FORM and FORCE 7-10 October 2019, Barcelona, Spain

Total Page:16

File Type:pdf, Size:1020Kb

FORM and FORCE 7-10 October 2019, Barcelona, Spain 60th Anniversary Symposium of the International Association for Shell and Spatial Structures IASS Symposium 2019 9th International Conference on Textile Composites and Inflatable Structures Structural Membranes 2019 FORM and FORCE 7-10 October 2019, Barcelona, Spain Carlos Lázaro, Kai-Uwe Bletzinger and Eugenio Oñate (Eds.) IASS Symposium 2019 60th Anniversary Symposium of the International Association for Shell and Spatial Structures Structural Membranes 2019 9th International Conference on Textile Composites and Inflatable Structures FORM and FORCE Barcelona, Spain October 7 - 10, 2019 A publication of: International Centre for Numerical Methods in Engineering (CIMNE) Barcelona, Spain ISBN: 978-84-121101-0-4 Printed by: Artes Gráficas Torres S.L., Huelva 9, 08940 Cornellà de Llobregat, Spain SUMMARY SUMMARY INVITED SESSIONS IS - Actual Structural Behavior of Thin Shells (IASS WG 5) ...................................... 45 IS - Adaptive Lightweight Structures .................................................................. 68 IS - Additive Manufacturing of Architectural Components........................................ 87 IS - Analysis and Design of Adaptive Structures ...................................................121 IS - Bio-inspiration for Structural Forms + Fractal and Form ...................................129 IS - Celebrating the Work of Mike Barnes ............................................................145 IS - Constructive Geometry for Structural Design (IASS WG 15) ...............................175 IS - Contemporary Tensile Structures of Europe (IASS WG 6) ..................................218 IS - Contributions in Memory of David P. Billington ...............................................226 IS - Design and Analysis of Bending-active Structures (IASS WG 15) ........................309 IS - Detailing - Case Studies - Installation Process ................................................333 IS - Embracing Inter-/crossdisciplinarity Through New Roles, Methods and Tools for Design and Fabrication of Spatial Structures (IASS WG 20) ..................383 IS - Form and Force Expo Pavillions (IASS WG 21) ...............................................436 IS - Form and Force in Bio-based Structures and Architecture (IASS WG 12) ..............603 IS - Form-finding/Force-finding of Tension Structures Using Novel Computational Methods (IASS WG 13) ..........................................................642 IS - Graphic Statics / Reciprocal Diagrams (IASS WG 15) .......................................666 IS - Gridshells: Computational Methods and Case Studies .....................................701 IS - Improving and Assessing the Life Cycle of Structures (IASS WG 18) ...................725 IS - Numerical Methods and Modeling for Lightweight Structures.............................750 IS - Optimization Driven Architectural Design of Structures ....................................809 IS - Preservation and Reuse of Reinforced Concrete Shells (IASS WG5 - IASS WG 17) .. 831 IS - Pressurized Membrane Structures: Analysis and Applications ...........................863 IS - Reliability Analysis of Membrane Structure (IASS WG 6) ...................................888 IS - Stability and Dynamics of Metal Gridshell Structures (IASS WG 8) ......................911 IS - Structural Origami (IASS WG 15) ............................................................... 1028 IS - Textile and Foil Synergies and Advances in Shell and Membrane Structures ....... 1069 IS - The Next Generation of Parametric Design .................................................. 1077 IS - Transformable Structures (IASS WG 15) ...................................................... 1140 IS - Wind Engineering and Fluid-structure Interaction.......................................... 1148 ISConnectingG Herning - Contributions technical rigor in andMemory visual creativity of David P. Billington Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 Form and Force 7 – 10 October 2019, Barcelona, Spain C. Lázaro, K.-U. Bletzinger, E. Oñate (eds.) Connecting Engineering Rigor and Visual Creativity Gordana M. HERNING* *MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA [email protected] Abstract This paper describes a studio-style project-based graduate course that introduces classic and computational approaches to creating design options for long span structures and tall buildings. The course aims to convey how an iterative design process serves to refine solutions that can be conceptually anticipated using methods such as Graphic Statics or the Maxwell Theorem, and validated through numerical analyses. While student teams employ engineering principles to explore relationships between form, geometry, and performance of structural systems, they also reconcile questions about the environmental impact, constructability, and visual strength of the designs. Learning from the best examples of built structures develops sensitivity to proportion and elegant structural solutions that merit architectural expression and convey economy of the design through thoughtful use of materials. In addition to structural engineering, students in the course have had a background in architecture, façade engineering, or mechanical engineering; therefore, designs reflect a variety of interests and require effective communication of ideas across disciplines. During field visits and guest lectures students gain additional insight into the engineering rigor and creativity in the real-world structures. Regular interactions and project reviews with practicing engineers emphasize critical analysis and optimizing load paths, structural systems, and connection details. A common thread in all class activities, inspired by David Billington’s scholarship and teaching, is to understand the cultural and economic meaning of efficient forms that can be achieved through creative and disciplined structural design. Keywords: conceptual design, form finding, optimization, spatial structures, tall buildings 1. Introduction Among the most creative and challenging aspects of design is achieving technical and visual strength of structures that fulfill the goals of utility and value for users, while conserving public and natural resources consistent with the knowledge and tools that are available to designers. The notion that the highest achievements in design encompass appropriate social (costs and utility), scientific (form and materials), and symbolic (appearance and meaning) responses within the constraints of time and site conditions (among others), thus upholding the tradition of “Structural Art”, was defined through critical analysis of exemplary designs across the ages by David Billington (Billington [1]). Engineers who holistically integrate elegant shaping with efficient material use and economy in construction, by employing inventive forms to span large distances and reach new building heights, have developed their artistry through experiential knowledge, rigorous application of engineering principles, and sensitivity to the human experience of structures – their aesthetics. Learning about the designers of exemplary structures reveals strivers dedicated to purposeful discovery and development of skill through refinements of design until simplified, essential solutions are found, which may be more challenging to achieve than a complex response that also satisfies design requirements. This paper presents the activities in which students engage in the graduate course “Structural Design Project” to explore design strategies within the context of two projects, namely (1) a long-span roof, and (2) a tall building. The course is offered to seniors and graduate students studying at the intersection of Copyright © 2019 by Gordana M. Herning Published by the International Association for Shell and Spatial Structures (IASS) with permission. 226 Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 Form and Force engineering and architecture at MIT, and in particular, to the students in the Master of Engineering program focusing on Structural Mechanics and Design in the Department of Civil and Environmental Engineering. The students bring their interests in structural, mechanical, or geotechnical engineering, architecture, computational design, and experience from internships, research, or design practice to a dialogue that seeks to distill the complex design process into simple, clear concepts relating the form and behavior of a structure. Study of actual buildings that illustrate relationship between form and element forces, intuitive analytical and graphical techniques, and numerical modeling approaches are introduced with an aim to build upon the various students’ experiences and create stepping stones toward their practical application in a new design. A central course objective is to motivate student-driven learning about structural behavior as a result of geometry and materials, and to encourage students to convey their ideas in a concrete and clear manner to their peers and engineering professionals. Classic approaches to analysis, hand calculations and drawings, assigned readings, and advanced computational methods are used to illustrate possible paths from complexity to the simplified and clear solutions that can help students appraise design alternatives before they engage in a detailed design of a structure. Among the questions being asked in the course are: What lessons about creative design solutions can successful engineering works of the
Recommended publications
  • 1960 National Gold Medal Exhibition of the Building Arts
    EtSm „ NA 2340 A7 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/nationalgoldOOarch The Architectural League of Yew York 1960 National Gold Medal Exhibition of the Building Arts ichievement in the Building Arts : sponsored by: The Architectural League of New York in collaboration with: The American Craftsmen's Council held at: The Museum of Contemporary Crafts 29 West 53rd Street, New York 19, N.Y. February 25 through May 15, i960 circulated by The American Federation of Arts September i960 through September 1962 © iy6o by The Architectural League of New York. Printed by Clarke & Way, Inc., in New York. The Architectural League of New York, a national organization, was founded in 1881 "to quicken and encourage the development of the art of architecture, the arts and crafts, and to unite in fellowship the practitioners of these arts and crafts, to the end that ever-improving leadership may be developed for the nation's service." Since then it has held sixtv notable National Gold Medal Exhibitions that have symbolized achievement in the building arts. The creative work of designers throughout the country has been shown and the high qual- ity of their work, together with the unique character of The League's membership, composed of architects, engineers, muralists, sculptors, landscape architects, interior designers, craftsmen and other practi- tioners of the building arts, have made these exhibitions events of outstanding importance. The League is privileged to collaborate on The i960 National Gold Medal Exhibition of The Building Arts with The American Crafts- men's Council, the only non-profit national organization working for the benefit of the handcrafts through exhibitions, conferences, pro- duction and marketing, education and research, publications and information services.
    [Show full text]
  • Awards Program April 3 • Marriott Tampa Waterside • Tampa, FL Table of Contents
    Spring Convention April 3-7, 2011 Marriott Tampa Waterside & 2011Westin Harbour Island, Tampa, FL Awards Program April 3 • Marriott Tampa Waterside • Tampa, FL Table of Contents List of Awards .................................................... 2-3 Honorary Members .......................................... 4-10 50-Year Membership Citations ..................... 11-14 Fellows ................................................15-20, 42-57 Award Citations ............................................. 21-39 Chapter Awards—Citations of Excellence ....... 40 ACI University Awards ....................................... 41 Award Recipient Biographies ....................... 42-75 Index ............................................................... 76-79 1 Awards HONORARY MEMBERSHIP Zdeneˇk P. Bažant Terence C. Holland Shunsuke Otani Nicholas J. Carino Tony C. Liu Richard D. Stehly* 50-YEAR MEMBERSHIP Hiroyuki Aoyama Eugene P. Holland Kenneth H. Pukita Hansraj Ashar Jules Houde Charles H. Raths Simeon Beer Thomas T. C. Hsu John E. Sadler Ian M. Dance Merl Isaak Phil Seabrook Kurt H. Gerstle James O. Jirsa Dale M. Stevens Paul Gordon Alfred Kaufman R. Sundaram Roger Green Wataru Koyanagi Warren H. Trester Zareh B. Gregorian Thomas A. McCormick Leslie Vides William Hanuschak Carson K. C. Mok René Walther Robert Hodnett Sharad (Steve) Parikh Arnold Wilson FELLOWS Julie K. Buffenbarger Jason J. Krohn Koji Sakai Fernando J. Fernandez Victor C. Li Yixin Shao Fred Goodwin Faris A. Malhas Hitoshi Shiohara Brian H. Green Stephen S. Marchese Jongsung Sim Patrick J. Harrison Tracy Marcotte David Suchorski Mary Beth Donald M. Marks Stephen S. Szoke Deisz Hueste Robert A. Nuñez Suneel N. Vanikar Shyh-Jiann Hwang Carlos E. Ospina Cloyd E. (Joseph) Roger S. Johnston Gustavo J. Warnes Allan R. Kenney Parra-Montesinos Charles A. Weiss Jr. William M. Klorman John W. Roberts Michelle L. Wilson ARTHUR R. ANDERSON AWARD Robert Douglas Hooton ROGER H.
    [Show full text]
  • Timeline / 1860 to 1900
    Timeline / 1860 to 1900 Date Country Theme 1860 - 1900 Tunisia Cities And Urban Spaces Following development of the Port of La Goulette, new districts relating to trade and industrial activities are born. The neighbourhood is given the name of “Little Sicily”, which is suggestive of its role as host to a poor immigrant population mainly from southern Italy. 1860 Tunisia Great Inventions Of The 19th Century The restoration of the Aqueduct of Zaghouan is completed, running water arrives in Tunis. 1860 - 1863 Tunisia Economy And Trade Restoration of the Zaghouan Aqueduct, Tunisia’s largest water-service network, allows supply to the capital and its suburbs. 1860 Romania Fine And Applied Arts 7 November: on the initiative of painter Gheorghe Panaitescu-Bardasare, a School of Fine Arts and an art gallery are founded in Ia#i. 1860 France Travelling First trip by Napoleon III to Algeria; the second will take place in 1865. 1860 - 1870 Jordan Reforms And Social Changes By the 1860s, population density has decreased drastically. The border of the sawn cultivated land had been pushed westwards under the pressure of the nomadic tribes from the east. Several reasons are suggested for this decline, including maladministration and the taxation policies of the Ottoman Empire. Some of the regions south of Ajlun, including Amman area, and along the escarpment of the Jordan valley were almost completely abandoned. Recovery starts during the last quarter of the 19th century. 1860 Italy Cities And Urban Spaces The unification of Italy leads to urban expansion outside the old city walls, which have lost their defensive value.
    [Show full text]
  • Effects of Wingwall Configurations on Integral Abutment Bridges
    ABSTRACT Title of Document: EFFECTS OF WINGWALL CONFIGURATIONS ON THE BEHAVIOR OF INTEGRAL ABUTMENT BRIDGES Andreas Paraschos, Doctor of Philosophy, 2016 Dissertation Directed By: Professor Amde M. Amde Department of Civil and Environmental Engineering This research includes parametric studies performed with the use of three-dimensional nonlinear finite element models in order to investigate the effects of cantilever wingwall configurations on the behavior of integral abutment bridges located on straight alignment and zero skew. The parametric studies include all three types of cantilever wingwalls; inline, flared, and U-shaped wingwalls. Bridges analyzed vary in length from 100 to 1200 feet. Soil-structure and soil-pile interaction are included in the analysis. Loadings include dead load in combination with temperature loads in both rising and falling temperatures. Plasticity in the integral abutment piles is investigated by means of nonlinear plasticity models. Cracking in the abutments and stresses in the reinforcing steel are investigated by means of nonlinear concrete models. The effects of wingwall configurations are assessed in terms of stresses in the integral abutment piles, cracking in the abutment walls, stresses in the reinforcing steel of abutment walls, and axial forces induced in the steel girders. The models developed are analyzed for three types of soil behind the abutments and wingwalls; dense sand, medium dense sand, and loose sand. In addition, the models consider both the case of presence and absence of predrilled holes at the top nine feet of piles. The soil around the piles below the predrilled holes consists of very stiff clay. The results indicate that for the stresses in the piles, the critical load is temperature contraction and the most critical parameter is the use of predrilled holes.
    [Show full text]
  • Are214b Building Structures Ib
    ARE214B BUILDING STRUCTURES I B CHENG HO YIU REX 193401515 B.Sc. Yr2 May 27, 2020 LIST OF BUILDING STRUCTURES LECTURE 1 – INTRODUCTION Portuguese National Pavilion Expo 98, Lisbon, Portugal. 1998 | Alvaro Siza | Cecil Balmond (Engineer) A minimalistic pavilion with a wide-spanning curved concrete canopy, fastened between the roofs of two rolls of vertical columns by steel cables embedded inside the thin layers of concrete, HSBC Headquarters, Central, Hong Kong. 1985 | Norman Forster | Ove Arup & Partners (Engineer) High-rise office with exoskeleton structure with steel trusses and floors suspended by tension columns that supported by eight main clustered columns, each composed of 4 connected steel tubes, to create the large column free atrium. Pont du Gard Roman Aqueduct, Nimes, France. 40-60 AD Three tier semi-circular arch structure built with stone using only friction and gravity to transfer water in ancient times. Exchange House Office Building, Dockland, London. 1996 | Skidmore, Owings & Merrill (SOM) The 10-story office building is supported by external steel frame structure that is hold up primarily by four parabolic arches, two internal and two external, to provide a column-free and flexible open office design. Statue of Liberty, New York City, USA. 1886 | Gustave Eiffel | Frédéric Auguste Bartholdi (Sculptor) Structure ≠ Form | The neoclassical copper statue is sectioned into sheets of metal claddings which are attached to steel frames supported by four steel columns, is a gift from France to USA as a memorial to their independence. Greater Columbus Convention Center, Columbus, Ohio, USA. 1993 | Peter Eisenman Structure ≠ Form | The organic and irregular exterior is supported by convoluted structural frame that creates a strong juxtaposition with the convention centre’s large open interior.
    [Show full text]
  • Physical Models
    ABOUT THE BOOK Bill Addis (Ed.) Physical models have been, and continue to be used by The book concludes with overviews of the current use of engineers when faced with unprecedented challenges, physical models alongside computer models, for exam- Physical Models when engineering science has been inadequate or even ple in boundary layer wind tunnels, seismic engineering, non-existent, and in any other situation when engineers hydrology, soil mechanics, and air flow in buildings. have needed to raise their confidence in a design pro- Traditionally, progress in engineering has been attribut- Their historical and current use in civil posal to a sufficient level in order to begin construction. ed to the creation and use of engineering science, the For this reason, models have mostly been used by de- understanding of materials properties and the develop- and building engineering design signers and constructors of highly innovative projects, ment of new construction methods. The book argues when previous experience has not been available. that the use of reduced-scale models has played an The book covers the history of using physical models in equally important part in the development of civil and the design and development of civil and building engi- building engineering. However, like the history of engi- the book summarizes the history of neering projects including Robert Stephenson’s Britan- neering design itself, this crucial contribution has not model testing by design and nia Bridge in the 1840s, the masonry Aswan Dam in the been widely reported or celebrated. C O N S T R U I H Y E 1890s and the Boulder Dam in the 1930s; tidal flow in The book includes 39 chapters written by 29 authors construction engineers in a single Bill Addis (Ed.) estuaries and wind and seismic loads on structures from from ten different countries.
    [Show full text]
  • Hardy Cross by Richard G
    Hardy Cross A Man Ahead of His Time By Richard G. Weingardt Professor Cross, the first American Moment-Distribution or Hardy awarded the highly coveted Gold Medal Cross Method–first introduced of the British Institution of Structural in 1930, made use of converging Engineers, was a far-seeing innovator approximations to rapidly distri- and structural engineering superstar bute fixed-end moments. (A basic who always thought outside the box. and simple example of the Method He received the celebrated British award is illustrated in Figure 1.) when was 73 years old, during the Essentially, what Cross’s methods Institute’s 50th anniversary celebrations did was simplify the monumental in 1958. During the Gold Medal mathematical task of calculating ceremonies, at the group’s convention innumerable equations to solve in Manchester, England, Cross delivered complex problems in the fields of a stirring keynote address exalting the structural and civil engineering, merits of engineering in forwarding long before the computer age. It societal progress. revolutionized how the profession © During the latter half of his Copyrightcareer, addressed complicated problems; Hardy often stated, “People [mistakenly] whenever engineers in the latter take for granted that an engineer is part of the 20th century talked by definition a technocrat, somebody about methods for designing stumbling across campus with a pen- difficult structures, the name of protector in his front pocket and a satchel Hardy Cross was always invoked full of calculations.” The classically with awe. educated Cross, however, was far from According to Old Dominion fitting that mold or any other. He was University Professor Zia Razzaq, one of a kind–a philosopher as well as “In Hardy Cross’s day, if you wanted Hardy Cross (William J.
    [Show full text]
  • Structural Health Monitoring of Artemio Franchi Stadium In
    Structural health monitoring of “Artemio Franchi” Stadium in Florence, Italy: measurement using interferometric radar Lapo MICCINESI 1, Massimiliano PIERACCINI 1, Gloria TERENZI 2, Iacopo COSTOLI 3, Paolo SPINELLI 2, Giulia MAZZIERI 2 1 Department of Information Engineering, University of Florence, Florence, Italy http://www.ndt.net/?id=24901 2 Department of Civil and Environmental Engineering, University of Florence, Florence, Italy 3 Polytechnic Department of Engineering and Architecture, University of Udine, Udine, Italy Contact e-mail: [email protected] More info about this article: ABSTRACT: The “Artemio Franchi” Stadium in Florence, Italy, designed by Pier Luigi Nervi in 1929, was built from 1930 to 1932. The stadium has a reinforced concrete structure and it is composed by 24 stands, a 50-meter tower (“Maratona” tower) and a cantilever roof. In occasion of the World Cup in 1990 the stadium was renovated by adding seats at the ground level as retrofit. A study for seismic requalification is in progress and an interferometric radar was used for monitoring the architectural complex. In particular, the radar monitored the “Maratona” tower and some stands. In this paper, the preliminary results of this measurement campaign are reported. The wind action was exploited to test the “Maratona” tower and the measurement was performed both with an interferometric radar and a seismic accelerometer. Natural frequencies measured with both instruments substantially match. The stands are too rigid to be appreciably excited by wind or vehicular traffic, hence the measurements were performed during football matches. The supporters’ movements were used as input action to measure the dynamic properties of stands.
    [Show full text]
  • Wilhelm Ritter: Teacher of Maillart and Ammann
    Wilhelm Ritter: teacher of Maillart and Ammann Autor(en): Billington, David P. Objekttyp: Article Zeitschrift: Ingénieurs et architectes suisses Band (Jahr): 113 (1987) Heft 7 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-76366 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch CHRISTIAN MENN Ingénieurs el architectes suisses n" 7 26 mars 1987 Tableau 1. — Amplitudes maximales des variations de températures uniformes les ponts selon différentes sources. pour Bibliographie à Taa [°C] [1] J accoud, J.-P. Gradients de tempéra¬ dans les et Ponts en bétons Ponts mixtes Ponts en acier ture ponts.
    [Show full text]
  • D-BAUG Jahresbericht 2016 Annual Report 2016
    D-BAUG Jahresbericht 2016 Annual Report 2016 New perspectives DBAUG Departement Bau, Umwelt und Geomatik Department of Civil, Environmental and Geomatic Engineering 10 12 22 Prof. Willi H. Hager Emeritierung/Pensionierung ETH-Ehrendoktor für Max Ernst Meyer Bauingenieur und ETH Professor Carl Culmann 24 34 40 Das «Goldene Dreirad» für Prof. Lorenz Hurni Master Leistungsstipendien: Viviane Furrer D-BAUG Studenten in Havanna 52 55 73 Interview mit Prof. Thomas Vogel Gotthard Basis Tunnel: Zwei ETH Alumni berichten Neuer 3D-Atlas für Kartenliebhaber INHALT Vorwort i Gotthard Basis Tunnel: Zwei ETH Alumni berichten über ihre Erfahrungen 55 FAKULTÄT UND CAMPUS Studierendenzahlen 60 Neu am D-BAUG 2 FORSCHUNG UND LEHRE Emeritierungen/Pensionierungen 10 Eröffnung des Gotthard Basistunnels 64 ETH-Ehrendoktor für Brückenbauer Max Ernst Meyer 12 Gottardino Event 68 Stephan Pfister, IfU 14 Wo im Gotthard-Basistunnel ETH und D-BAUG drinsteckt 70 Umweltbewertung der globalen Landwirtschaftlichen Produktion 16 Neuer 3D-Atlas für Kartenliebhaber 74 Othmar Frei, IfU 18 Mit Holz und Robotern zur eigenen Firma 78 Entwicklung eines fahrzeuggestützten Spin-off Swiss Wood Solutions AG 80 abbildenden Radarinterferometers 20 Frühwarnsystem für Lawinen und Carl Culmann (1821–1881) 22 Europäisches Patent 82 Motivieren mit Instinkt 24 FAKTEN UND ZAHLEN Goldene Eule des VSETH 26 Institute und Professuren 86 “International Map Year”: Aktivitäten in der Schweiz 28 Fachgebiete innerhalb der strategischen Schwerpunkte 88 DONATOREN UND TALENTE Organisation D-BAUG 92 Donatoren D-BAUG 2016 32 Advisory Board und Fakultät 93 Master Leistungsstipendien Kennzahlen 94 (ESOP und MSP) 34 Ehrungen 96 Kontakte 99 STUDIERENDE UND ALUMNI Stab 100 AIV BauingenieurinnenFORUM 2016 36 Havanna Sommer Schule 38 KLIMASCHUTZPROJEKT 102 Eindrücke von Havanna aus Sicht der D-BAUG Studierenden 40 IMPRESSUM 103 Masterarbeit MIT, Cambridge, MA/USA 44 Masterreise nach China 48 LAGEPLAN 104 Interview mit Prof.
    [Show full text]
  • Mid 20Th Century Architecture in NH: 1945-1975
    Mid 20th Century Architecture in NH: 1945-1975 Prepared by Lisa Mausolf, Preservation Consultant for NH Employment Security December 2012 Table of Contents Page I. Introduction 3 II. Methodology 4 III. Historic Context, Architecture in NH, 1945‐1975 5 IV. Design Trends in New Hampshire, 1945‐1975 43 Changes in the Post‐World War II Building Industry 44 Architectural Trends, 1945‐1975 61 Styles 63 V. Recommendations for Future Study 85 VI. Bibliography 86 Appendix A Examples of Resource Types 90 Appendix B Lists of NH Architects 1956, 1962, 1970 111 Appendix C Brief Biographies of Architects 118 2 I. Introduction The Mid 20th Century Architecture in New Hampshire Context: 1945‐1975 was prepared by Lisa Mausolf, Preservation Consultant, under contract for the New Hampshire Department of Employment Security. The context was prepared as mitigation for the sale of the Employment Security building at 32 South Main Street in Concord. The modern curtain wall structure was designed by Manchester architects Koehler & Isaak in 1958. A colorful landmark on South Main Street, discussion of the architectural significance of the building draws commentary ranging from praise “as an excellent example of mid‐ century Modern architecture and ideals of space, form, and function”1 to derision, calling it one of the ugliest buildings in Concord. NH Department of Employment Security, 32 South Main Street, Concord (1958) The Mid 20th Century Architecture in New Hampshire Context was prepared in order to begin work on a framework to better understand the state’s modern architectural resources. The report focuses primarily on high‐style buildings, designed by architects, and excludes residential structures.
    [Show full text]
  • A History of Theory of Structures in the Nineteenth Century
    A history of theory of structures in the nineteenth century A history of theory of structures in the nineteenth century T. M. CHARLTON EMERITUS PROFESSOR OF ENGINEERING, UNIVERSITY OF ABERDEEN CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcon 13,28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 1982 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1982 First paperback edition 2002 A catalogue record for this book is available from the British Library Library of Congress catalogue card number: 81-15515 ISBN 0 52123419 0 hardback ISBN 0 52152482 2 paperback Contents Preface vii 1 Introduction 1 2 Beam systems 14 3 Theory of the arch and suspension bridge 35 4 Elementary theory of frameworks: graphical statics 56 5 Theory of statically-indeterminate frameworks: the reciprocal theorem 73 6 Levy's theory of frameworks and bridge girders 94 7 Early developments of energy principles relating to theory of structures 106 8 The later development and use of energy principles 118 9 Applications of the least work principle: elastic theory of suspension bridges 132 10 Aspects of the further development of theory of structures 140 11 Secondary effects in structures 157 Appendices I A note on C.
    [Show full text]