Im Fokus Hyaden in Den

Total Page:16

File Type:pdf, Size:1020Kb

Im Fokus Hyaden in Den DAS UMFASSENDE ASTRONOMISCHE JAHRBUCH Himmels- EXTRA 2 | 2016 EXTRA Almanach 2017 DATEN | DETAILLIERTE KARTEN | PRAXISTIPPS TOP-EREIGNISSE 2017 NGC 4513 UGCA 272 UGC 5336 M 81 Arp 300 ρ UGC 4539 64° Bode's Galaxy 64° Holmberg IX NGC 2959 Σ UGC 5028 RV NGC 4108 R 1400 NGC 2961 5 Σ 1573 NGC 3077 5 NGC 4256 NGC 4221 IC 2574 The Garland σ 2 Σ 1349 σ NGC 4332 Coddington's Nebula FBS 0959+685 NGC 2892 1 NGC 4210 Σ 1306 DERNGC 4441 WEGWEISERNGC 3622 NGC 2976 2 63° 3 UGC 4775 63° DRA NGC 4391 Sh 86 π 1 NGC 4125 VY NGC 4521 HCG 49 NGC 4545 NGC 3682 NGC 4510 NGC 4121 Σ 1350 FÜR DAS GESAMTE JAHR π 2 62° NGC 3231 62° 76 6 NGC 4205 ASTRONOMISCHE EREIGNISSE 57 UGC 5188 NGC 4081 NGC 3392 UGC 4159 UGC 7179 38 WOCHE FÜR WOCHE NGC 3394 35 UGC 6316 61° MCG +11-12-10 61° Σ 1559 NGC 2814 TOTALE S NGC 4605 UGC 5576 32 NGC 3259 β 408 NGC 2820 NGC 2805 τ SONNENFINSTERNIS NGC 3266 56 CGCG 292-85 60° NGC 4041 60° RY 28 5 ο BEOBACHTUNGSTIPPS UGC 6534 UGC 5776 NGC 4036 NGC 3668 23 UGC 7406 29 Muscida IN DEN USA UGC 6520 Σ 1351 MCG +11-14-33 T MCG +10-17-64 NGC 2742A MCG +10-18-51VON EXPERTEN NGC 3359 59° NGC 2880 59° NGC 3725 Σ 1315 UGC 6528 16 NGC 4547 VERSTÄNDLICHE ERKLÄRUNGEN RS NGC 3978 NGC 3762 NGC 2654 75 Shk 105 UGC 4289 NGC 3945 α FÜR EINSTEIGER ΟΣ 235 Dubhe MCG +10-12-103 74 TT 58° NGC 3835A NGC 2742 58° β 1077 UMA UGC 4730 NGC 4358 NGC 3471 NGC 4335 NGC 3835 NGC 3796 ΟΣΣ NGC 4500 Shk 124 92 NGC 2726 UGC 4549 M 40 NGC 3435 NGC 3894NGC 3809 Shk 113 NGC 4290 NGC 3895 20 NGC 2768 NGC 4149 Helix Galaxy 57° 57° 70 Arp 336 Abell 28 UGC 7635 Σ 1544 NGC 2685 UGC 7691 NGC 3770 NGC 4161 UGC 6732 NGC 3963 NGC 3168 71 UGC 6452 Megrez NGC 3102 δ NGC 4054-1 NGC 3958 NGC 3795B IC 691 Z NGC 3642 NGC 3470 68 56° NGC 3690A UGC 5408 56° NGC 4271 NGC 3757 NGC 3043 PGC 35345 42 υ NGC 2950 MCG +9-14-50 SATURN UGC 6939 Arp 296 Arp 299 HCG 45 IC 522 NGC 4172 NGC 3838 NGC 3690B NGC 3610 UGC 5435 UGC 7144 Σ 1495 Σ 1234 72 Shk 123 MCG +10-17-19 NGC 4198 NGC 3408 55° 66 NGC 3613 NGC 3284 55° NGC 3669 NGC 3683A NGC 3625 NGC 2895 IM FOKUS NGC 3225 17 MCG +9-14-61 NGC 3619 Σ 1603 NGC 3898 NGC 3182 MCG +9-15-11 NGC 3488 NGC 3998 NGC 3794 NGC 3674 44 NGC 2710 NGC 3780 NGC 3530 Arp 160 NGC 3990 NGC 3683 41 54° NGC 3888 NGC 3458 54° NGC 4194 NGC 3982 39 NGC 3238 NGC 3188 NGC 3972 Σ 1553 Arp 24 37 NGC 3445 40 NGC 3846 NGC 3517-1 NGC 3220 NGC 3206 MCG +9-14-80 Arp 224 NGC 3921 β 43 NGC 3164 UGC 5055 Merak W 1 NGC 3759A NGC 2656 NGC 3499 Sachariassen 1 UGC 4807 53° Σ 1608 MCG +9-20-97 Shk 98 53° NGC 2602 IC 2943 NGC 3737 M 108 NGC 3759 Broken Engagement Ring NGC 3353 36 NGC 2701 A 1353 Q0957+561 NGC 4181 MCG +9-19-112 NGC 3079 NGC 2675 NGC 3733 NGC 3264 CGCG 266-31 γ MCG +9-19-14M 97 NGC 3073 NGC 3738 NGC 3398 18 M 109 Arp 234 Eulennebel Σ 1402 NGC 2756 NGC 4102 Phekda NGC 3756 HCG 50 52° Arp 151 MCG +9-16-42 52° NGC 4068 Σ 1346 MCG +9-19-73 21 44 NGC 3656 Arp 155 UGCA 154 UGC 4851 UGC 4713 Σ 1600 NGC 3729 NGC 3448 UGC 5720 UGC 4671 NGC 3953 Shk 3 Σ 1321 MOND VOR DEN Arp 205 Arp 233 NGC 2692 MCG +9-20-116 HCG 60 NGC 3718 ϕ Σ 1312 51° NGC 3824 51° UGC 6527B Arp 214 NGC 3549 UGC 4879 Arp 27 NGC 3631 NGC 4187 Σ 1609 Arp 322 HCG 56 UGC 6182 NGC 2693 IDEEN UND ANLEITUNGENUGC 6527 NGC 2800 UGC 4749 NGC 2681 NGC 3657 MCG +9-19-49 NGC 3917 Arp 217 CGCG 266-9 15 NGC 3310 Arp 18 FÜRNGC EIGENE 4026 TOUREN AM NACHTHIMMEL Bow & Arrow HYADEN NGC 4157 NGC 4088 UGC 5615A Σ 1520 50° Shk 2 Σ 1510 26 50° NGC 4085 13,90€ 22,00 sFr 12,90€ www.abenteuer-astronomie.de UGC 5615B RT θ MCG +9-18-14 Σ 1428 37 UGC 4778 MCG +9-19-97 Shk 6 ΟΣ 200 (I) Σ 1486 (DE/AT/LUX) NGC 2769 NGC 3922 (CH) NGC 2767 NGC 4100 UGC 6309 NGC 2841 49° NGC 3870 NGC 2771 49° WOCHENTHEMEN | BEOBACHTUNGSNÄCHTE UGC 5460 NGC 2684 53 UGC 6930 365 UGC 4580 NGC 4047 22 NGC 3406-2 23 UGC 4927 UGC 6074 Willman 1 NGC 3406-1 48° 12h 00m NGC11 3896h 50m 11h 40m 11h 30m 11h 20m 11h 10m 11h 00m 10h 50m 10h 40m 10h 30m 10h 20m 10h 10m 10h 00m 9h 50m 9h 40m 9h 30m 9h 20m 9h 10m 9h 00m 48° NGC 3985 Miniature Spiral Shk 26 SONNE, STERNE,NGC 3928 MOND UND PLANETEN IM JAHRESVERLAUF ι Arp 285 AGC 1314 Arp 1 NGC 2854 NGC 2676 UGC 6117 NGC 4096 NGC 2857 h 2477 Talitha Abenteuer Astronomie EXTRA | Himmels-Almanach 2017 fokussiert Titelbild: Das Hintergrundbild ist ein Aus- schnitt aus dem interstellarum Deep Sky Atlas. Zu sehen ist eine Region im Sternbild Großer Bär, dessen sieben hellste Sterne als Großer Wagen bezeichnet werden. Die Kar- te zeigt den Kasten des Wagens und des- sen Umgebung. Die wenigsten Objekte, die auf der Karte verzeichnet sind, lassen sich mit bloßem Auge erkennen. Es handelt sich vielfach um weit entfernte Galaxien. Doch bereits mit Auge und Fernglas kann Stefan Deiters man am Himmel zahlreiche spannende Chefredakteur Entdeckungen machen - und dieser Almanach soll dabei helfen. Die Aufnahme der verdunkelten Sonne mit der deutlich sichtbaren Korona hat Daniel Liebe Leserinnen, liebe Leser, Fischer gemacht. Der offene Sternhaufen der Hyaden wurde von Manfred Wasshu- auch in diesem Jahr gibt es unseren Himmels-Almanach, diesmal als zweites Extra-Heft ber von Aigen in Österreich aus aufgenom- des Jahres 2016 von Abenteuer Astronomie. Das kommende Jahr bietet wieder viele Höhe- men. Das Motiv stammt aus dem CCD-Guide. punkte für Sternfreunde und alle, die es werden wollen. Damit Sie diese nicht verpassen, Das Bild von Saturn ist von der NASA-Son- haben unsere Autoren die interessantesten Ereignisse für Sie zusammengestellt. de Cassini, die Ansicht von Jupiter vom Weltraumteleskop Hubble. Das Konzept hat sich nicht geändert: Woche für Woche zeigen wir Ihnen, was es am Himmel zu sehen gibt und was sich zu beobachten lohnt. Grafiken helfen Ihnen, die be- sprochenen Objekte auch zu finden, Experten geben Praxistipps, Hintergrundberich te verraten mehr zu den einzelnen Objekten. So findet sowohl der Einsteiger, als auch der er- fahrene Amateurastronom interessanten Lesestoff. Unsere Autoren sind Experten auf ihrem Gebiet: Von Arnold Barmettler von CalSky stammen die meisten Daten sowie Grafiken zu Sonne, Mond, Planetenhöhen und Planetenmonden. Daniel Fischer lieferte Texte zu Finsternissen; Paul Hombach und Nico Schmidt zu Planetenstellungen, Konjunktionen und Planetenmondereignissen und wei- teren Themen. Konrad Guhl, Eberhard Riedel und Oliver Klös verdanken wir Daten und Texte zu Sternbedeckungen. Bei den Daten zur Bedeckung durch Kleinplaneten konnte sogar noch die erste Datenveröffentlichung der Astrometriemission Gaia berücksichtigt werden. Burkard Leitner schließlich fungierte als Kometenexperte, André Knöfel liefer- te Texte zu Meteorströmen und Asteroiden. Wolfgang Vollmann verfasste den Über- sichtstext über Veränderliche und Lambert Spix die Einleitung für Einsteiger. Die Stern- karten stammen von Jörg Scholten und Kai von Schauroth, für das Layout sorgte Dieter Reimann von Querwild. CALSKY Ich denke, es ist uns wieder eine interessante Mischung aus Themen gelungen, die Lust macht, hinauszugehen und selbst zu beobachten. Aktualisierte Informationen zum Sternhimmel erhalten Sie natürlich das gesamte Jahr über in den regulären Heften von Abenteuer Astronomie sowie auf unserer Webseite. Ich wünsche Ihnen eine anregende Lektüre und möglichst viele klare Beobachtungsnächte. Ihr Dieses Jahrbuch basiert weit- gehend auf dem Online-Portal CalSky. Dort erhalten Sie tages- genaue Daten und Grafiken indi- viduell konfigurierbar für Ihren Beobachtungsort und Ihre Be- dürfnisse! www.calsky.com 3 JAHRESABONNEMENT (8 AUSGABEN) GESCHENK IHRE VORTEILE IM ABO Kostenloser Zustellservice Pünktliche Lieferung nach Hause Geschenk als Dankeschön Keine Ausgabe mehr verpassen UNSERE ABOARTEN PLUS PRINT DIGITAL = 77,90 € 69,90 € 69,90 € LESER GESCHENK WERBEN LESER 25 U25 PROBE WECHSELNDE PRÄMIEN WWW.ABENTEUER-ASTRONOMIE.DE/ABO Tel.: 09131-970691 Fax: 09131-978596 E-Mail: [email protected] Abenteuer Astronomie Extra | Himmels-Almanach 2017 INHALT April 10 | Einführung 36 | Woche für Woche 65 Jupiter in Opposition Sonne, Mond und Planeten Januar 67 Komet 41P/Tuttle-Giacobini-Kresak 10 Eine Einführung für Einsteiger 37 Komet 45P/Honda-Mrkos-Pajdusakova 69 Jupiters Großer Roter Fleck 13 Benutzungshinweise 39 Bedeckung von μ Ceti durch den Mond 71 Venus hell am Morgenhimmel 14 Wichtige Begriffe 41 Venus in größter Elongation 43 Opposition von (4) Vesta Mai 45 Mond trifft Saturn 73 Gamymeds Verfinsterung 75 Mond nahe Jupiter 18 | Jahresübersicht Februar 77 58 Oph bei Saturn Kalender 47 Mond wandert durch die Hyaden 79 Venus in größter Elongation 18 Das Jahr 2017 im Überblick 49 Halbschatten-Mondfinsternis 51 Venus im größten Glanz Sternhimmel Juni 53 Ringförmige Sonnenfinsternis 20 Der Sternhimmel im Jahresverlauf 81 C/2015 V2 (Johnson) 26 Planeten 2017 März 83 Tanz der Monde und 27 Finsternisse 2017 55 Mond bedeckt die Hyaden Schatten bei Jupiter 28 Kometen 2017 57 Mond trifft Regulus 85 Saturn in Opposition 29 Meteorströme 2017 59 Merkur bei Venus 87 Sommersonnenwende 30 Kleinplaneten 2017 61 Astronomischer Frühlingsbeginn 91 Mond trifft Regulus 31 Veränderliche 2017 63 Merkur in östlicher Elongation 32 Sternbedeckungen 2017 85 Saturn im Fokus 123 Uranus in Opposition 129 Zahnlose Leoniden 135 Mond mit »Goldenem Henkel« 6 Abenteuer Astronomie Extra | Himmels-Almanach 2017 INHALT Juli Oktober 93 Mond trifft Saturn 119 Venus und Mars nahe σ Leo INTERAKTIV 95 Der Austritt von χ Aqr 121 Mond begegnet Aldebaran 97 Enge Begegnung vom 123 Uranus in Opposition • Berichte über Beobachtungen auf Mond mit Aldabaran 125 (7) Iris in Opposition der Abenteuer Astronomie 99 Merkur nahe Regulus Facebook-Seite.
Recommended publications
  • On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques)
    Dissertation On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques) Nils Nierstenhoefer Wuppertal, 2011 University of Wuppertal Supervisor/First reviewer: Prof. Dr. K.-H. Kampert Second reviewer: Prof. Dr. M. Risse Motivation & Preface It is a long known fact that cosmic rays reach Earth with tremendous energies of even above 1020 eV. Despite of decades of intensive research, it was not possible to finally reveal the origin of these par- ticles. The main obstacle in this field is their rare occurrence. This is due to a very steep energy spectrum. To make this point more clear, one roughly expects to observe less than one particle per km2 in one century exceeding energies larger than 1020 eV. To overcome the limitation of low statis- tics, larger and larger cosmic ray detectors have been deployed. Today’s largest cosmic ray detector is the Pierre Auger observatory (PAO) which was constructed in the Pampa Amarilla in Argentina. It covers an area of 3000 km2 and provides the largest set of observations of ultra-high energy cosmic rays (UHECR) in history. A second difficulty in understanding the origin of UHECR should be pointed out: Galactic and extra- galactic magnetic fields might alter the direction of even the highest energy events in a way that they do not point back to their source. In 2007 and 2008, already before the completion of the full detector, the Auger collaboration pub- lished a set of three important papers [1, 2, 3]. The first paper dealt with the correlation of the arrival directions of the highest energetic events with the distribution of active galactic nuclei (AGN) closer than 75Mpc from a catalog compiled by Veron-Cetty and Veron (VC-V) [4].
    [Show full text]
  • Projekt Ursa Major
    12 θ 11 Draco 14 Lynx 7 13 N 15 51 2722 UGC4593 NGC2985 18 NGC3348 NGC3065 47 EW ι NGC3516 49 24NGC2787 6 ρ κ M82 2 S 4 M81 σUGC4687σ2 π NGC3077 1 1 24 19 α 10 2 λ NGC2976 π2 53 6 23 9 7 8 ο 29 3 τ 5 NGC5216 38 35 32 Lyn 23 30 NGC2880 16 NGC5631 NGC5322 22 NGC2742NGC2816 76 NGC2768 NGC4605 47 NGC4041NGC4036 44 NGC5485 NGC5473 α 27 NGC2950 39 M101 NGC3945 υ 17 θ NGC5474 NGC5278 26 86 84 81 75 NGC3809 25 24 ι 83 74 NGC3894 42 38 80ζ 78 70 NGC3610 NGC3757NGC3690BNGC3690A 18 82 ε NGC3838 NGC3613 71 δ68 4139 37 13 NGC3458 NGC2681 73 66 43 NGC2639 β 36 15 33 NGC3898NGC3888 φ NGC3998 M108 NGC4194 NGC3982 26 λ η 44 UGC5720 θ NGC2841 28 NGC3738 M97 24 γ NGC3310UGC5615B 21 M109 ι 34 7 NGC4102 NGC3729NGC3631 31 5 NGC3953 κ 31 NGC4026 NGC4088 NGC3406 11 35 3 NGC3870 UMa NGC4047 NGC3985NGC3928NGC3893 NGC3583 36 NGC3949 χNGC3769 NGC3595 NGC372660 NGC3198 NGC3009 CVn 3332 19 NGC4051 UGC6187UGC6135 23 20 NGC3938 ψ λ 4 67 59 56 42 NGC367558 ω 19 43 9 β NGC3184 25 1715 µ 10 2 38 αα12 47 6 109 32 σ σ 14 57 49 11 2 1 8 α σ 46 NGC3665 38 σ 3 55 UGC613251 13 4 β 7 57 NGC3941 35 21 61 NGC3813 ιι 34 ρ53 9 NGC3694 τ 1 302827 ρ 46 67 2 61 20 37 46 LMi 33 NGC3878 ν 22 15 3 NGC3994 37 75 β 62 15° 41 ξ 42 23 κ ν Bootes 31 24 Cancer 30 43 γ 9 13 Deep Sky•Objekte in Ursa Major (UMa) Object Type RA Dec Mag Size Surf Br Constellation •••••• •••• •• ••• ••• •••• ••••••• ••••••••••••• M101 Galaxy 14h 03m 25.6s +54° 19' 10" 8.2 28.5'x28.3' 14.0 Ursa Major M108 Galaxy 11h 11m 50.1s +55° 38' 39" 10.6 8.6'x2.4' 13.3 Ursa Major M109 Galaxy 11h 57m 54.0s +53° 20' 35" 10.6 7.5'x4.4'
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • Bright Star Double Variable Globular Open Cluster Planetary Bright Neb Dark Neb Reflection Neb Galaxy Int:Pec Compact Galaxy Gr
    bright star double variable globular open cluster planetary bright neb dark neb reflection neb galaxy int:pec compact galaxy group quasar ALL AND ANT APS AQL AQR ARA ARI AUR BOO CAE CAM CAP CAR CAS CEN CEP CET CHA CIR CMA CMI CNC COL COM CRA CRB CRT CRU CRV CVN CYG DEL DOR DRA EQU ERI FOR GEM GRU HER HOR HYA HYI IND LAC LEO LEP LIB LMI LUP LYN LYR MEN MIC MON MUS NOR OCT OPH ORI PAV PEG PER PHE PIC PSA PSC PUP PYX RET SCL SCO SCT SER1 SER2 SEX SGE SGR TAU TEL TRA TRI TUC UMA UMI VEL VIR VOL VUL Object ConRA Dec Mag z AbsMag Type Spect Filter Other names CFHQS J23291-0301 PSC 23h 29 8.3 - 3° 1 59.2 21.6 6.430 -29.5 Q ULAS J1319+0950 VIR 13h 19 11.3 + 9° 50 51.0 22.8 6.127 -24.4 Q I CFHQS J15096-1749 LIB 15h 9 41.8 -17° 49 27.1 23.1 6.120 -24.1 Q I FIRST J14276+3312 BOO 14h 27 38.5 +33° 12 41.0 22.1 6.120 -25.1 Q I SDSS J03035-0019 CET 3h 3 31.4 - 0° 19 12.0 23.9 6.070 -23.3 Q I SDSS J20541-0005 AQR 20h 54 6.4 - 0° 5 13.9 23.3 6.062 -23.9 Q I CFHQS J16413+3755 HER 16h 41 21.7 +37° 55 19.9 23.7 6.040 -23.3 Q I SDSS J11309+1824 LEO 11h 30 56.5 +18° 24 13.0 21.6 5.995 -28.2 Q SDSS J20567-0059 AQR 20h 56 44.5 - 0° 59 3.8 21.7 5.989 -27.9 Q SDSS J14102+1019 CET 14h 10 15.5 +10° 19 27.1 19.9 5.971 -30.6 Q SDSS J12497+0806 VIR 12h 49 42.9 + 8° 6 13.0 19.3 5.959 -31.3 Q SDSS J14111+1217 BOO 14h 11 11.3 +12° 17 37.0 23.8 5.930 -26.1 Q SDSS J13358+3533 CVN 13h 35 50.8 +35° 33 15.8 22.2 5.930 -27.6 Q SDSS J12485+2846 COM 12h 48 33.6 +28° 46 8.0 19.6 5.906 -30.7 Q SDSS J13199+1922 COM 13h 19 57.8 +19° 22 37.9 21.8 5.903 -27.5 Q SDSS J14484+1031 BOO
    [Show full text]
  • On Problems Related to Galaxy Formation
    On Problems Related To Galaxy Formation Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Ahmed Hasan Abdullah aus Baghdad Bonn 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. P. Kroupa 2. Gutachterin: Dr. Maria Massi Tag der Promotion: 11.04.2016 Erscheinungsjahr: 2016 To My Parents i Erklärung Hiermit versichere ich, die vorgelegte Arbeit - abgesehen von den ausdrücklich angegebenen Hilfsmit- teln -persönlich, selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefer- tigt zu haben. Die aus anderen Quellen direkt und indirekt verwendeten Daten und Konzepte sind unter der Angabe der Quelle kenntlich gemacht. Weder die vorgelegte Arbeit noch eine ähnliche Arbeit sind bereits anderweitig als Dissertation eingereicht worden und von mir wurden zuvor keine Promotionsver- suche unternommen. Für die Erstellung der vorgelegten Arbeit wurde keine fremde Hilfe, insbesondere keine entgeltliche Hilfe von Vermittlungs-, Beratungsdiensten oder Ähnlichem, in Anspruch genom- men. Bonn, den Ahmed Abdullah iii Acknowledgements I owe thanks to many people for their support and guidance which gave me a chance to complete this thesis. I am truly indebted and thankful for their support. First and foremost, I would like to express my deep and sincere gratitude to my advisor, Prof. Dr. Pavel Kroupa, for the continuous support of my study and research, and his motivation, encouragement and patient supervision. It was an honor to have a supervisor who was so patient and willing to help . I would also like to express my gratitude to Dr.
    [Show full text]
  • Durham Research Online
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Durham Research Online Durham Research Online Deposited in DRO: 22 January 2020 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Babyk, Iu. V. and McNamara, B. R. and Tamhane, P. D. and Nulsen, P. E. J. and Russell, H. R. and Edge, A. C. (2019) 'Origins of molecular clouds in early-type galaxies.', Astrophysical journal., 887 (2). p. 149. Further information on publisher's website: https://doi.org/10.3847/1538-4357/ab54ce Publisher's copyright statement: c 2019. The American Astronomical Society. All rights reserved. Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 http://dro.dur.ac.uk The Astrophysical Journal, 887:149 (17pp), 2019 December 20 https://doi.org/10.3847/1538-4357/ab54ce © 2019. The American Astronomical Society. All rights reserved.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86.
    [Show full text]
  • The Molecular Gas Content of Shell Galaxies ? B
    Astronomy & Astrophysics manuscript no. shells c ESO 2019 August 23, 2019 The molecular gas content of shell galaxies ? B. Mancillas1, F. Combes1; 2, and P.-A. Duc3 1 Observatoire de Paris, LERMA, PSL University, CNRS, Sorbonne University, UPMC, Paris, France 2 Collège de France, 11 Place Marcelin Berthelot, 75005 Paris 3 Université de Strasbourg, CNRS, Observatoire de Strasbourg, F-67000 Strasbourg, France Received 2019/ Accepted 2019 ABSTRACT Shells are fine stellar structures identified by their arc-like shapes present around a galaxy and currently thought to be vestiges of galaxy interactions and/or mergers. The study of their number, geometry, stellar populations and gas content can help to derive the interaction/merger history of a galaxy. Numerical simulations have proposed a mechanism of shell formation through phase wrapping during a radial minor merger. Alternatively, there could be merely a space wrapping, when particles have not made any radial oscillation yet, but are bound by their radial expansion, or produce an edge-brightened feature. These can be distinguished, because they are expected to keep a high radial velocity. While shells are first a stellar phenomenon, HI and CO observations have revealed neutral gas associated with shells. Some of the gas, the most diffuse and dissipative, is expected to be driven quickly to the center if it is travelling on nearly radial orbits. Molecular gas, distributed in dense clumps, is less dissipative, and may be associated to shells. It can then determine the shell velocity, too difficult to obtain from stars. We present here a search for molecular gas in nine shell galaxies with the IRAM-30m telescope.
    [Show full text]
  • X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
    Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]