CONS Should Not CONS Its Arguments, Or, a Lazy Alloc Is a Smart Alloc Henry G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solving the Funarg Problem with Static Types IFL ’21, September 01–03, 2021, Online
Solving the Funarg Problem with Static Types Caleb Helbling Fırat Aksoy [email protected] fi[email protected] Purdue University Istanbul University West Lafayette, Indiana, USA Istanbul, Turkey ABSTRACT downwards. The upwards funarg problem refers to the manage- The difficulty associated with storing closures in a stack-based en- ment of the stack when a function returns another function (that vironment is known as the funarg problem. The funarg problem may potentially have a non-empty closure), whereas the down- was first identified with the development of Lisp in the 1970s and wards funarg problem refers to the management of the stack when hasn’t received much attention since then. The modern solution a function is passed to another function (that may also have a non- taken by most languages is to allocate closures on the heap, or to empty closure). apply static analysis to determine when closures can be stack allo- Solving the upwards funarg problem is considered to be much cated. This is not a problem for most computing systems as there is more difficult than the downwards funarg problem. The downwards an abundance of memory. However, embedded systems often have funarg problem is easily solved by copying the closure’s lexical limited memory resources where heap allocation may cause mem- scope (captured variables) to the top of the program’s stack. For ory fragmentation. We present a simple extension to the prenex the upwards funarg problem, an issue arises with deallocation. A fragment of System F that allows closures to be stack-allocated. returning function may capture local variables, making the size of We demonstrate a concrete implementation of this system in the the closure dynamic. -
The Pros of Cons: Programming with Pairs and Lists
The Pros of cons: Programming with Pairs and Lists CS251 Programming Languages Spring 2016, Lyn Turbak Department of Computer Science Wellesley College Racket Values • booleans: #t, #f • numbers: – integers: 42, 0, -273 – raonals: 2/3, -251/17 – floang point (including scien3fic notaon): 98.6, -6.125, 3.141592653589793, 6.023e23 – complex: 3+2i, 17-23i, 4.5-1.4142i Note: some are exact, the rest are inexact. See docs. • strings: "cat", "CS251", "αβγ", "To be\nor not\nto be" • characters: #\a, #\A, #\5, #\space, #\tab, #\newline • anonymous func3ons: (lambda (a b) (+ a (* b c))) What about compound data? 5-2 cons Glues Two Values into a Pair A new kind of value: • pairs (a.k.a. cons cells): (cons v1 v2) e.g., In Racket, - (cons 17 42) type Command-\ to get λ char - (cons 3.14159 #t) - (cons "CS251" (λ (x) (* 2 x)) - (cons (cons 3 4.5) (cons #f #\a)) Can glue any number of values into a cons tree! 5-3 Box-and-pointer diagrams for cons trees (cons v1 v2) v1 v2 Conven3on: put “small” values (numbers, booleans, characters) inside a box, and draw a pointers to “large” values (func3ons, strings, pairs) outside a box. (cons (cons 17 (cons "cat" #\a)) (cons #t (λ (x) (* 2 x)))) 17 #t #\a (λ (x) (* 2 x)) "cat" 5-4 Evaluaon Rules for cons Big step seman3cs: e1 ↓ v1 e2 ↓ v2 (cons) (cons e1 e2) ↓ (cons v1 v2) Small-step seman3cs: (cons e1 e2) ⇒* (cons v1 e2); first evaluate e1 to v1 step-by-step ⇒* (cons v1 v2); then evaluate e2 to v2 step-by-step 5-5 cons evaluaon example (cons (cons (+ 1 2) (< 3 4)) (cons (> 5 6) (* 7 8))) ⇒ (cons (cons 3 (< 3 4)) -
The Use of UML for Software Requirements Expression and Management
The Use of UML for Software Requirements Expression and Management Alex Murray Ken Clark Jet Propulsion Laboratory Jet Propulsion Laboratory California Institute of Technology California Institute of Technology Pasadena, CA 91109 Pasadena, CA 91109 818-354-0111 818-393-6258 [email protected] [email protected] Abstract— It is common practice to write English-language 1. INTRODUCTION ”shall” statements to embody detailed software requirements in aerospace software applications. This paper explores the This work is being performed as part of the engineering of use of the UML language as a replacement for the English the flight software for the Laser Ranging Interferometer (LRI) language for this purpose. Among the advantages offered by the of the Gravity Recovery and Climate Experiment (GRACE) Unified Modeling Language (UML) is a high degree of clarity Follow-On (F-O) mission. However, rather than use the real and precision in the expression of domain concepts as well as project’s model to illustrate our approach in this paper, we architecture and design. Can this quality of UML be exploited have developed a separate, ”toy” model for use here, because for the definition of software requirements? this makes it easier to avoid getting bogged down in project details, and instead to focus on the technical approach to While expressing logical behavior, interface characteristics, requirements expression and management that is the subject timeliness constraints, and other constraints on software using UML is commonly done and relatively straight-forward, achiev- of this paper. ing the additional aspects of the expression and management of software requirements that stakeholders expect, especially There is one exception to this choice: we will describe our traceability, is far less so. -
Dynamic Variables
Dynamic Variables David R. Hanson and Todd A. Proebsting Microsoft Research [email protected] [email protected] November 2000 Technical Report MSR-TR-2000-109 Abstract Most programming languages use static scope rules for associating uses of identifiers with their declarations. Static scope helps catch errors at compile time, and it can be implemented efficiently. Some popular languages—Perl, Tcl, TeX, and Postscript—use dynamic scope, because dynamic scope works well for variables that “customize” the execution environment, for example. Programmers must simulate dynamic scope to implement this kind of usage in statically scoped languages. This paper describes the design and implementation of imperative language constructs for introducing and referencing dynamically scoped variables—dynamic variables for short. The design is a minimalist one, because dynamic variables are best used sparingly, much like exceptions. The facility does, however, cater to the typical uses for dynamic scope, and it provides a cleaner mechanism for so-called thread-local variables. A particularly simple implementation suffices for languages without exception handling. For languages with exception handling, a more efficient implementation builds on existing compiler infrastructure. Exception handling can be viewed as a control construct with dynamic scope. Likewise, dynamic variables are a data construct with dynamic scope. Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 http://www.research.microsoft.com/ Dynamic Variables Introduction Nearly all modern programming languages use static (or lexical) scope rules for determining variable bindings. Static scope can be implemented very efficiently and makes programs easier to understand. Dynamic scope is usu- ally associated with “older” languages; notable examples include Lisp, SNOBOL4, and APL. -
Java for Scientific Computing, Pros and Cons
Journal of Universal Computer Science, vol. 4, no. 1 (1998), 11-15 submitted: 25/9/97, accepted: 1/11/97, appeared: 28/1/98 Springer Pub. Co. Java for Scienti c Computing, Pros and Cons Jurgen Wol v. Gudenb erg Institut fur Informatik, Universitat Wurzburg wol @informatik.uni-wuerzburg.de Abstract: In this article we brie y discuss the advantages and disadvantages of the language Java for scienti c computing. We concentrate on Java's typ e system, investi- gate its supp ort for hierarchical and generic programming and then discuss the features of its oating-p oint arithmetic. Having found the weak p oints of the language we pro- p ose workarounds using Java itself as long as p ossible. 1 Typ e System Java distinguishes b etween primitive and reference typ es. Whereas this distinc- tion seems to b e very natural and helpful { so the primitives which comprise all standard numerical data typ es have the usual value semantics and expression concept, and the reference semantics of the others allows to avoid p ointers at all{ it also causes some problems. For the reference typ es, i.e. arrays, classes and interfaces no op erators are available or may b e de ned and expressions can only b e built by metho d calls. Several variables may simultaneously denote the same ob ject. This is certainly strange in a numerical setting, but not to avoid, since classes have to b e used to intro duce higher data typ es. On the other hand, the simple hierarchy of classes with the ro ot Object clearly b elongs to the advantages of the language. -
A Metaobject Protocol for Fault-Tolerant CORBA Applications
A Metaobject Protocol for Fault-Tolerant CORBA Applications Marc-Olivier Killijian*, Jean-Charles Fabre*, Juan-Carlos Ruiz-Garcia*, Shigeru Chiba** *LAAS-CNRS, 7 Avenue du Colonel Roche **Institute of Information Science and 31077 Toulouse cedex, France Electronics, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan Abstract The corner stone of a fault-tolerant reflective The use of metalevel architectures for the architecture is the MOP. We thus propose a special implementation of fault-tolerant systems is today very purpose MOP to address the problems of general-purpose appealing. Nevertheless, all such fault-tolerant systems ones. We show that compile-time reflection is a good have used a general-purpose metaobject protocol (MOP) approach for developing a specialized runtime MOP. or are based on restricted reflective features of some The definition and the implementation of an object-oriented language. According to our past appropriate runtime metaobject protocol for implementing experience, we define in this paper a suitable metaobject fault tolerance into CORBA applications is the main protocol, called FT-MOP for building fault-tolerant contribution of the work reported in this paper. This systems. We explain how to realize a specialized runtime MOP, called FT-MOP (Fault Tolerance - MetaObject MOP using compile-time reflection. This MOP is CORBA Protocol), is sufficiently general to be used for other aims compliant: it enables the execution and the state evolution (mobility, adaptability, migration, security). FT-MOP of CORBA objects to be controlled and enables the fault provides a mean to attach dynamically fault tolerance tolerance metalevel to be developed as CORBA software. strategies to CORBA objects as CORBA metaobjects, enabling thus these strategies to be implemented as 1 . -
On the Expressive Power of Programming Languages for Generative Design
On the Expressive Power of Programming Languages for Generative Design The Case of Higher-Order Functions António Leitão1, Sara Proença2 1,2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 1,2{antonio.menezes.leitao|sara.proenca}@ist.utl.pt The expressive power of a language measures the breadth of ideas that can be described in that language and is strongly dependent on the constructs provided by the language. In the programming language area, one of the constructs that increases the expressive power is the concept of higher-order function (HOF). A HOF is a function that accepts functions as arguments and/or returns functions as results. HOF can drastically simplify the programming activity, reducing the development effort, and allowing for more adaptable programs. In this paper we explain the concept of HOFs and its use for Generative Design. We then compare the support for HOF in the most used programming languages in the GD field and we discuss the pedagogy of HOFs. Keywords: Generative Design, Higher-Order Functions, Programming Languages INTRODUCTION ming language is Turing-complete, meaning that Generative Design (GD) involves the use of algo- almost all programming languages have the same rithms that compute designs (McCormack 2004, Ter- computational power. In what regards their expres- dizis 2003). In order to take advantage of comput- sive power, however, they can be very different. A ers, these algorithms must be implemented in a pro- given programming language can be textual, visual, gramming language. There are two important con- or both but, in any case, it must be expressive enough cepts concerning programming languages: compu- to allow the description of a large range of algo- tational power, which measures the complexity of rithms. -
Closure Joinpoints: Block Joinpoints Without Surprises
Closure Joinpoints: Block Joinpoints without Surprises Eric Bodden Software Technology Group, Technische Universität Darmstadt Center for Advanced Security Research Darmstadt (CASED) [email protected] ABSTRACT 1. INTRODUCTION Block joinpoints allow programmers to explicitly mark re- In this work, we introduce Closure Joinpoints for As- gions of base code as \to be advised", thus avoiding the need pectJ [6], a mechanism that allows programmers to explicitly to extract the block into a method just for the sake of cre- mark any Java expression or sequence of statement as \to ating a joinpoint. Block joinpoints appear simple to define be advised". Closure Joinpoints are explicit joinpoints that and implement. After all, regular block statements in Java- resemble labeled, instantly called closures, i.e., anonymous like languages are constructs well-known to the programmer inner functions with access to their declaring lexical scope. and have simple control-flow and data-flow semantics. As an example, consider the code in Figure1, adopted Our major insight is, however, that by exposing a block from Hoffman's work on explicit joinpoints [24]. The pro- of code as a joinpoint, the code is no longer only called in grammer marked the statements of lines4{8, with a closure its declaring static context but also from within aspect code. to be \exhibited" as a joinpoint Transaction so that these The block effectively becomes a closure, i.e., an anonymous statements can be advised through aspects. Closure Join- function that may capture values from the enclosing lexical points are no first-class objects, i.e., they cannot be assigned scope. -
Chapter 15 Functional Programming
Topics Chapter 15 Numbers n Natural numbers n Haskell numbers Functional Programming Lists n List notation n Lists as a data type n List operations Chapter 15: Functional Programming 2 Numbers Natural Numbers The natural numbers are the numbers 0, 1, Haskell provides a sophisticated 2, and so on, used for counting. hierarchy of type classes for describing various kinds of numbers. Introduced by the declaration data Nat = Zero | Succ Nat Although (some) numbers are provided n The constructor Succ (short for ‘successor’) as primitives data types, it is has type Nat à Nat. theoretically possible to introduce them n Example: as an element of Nat the number 7 through suitable data type declarations. would be represented by Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero)))))) Chapter 15: Functional Programming 3 Chapter 15: Functional Programming 4 Natural Numbers Natural Numbers Every natural number is represented by a Multiplication ca be defined by unique value of Nat. (x) :: Nat à Nat à Nat m x Zero = Zero On the other hand, not every value of Nat m x Succ n = (m x n) + m represents a well-defined natural number. n Example: ^, Succ ^, Succ(Succ ^) Nat can be a member of the type class Eq Addition ca be defined by instance Eq Nat where Zero == Zero = True (+) :: Nat à Nat à Nat Zero == Succ n = False m + Zero = m Succ m == Zero = False m + Succ n = Succ(m + n) Succ m == Succ n = (m == n) Chapter 15: Functional Programming 5 Chapter 15: Functional Programming 6 1 Natural Numbers Haskell Numbers Nat can be a member of the type class Ord instance -
Subtyping on Nested Polymorphic Session Types 3 Types [38]
Subtyping on Nested Polymorphic Session Types Ankush Das1, Henry DeYoung1, Andreia Mordido2, and Frank Pfenning1 1 Carnegie Mellon University, USA 2 LASIGE, Faculdade de Ciˆencias, Universidade de Lisboa, Portugal Abstract. The importance of subtyping to enable a wider range of well- typed programs is undeniable. However, the interaction between subtyp- ing, recursion, and polymorphism is not completely understood yet. In this work, we explore subtyping in a system of nested, recursive, and polymorphic types with a coinductive interpretation, and we prove that this problem is undecidable. Our results will be broadly applicable, but to keep our study grounded in a concrete setting, we work with an extension of session types with explicit polymorphism, parametric type construc- tors, and nested types. We prove that subtyping is undecidable even for the fragment with only internal choices and nested unary recursive type constructors. Despite this negative result, we present a subtyping algo- rithm for our system and prove its soundness. We minimize the impact of the inescapable incompleteness by enabling the programmer to seed the algorithm with subtyping declarations (that are validated by the al- gorithm). We have implemented the proposed algorithm in Rast and it showed to be efficient in various example programs. 1 Introduction Subtyping is a standard feature in modern programming languages, whether functional, imperative, or object-oriented. The two principal approaches to un- derstanding the meaning of subtyping is via coercions or as subsets. Either way, subtyping allows more programs as well-typed, programs can be more concise, and types can express more informative properties of programs. When it comes to the interaction between advanced features of type systems, specifically recursive and polymorphic types, there are still some gaps in our arXiv:2103.15193v1 [cs.PL] 28 Mar 2021 understanding of subtyping. -
Estacada City Council Estacada City Hall, Council Chambers 475 Se Main Street, Estacada, Oregon Monday, January 25, 2016 - 7:00 Pm
CITY OF ESTACADA AGENDA MAYOR BRENT DODRILL COUNCILOR SEAN DRINKWINE COUNCILOR LANELLE KING COUNCILOR AARON GANT COUNCILOR PAULINA MENCHACA COUNCILOR JUSTIN GATES COUNCILOR DAN NEUJAHR ESTACADA CITY COUNCIL ESTACADA CITY HALL, COUNCIL CHAMBERS 475 SE MAIN STREET, ESTACADA, OREGON MONDAY, JANUARY 25, 2016 - 7:00 PM 1. CALL TO ORDER BY PRESIDING OFFICER (An invocation will be offered prior to call to order) . Pledge of Allegiance . Roll Call 2. CITIZEN AND COMMUNITY GROUP COMMENTS Instructions for providing testimony are located above the information table and the back of this agenda 3. CONSENT AGENDA Council members have the opportunity to move items from the Consent Agenda to Council Business. Council actions are taken in one motion on Consent Agenda Items. a. Approve January 11, 2016 Council minutes b. Approve January 16, 2016 Council Retreat minutes c. System Development Charge Annual Report 2015 Estacada Urban Renewal District Annual Report 2014-15 d. OLCC Annual Renewals 4. DEPARTMENT & COMMITTEE REPORTS a. Committee, Commission and Liaison b. City Manager Report c. Mayor Report 5. COUNCIL BUSINESS Items may be added from the Consent Agenda upon request of the Mayor or Councilor. a. SECOND CONSIDERATION – Ordinance Series of 2016 – 001 – An ordinance amending Section 5.04.020 D. of the Estacada Municipal Code regarding business and occupation licenses. b. 2016 Council Goals 6. CITIZEN AND COMMUNITY GROUP COMMENTS Instructions for providing testimony are located above the information table and the back of this agenda 7. COUNCIL REPORTS & COMMENTS 8. ADJOURNMENT OF MEETING Estacada City Council Meeting January 11, 2016 – Page | 1 ESTACADA CITY COUNCIL MEETING MINUTES ESTACADA CITY HALL, COUNCIL CHAMBERS 475 SE MAIN STREET, ESTACADA, OREGON MONDAY, JANUARY 11, 2016 - 7:00 PM CALL TO ORDER BY PRESIDING OFFICER The meeting was called to order at 7:00pm. -
First-Class Functions and Patterns
First-class Functions and Patterns Corky Cartwright Stephen Wong Department of Computer Science Rice University 1 Encoding First-class Functions in Java • Java methods are not data values; they cannot be used as values. • But java classes include methods so we can implicitly pass methods (functions) by passing class instances containing the desired method code. • Moreover, Java includes a mechanism that closes over the free variables in the method definition! • Hence, first-class functions (closures) are available implicitly, but the syntax is wordy. • Example: Scheme map 2 Interfaces for Representing Functions For accurate typing, we need different interfaces for different arities. With generics, we can define parameterized interfaces for each arity. In the absence of generics, we will have to define separate interfaces for each desired typing. map example: /** The type of unary functions in Object -> Object. */ interface Lambda { Object apply(Object arg); } abstract class ObjectList { ObjectList cons(Object n) { return new ConsObjectList(n, this); } abstract ObjectList map(Lambda f); } ... 3 Representing Specific Functions • For each function that we want to use a value, we must define a class, preferably a singleton. Since the class has no fields, all instances are effectively identical. • Defining a class seems unduly heavyweight, but it works in principle. • In OO parlance, an instance of such a class is called a strategy. • Java provides a lightweight notation for singleton classes called anonymous classes. Moreover these classes can refer to fields and final method variables that are in scope. In DrJava language levels, all variables are final. final fields and variables cannot be rebound to new values after they are initially defined (immutable).