10.1007/s10832-017-0072-3 Optical memristive switches Ueli Koch1 & Claudia Hoessbacher1 & Alexandros Emboras1 & Juerg Leuthold1 Received: 18 September 2016 /Accepted: 6 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Optical memristive switches are particularly inter- signals. Normally, the operation speed is moderate and in esting for the use as latching optical switches, as a novel op- the MHz range. The application range includes usage as a tical memory or as a digital optical switch. The optical new kind of memory which can be electrically written and memristive effect has recently enabled a miniaturization of optically read, or usage as a latching switch that only needs optical devices far beyond of what seemed feasible. The to be triggered once and that can keep the state with little or no smallest optical – or plasmonic – switch has now atomic scale energy consumption. In addition, they represent a new logical andinfactisswitchedbymovingsingleatoms.Inthisreview, element that complements the toolbox of optical computing. we summarize the development of optical memristive The optical memristive effect has been discovered only switches on their path from the micro- to the atomic scale. recently [1]. It is of particular interest because of strong Three memristive effects that are important to the optical field electro-optical interaction with distinct transmission states are discussed in more detail. Among them are the phase tran- and because of low power consumption and scalability [8]. sition effect, the valency change effect and the electrochemical Such devices rely in part on exploiting the electrical metallization.
    [Show full text]
  • Photonic Computing: Mimicking the Brain
    research highlights LASER SCANNERS is transformed according to this function, of the modes. These combinations support No moving parts and in turn undergoes a complex feedback subwavelength features of the electromagnetic Sci. Rep. 2, 445 (2012) mechanism involving randomly weighted field that can be accessed (that is, radiation delay lines. They evaluated the performance of coupled in and out) from the far-field. the device’s computation through a standard Calculations suggest that it should be possible spoken digit-recognition test consisting of ten to focus optical waves onto a 30-nm-wide different female speakers reading aloud digits focus at the centre of a 700 nm pulse by from 0 to 9. The computational efficiency employing a time-reversal approach while of the scheme was comparable to the best performing polychromatic interferometric results achieved so far in other systems. far-field subwavelength imaging. DP The processing time for the recognition of one spoken digit was around 20 ms, but BIOPHOTONICS the researchers say this could be reduced to Low-power nanosurgery 100 ns by modifying the system to include J. Biomed. Opt. 17, 101502 (2012) telecommunications-grade devices. SA LIGHT SOURCES 2012 NPG © Sun-powered lasers Opt. Lett. 37, 2670–2672 (2012) Laser scanners are highly useful devices for Thanh Hung Dinh and colleagues in Japan sensing and imaging a wide variety of objects, have constructed a solar-powered laser that but their mechanical and active electronic provides 120 W of continuous-wave output at components limit scanning rates to around a wavelength of 1,064 nm. In the future, lasers 100 kHz.
    [Show full text]
  • Extending the Road Beyond CMOS
    By James A. Hutchby, George I. Bourianoff, Victor V. Zhirnov, and Joe E. Brewer he quickening pace of MOSFET technology scaling, as seen in the new 2001 International Technology Roadmap for Semiconductors [1], is ac- celerating the introduction of many new technologies to extend CMOS Tinto nanoscale MOSFET structures heretofore not thought possible. A cautious optimism is emerging that these new technologies may extend MOSFETs to the 22-nm node (9-nm physical gate length) by 2016 if not by the end of this decade. These new devices likely will feature several new materials cleverly incorporated into new nonbulk MOSFET structures. They will be ultra fast and dense with a voracious appetite for power. Intrinsic device speeds may be more than 1 THz and integration densities will exceed 1 billion transistors per cm2. Excessive power consumption, however, will demand judicious use of these high-performance devices only in those critical paths requiring their su- perior performance. Two or perhaps three other lower performance, more power-efficient MOSFETs will likely be used to perform less performance-criti- cal functions on the chip to manage the total power consumption. Beyond CMOS, several completely new approaches to information-process- ing and data-storage technologies and architectures are emerging to address the timeframe beyond the current roadmap. Rather than vying to “replace” CMOS, one or more of these embryonic paradigms, when combined with a CMOS plat- form, could extend microelectronics to new applications domains currently not accessible to CMOS. A successful new information-processing paradigm most likely will require a new platform technology embodying a fabric of intercon- nected primitive logic cells, perhaps in three dimensions.
    [Show full text]
  • Random Access Memory (Ram)
    www.studymafia.org A Seminar report On RANDOM ACCESS MEMORY (RAM) Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org www.studymafia.org Acknowledgement I would like to thank respected Mr…….. and Mr. ……..for giving me such a wonderful opportunity to expand my knowledge for my own branch and giving me guidelines to present a seminar report. It helped me a lot to realize of what we study for. Secondly, I would like to thank my parents who patiently helped me as i went through my work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs. Thirdly, I would like to thank my friends who helped me to make my work more organized and well-stacked till the end. Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped my work a lot to remain error-free. Last but clearly not the least, I would thank The Almighty for giving me strength to complete my report on time. www.studymafia.org Preface I have made this report file on the topic RANDOM ACCESS MEMORY (RAM); I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to …………..who assisting me throughout the preparation of this topic.
    [Show full text]