CONS Should Not CONS Its Arguments, Or, a Lazy Alloc Is a Smart Alloc Henry G

Total Page:16

File Type:pdf, Size:1020Kb

CONS Should Not CONS Its Arguments, Or, a Lazy Alloc Is a Smart Alloc Henry G CONS Should not CONS its Arguments, or, a Lazy Alloc is a Smart Alloc Henry G. Baker Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436, (818) 501-4956 (818) 986-1360 (FAX) November, 1988; revised April and December, 1990, November, 1991. This work was supported in part by the U.S. Department of Energy Contract No. DE-AC03-88ER80663 Abstract semantics, and could profitably utilize stack allocation. One would Lazy allocation is a model for allocating objects on the execution therefore like to provide stack allocation for these objects, while stack of a high-level language which does not create dangling reserving the more expensive heap allocation for those objects that references. Our model provides safe transportation into the heap for require it. In other words, one would like an implementation which objects that may survive the deallocation of the surrounding stack retains the efficiency of stack allocation for most objects, and frame. Space for objects that do not survive the deallocation of the therefore does not saddle every program with the cost for the surrounding stack frame is reclaimed without additional effort when increased flexibility--whether the program uses that flexibility or the stack is popped. Lazy allocation thus performs a first-level not. garbage collection, and if the language supports garbage collection The problem in providing such an implementation is in determining of the heap, then our model can reduce the amortized cost of which objects obey LIFO allocation semantics and which do not. allocation in such a heap by filtering out the short-lived objects that Much research has been done on determining these objects at can be more efficiently managed in LIFO order. A run-time compile time using various static methods which are specific to the mechanism called result expectation further filters out unneeded particular type of object whose allocation is being optimized. results from functions called only for their effects. In a shared- Unfortunately, these techniques are limited, complex and expensive. memory multi-processor environment, this filtering reduces We present a technique which acts more like a cache or a virtual contention for the allocation and management of global memory. memory, in the sense that no attempt is made to predict usage at Our model performs simple local operations, and is therefore suitable compile time, but the usage is determined at run time. In other for an interpreter or a hardware implementation. Its overheads for words, the system learns about the usage of objects "on-the-fly". functional data are associated only with assignments, making lazy The major contribution of this paper is the recognition that a wide allocation attractive for mostly functional programming styles. variety of stack-allocation optimizations are all instances of the Many existing stack allocation optimizations can be seen as same underlying mechanism--lazy allocation. Using this insight, instances of this generic model, in which some portion of these we can simplify hardware architecture and language implementations local operations have been optimized away through static analysis by factoring the problem into two abstraction layerswlanguage techniques. implementation using generic storage allocation, and the Important applications of our model include the efficient allocation implementation of generic storage allocation using lazy allocation. of temporary data structures that are passed as arguments to Safety is also enhanced by the elimination of "dangling references" anonymous procedures which may or may not use these data due to objects escaping a stack-allocated scope. While lazy structures in a stack-like fashion. The most important of these allocation already provides for stack-allocation of arguments and temporaries, a programmer can extract even better performance by objects are functional arguments (funargs), which require some run- time allocation to preserve the local environment. Since a funarg is utilizing "continuation-passing style" to stack-allocate function sometimes returned as a first-class value, its lifetime can survive the results. stack frame in which it was created. Arguments which are evaluated 2. Stack Allocation is an Implementation Issue, not in a lazy fashion (Scheme delays or "suspensions") are similarly a Language Issue handled. Variable-length argument "lists" themselves can be The stack allocation of variables and contexts in higher-level allocated in this fashion, allowing these objects to become "first- compiled languages such as C, Pascal and Ada has been a fact of life class". Finally, lazy allocation correctly handles the allocation of a for so many years since its introduction in Algol-60 that most Scheme control stack, allowing Scheme continuations to become programmers today assume that stack allocation is a language, rather first-class values. than an implementation, issue. Stack allocation cannot be a 1. Introduction. language issue, however, since the most direct mapping of the nested Stack allocation of objects in higher level programming languages lexical variable scopes in these languages is a tree, not a stack. Rather, stack allocation was a conscious decision on the part of is desired because it is elegant, efficient, and can handle the great majority of short-lived object allocations. Traditional higher-level these language designers to provide the implementation efficiency of a stack as a storage allocation mechanism even though this choice languages such as Algol, Pascal and Aria have preferred to perform all automatic storage management by using a stack, while non-stack substantially compromised language elegance. We have also since learned that stack allocation of variables and contexts severely allocation remains the responsibility of the programmer. However, limits the expressiveness of a programming language. Indeed, many the limitations of stack allocation are semantically confining, of the advances in programming languages after Algol-60 can be because a strict last-in, first-out, (LIFO) allocation/deallocation ordering does not allow for important classes of program behavior characterized as attempts to ameliorate the restrictions of stack allocation. For example, most of the functionality of Simula-67 such as that of returning a functional argument as a result. Therefore, the programmer is forced to use complex and error-prone techniques could have been achieved in Algol-60 through the dropping of the stack allocation requirement along with the syntactic restrictions on to simulate this behavior himself, even though the abstract programming language may be capable of expressing the behavior procedure arguments and returned values. more elegantly and directly using, for example, functional arguments The stack allocation of Algol-60 provided a major advance over as results. Modem higher level languages such as Lisp, Smalltalk, Fortran's static allocation. Functions could be arbitrarily nested, and Mesa, Modula-3, ML, and Eiffel, seek to escape these LIFO recursion became possible. So long as the basic values being restrictions to gain in expressive power while retaining elegance and manipulated were numbers and individual characters, stack allocation simplicity in the language. Insofar as they succeed, they can greatly proved remarkably expressive. With the advent of dynamic strings improve engineering productivity and software quality. of characters and larger dynamic objects such as arrays, stack allocation started to break down. PL/I used pointers and explicit A cost must be paid for this flexibility through the increased use of allocation/deallocation to avoid the limits of stack allocation. heap allocation for objects in the language. Yet the vast majority of Substantial arguments in the 1970's raged about the allocation of objects obey a straight-forward last-in, first-out (LIFO) allocation 24 ACM SIGPLAN Notices, Volume 27, No. 3, March 1992 function-calling and variable-allocation contexts--"retention" address by following a forwarding pointer.1 The mechanisms for (non-stack allocation) versus "deletion" (normal stack allocation) dealing with objects which can be unexpectedly moved are well [Berry71] [Fischer72]. Non-stack-allocation has become steadily known in the context of "on-the-fly", or "incremental" compacting more important as the sophistication and complexity of programs garbage collectors [Baker78][Lieberman83]. have increased. For example, in modern "object-oriented" Once we have installed the machinery necessary to deal with objects programming style, most objects are heap-allocated rather than which can suddenly move, we can contemplate the possibility of stack-allocated. allocating everything initially on the stack. If we implement an Unfortunately, heap-allocation is substantially less efficient than "escape alarm system" to detect escaping references, we can use these stack-allocation. As a result, programmers constantly seek to utilize alarms to trap to an eviction routine which will transport evicted stack allocation whenever possible. This change requires much objects into the heap. We call the policy of stack allocation work, because the source code changes required to change from one followed by eviction traps "lazy allocation", because the system is sort of allocation to another are substantial, even when the logic of too lazy to perform the work involved in heap allocation until this the program has not changed. Most importantly, the programmer is work is forced by the object's usage.
Recommended publications
  • Solving the Funarg Problem with Static Types IFL ’21, September 01–03, 2021, Online
    Solving the Funarg Problem with Static Types Caleb Helbling Fırat Aksoy [email protected][email protected] Purdue University Istanbul University West Lafayette, Indiana, USA Istanbul, Turkey ABSTRACT downwards. The upwards funarg problem refers to the manage- The difficulty associated with storing closures in a stack-based en- ment of the stack when a function returns another function (that vironment is known as the funarg problem. The funarg problem may potentially have a non-empty closure), whereas the down- was first identified with the development of Lisp in the 1970s and wards funarg problem refers to the management of the stack when hasn’t received much attention since then. The modern solution a function is passed to another function (that may also have a non- taken by most languages is to allocate closures on the heap, or to empty closure). apply static analysis to determine when closures can be stack allo- Solving the upwards funarg problem is considered to be much cated. This is not a problem for most computing systems as there is more difficult than the downwards funarg problem. The downwards an abundance of memory. However, embedded systems often have funarg problem is easily solved by copying the closure’s lexical limited memory resources where heap allocation may cause mem- scope (captured variables) to the top of the program’s stack. For ory fragmentation. We present a simple extension to the prenex the upwards funarg problem, an issue arises with deallocation. A fragment of System F that allows closures to be stack-allocated. returning function may capture local variables, making the size of We demonstrate a concrete implementation of this system in the the closure dynamic.
    [Show full text]
  • The Pros of Cons: Programming with Pairs and Lists
    The Pros of cons: Programming with Pairs and Lists CS251 Programming Languages Spring 2016, Lyn Turbak Department of Computer Science Wellesley College Racket Values • booleans: #t, #f • numbers: – integers: 42, 0, -273 – raonals: 2/3, -251/17 – floang point (including scien3fic notaon): 98.6, -6.125, 3.141592653589793, 6.023e23 – complex: 3+2i, 17-23i, 4.5-1.4142i Note: some are exact, the rest are inexact. See docs. • strings: "cat", "CS251", "αβγ", "To be\nor not\nto be" • characters: #\a, #\A, #\5, #\space, #\tab, #\newline • anonymous func3ons: (lambda (a b) (+ a (* b c))) What about compound data? 5-2 cons Glues Two Values into a Pair A new kind of value: • pairs (a.k.a. cons cells): (cons v1 v2) e.g., In Racket, - (cons 17 42) type Command-\ to get λ char - (cons 3.14159 #t) - (cons "CS251" (λ (x) (* 2 x)) - (cons (cons 3 4.5) (cons #f #\a)) Can glue any number of values into a cons tree! 5-3 Box-and-pointer diagrams for cons trees (cons v1 v2) v1 v2 Conven3on: put “small” values (numbers, booleans, characters) inside a box, and draw a pointers to “large” values (func3ons, strings, pairs) outside a box. (cons (cons 17 (cons "cat" #\a)) (cons #t (λ (x) (* 2 x)))) 17 #t #\a (λ (x) (* 2 x)) "cat" 5-4 Evaluaon Rules for cons Big step seman3cs: e1 ↓ v1 e2 ↓ v2 (cons) (cons e1 e2) ↓ (cons v1 v2) Small-step seman3cs: (cons e1 e2) ⇒* (cons v1 e2); first evaluate e1 to v1 step-by-step ⇒* (cons v1 v2); then evaluate e2 to v2 step-by-step 5-5 cons evaluaon example (cons (cons (+ 1 2) (< 3 4)) (cons (> 5 6) (* 7 8))) ⇒ (cons (cons 3 (< 3 4))
    [Show full text]
  • The Use of UML for Software Requirements Expression and Management
    The Use of UML for Software Requirements Expression and Management Alex Murray Ken Clark Jet Propulsion Laboratory Jet Propulsion Laboratory California Institute of Technology California Institute of Technology Pasadena, CA 91109 Pasadena, CA 91109 818-354-0111 818-393-6258 [email protected] [email protected] Abstract— It is common practice to write English-language 1. INTRODUCTION ”shall” statements to embody detailed software requirements in aerospace software applications. This paper explores the This work is being performed as part of the engineering of use of the UML language as a replacement for the English the flight software for the Laser Ranging Interferometer (LRI) language for this purpose. Among the advantages offered by the of the Gravity Recovery and Climate Experiment (GRACE) Unified Modeling Language (UML) is a high degree of clarity Follow-On (F-O) mission. However, rather than use the real and precision in the expression of domain concepts as well as project’s model to illustrate our approach in this paper, we architecture and design. Can this quality of UML be exploited have developed a separate, ”toy” model for use here, because for the definition of software requirements? this makes it easier to avoid getting bogged down in project details, and instead to focus on the technical approach to While expressing logical behavior, interface characteristics, requirements expression and management that is the subject timeliness constraints, and other constraints on software using UML is commonly done and relatively straight-forward, achiev- of this paper. ing the additional aspects of the expression and management of software requirements that stakeholders expect, especially There is one exception to this choice: we will describe our traceability, is far less so.
    [Show full text]
  • Dynamic Variables
    Dynamic Variables David R. Hanson and Todd A. Proebsting Microsoft Research [email protected] [email protected] November 2000 Technical Report MSR-TR-2000-109 Abstract Most programming languages use static scope rules for associating uses of identifiers with their declarations. Static scope helps catch errors at compile time, and it can be implemented efficiently. Some popular languages—Perl, Tcl, TeX, and Postscript—use dynamic scope, because dynamic scope works well for variables that “customize” the execution environment, for example. Programmers must simulate dynamic scope to implement this kind of usage in statically scoped languages. This paper describes the design and implementation of imperative language constructs for introducing and referencing dynamically scoped variables—dynamic variables for short. The design is a minimalist one, because dynamic variables are best used sparingly, much like exceptions. The facility does, however, cater to the typical uses for dynamic scope, and it provides a cleaner mechanism for so-called thread-local variables. A particularly simple implementation suffices for languages without exception handling. For languages with exception handling, a more efficient implementation builds on existing compiler infrastructure. Exception handling can be viewed as a control construct with dynamic scope. Likewise, dynamic variables are a data construct with dynamic scope. Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 http://www.research.microsoft.com/ Dynamic Variables Introduction Nearly all modern programming languages use static (or lexical) scope rules for determining variable bindings. Static scope can be implemented very efficiently and makes programs easier to understand. Dynamic scope is usu- ally associated with “older” languages; notable examples include Lisp, SNOBOL4, and APL.
    [Show full text]
  • Java for Scientific Computing, Pros and Cons
    Journal of Universal Computer Science, vol. 4, no. 1 (1998), 11-15 submitted: 25/9/97, accepted: 1/11/97, appeared: 28/1/98 Springer Pub. Co. Java for Scienti c Computing, Pros and Cons Jurgen Wol v. Gudenb erg Institut fur Informatik, Universitat Wurzburg wol @informatik.uni-wuerzburg.de Abstract: In this article we brie y discuss the advantages and disadvantages of the language Java for scienti c computing. We concentrate on Java's typ e system, investi- gate its supp ort for hierarchical and generic programming and then discuss the features of its oating-p oint arithmetic. Having found the weak p oints of the language we pro- p ose workarounds using Java itself as long as p ossible. 1 Typ e System Java distinguishes b etween primitive and reference typ es. Whereas this distinc- tion seems to b e very natural and helpful { so the primitives which comprise all standard numerical data typ es have the usual value semantics and expression concept, and the reference semantics of the others allows to avoid p ointers at all{ it also causes some problems. For the reference typ es, i.e. arrays, classes and interfaces no op erators are available or may b e de ned and expressions can only b e built by metho d calls. Several variables may simultaneously denote the same ob ject. This is certainly strange in a numerical setting, but not to avoid, since classes have to b e used to intro duce higher data typ es. On the other hand, the simple hierarchy of classes with the ro ot Object clearly b elongs to the advantages of the language.
    [Show full text]
  • A Metaobject Protocol for Fault-Tolerant CORBA Applications
    A Metaobject Protocol for Fault-Tolerant CORBA Applications Marc-Olivier Killijian*, Jean-Charles Fabre*, Juan-Carlos Ruiz-Garcia*, Shigeru Chiba** *LAAS-CNRS, 7 Avenue du Colonel Roche **Institute of Information Science and 31077 Toulouse cedex, France Electronics, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan Abstract The corner stone of a fault-tolerant reflective The use of metalevel architectures for the architecture is the MOP. We thus propose a special implementation of fault-tolerant systems is today very purpose MOP to address the problems of general-purpose appealing. Nevertheless, all such fault-tolerant systems ones. We show that compile-time reflection is a good have used a general-purpose metaobject protocol (MOP) approach for developing a specialized runtime MOP. or are based on restricted reflective features of some The definition and the implementation of an object-oriented language. According to our past appropriate runtime metaobject protocol for implementing experience, we define in this paper a suitable metaobject fault tolerance into CORBA applications is the main protocol, called FT-MOP for building fault-tolerant contribution of the work reported in this paper. This systems. We explain how to realize a specialized runtime MOP, called FT-MOP (Fault Tolerance - MetaObject MOP using compile-time reflection. This MOP is CORBA Protocol), is sufficiently general to be used for other aims compliant: it enables the execution and the state evolution (mobility, adaptability, migration, security). FT-MOP of CORBA objects to be controlled and enables the fault provides a mean to attach dynamically fault tolerance tolerance metalevel to be developed as CORBA software. strategies to CORBA objects as CORBA metaobjects, enabling thus these strategies to be implemented as 1 .
    [Show full text]
  • On the Expressive Power of Programming Languages for Generative Design
    On the Expressive Power of Programming Languages for Generative Design The Case of Higher-Order Functions António Leitão1, Sara Proença2 1,2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 1,2{antonio.menezes.leitao|sara.proenca}@ist.utl.pt The expressive power of a language measures the breadth of ideas that can be described in that language and is strongly dependent on the constructs provided by the language. In the programming language area, one of the constructs that increases the expressive power is the concept of higher-order function (HOF). A HOF is a function that accepts functions as arguments and/or returns functions as results. HOF can drastically simplify the programming activity, reducing the development effort, and allowing for more adaptable programs. In this paper we explain the concept of HOFs and its use for Generative Design. We then compare the support for HOF in the most used programming languages in the GD field and we discuss the pedagogy of HOFs. Keywords: Generative Design, Higher-Order Functions, Programming Languages INTRODUCTION ming language is Turing-complete, meaning that Generative Design (GD) involves the use of algo- almost all programming languages have the same rithms that compute designs (McCormack 2004, Ter- computational power. In what regards their expres- dizis 2003). In order to take advantage of comput- sive power, however, they can be very different. A ers, these algorithms must be implemented in a pro- given programming language can be textual, visual, gramming language. There are two important con- or both but, in any case, it must be expressive enough cepts concerning programming languages: compu- to allow the description of a large range of algo- tational power, which measures the complexity of rithms.
    [Show full text]
  • Closure Joinpoints: Block Joinpoints Without Surprises
    Closure Joinpoints: Block Joinpoints without Surprises Eric Bodden Software Technology Group, Technische Universität Darmstadt Center for Advanced Security Research Darmstadt (CASED) [email protected] ABSTRACT 1. INTRODUCTION Block joinpoints allow programmers to explicitly mark re- In this work, we introduce Closure Joinpoints for As- gions of base code as \to be advised", thus avoiding the need pectJ [6], a mechanism that allows programmers to explicitly to extract the block into a method just for the sake of cre- mark any Java expression or sequence of statement as \to ating a joinpoint. Block joinpoints appear simple to define be advised". Closure Joinpoints are explicit joinpoints that and implement. After all, regular block statements in Java- resemble labeled, instantly called closures, i.e., anonymous like languages are constructs well-known to the programmer inner functions with access to their declaring lexical scope. and have simple control-flow and data-flow semantics. As an example, consider the code in Figure1, adopted Our major insight is, however, that by exposing a block from Hoffman's work on explicit joinpoints [24]. The pro- of code as a joinpoint, the code is no longer only called in grammer marked the statements of lines4{8, with a closure its declaring static context but also from within aspect code. to be \exhibited" as a joinpoint Transaction so that these The block effectively becomes a closure, i.e., an anonymous statements can be advised through aspects. Closure Join- function that may capture values from the enclosing lexical points are no first-class objects, i.e., they cannot be assigned scope.
    [Show full text]
  • Chapter 15 Functional Programming
    Topics Chapter 15 Numbers n Natural numbers n Haskell numbers Functional Programming Lists n List notation n Lists as a data type n List operations Chapter 15: Functional Programming 2 Numbers Natural Numbers The natural numbers are the numbers 0, 1, Haskell provides a sophisticated 2, and so on, used for counting. hierarchy of type classes for describing various kinds of numbers. Introduced by the declaration data Nat = Zero | Succ Nat Although (some) numbers are provided n The constructor Succ (short for ‘successor’) as primitives data types, it is has type Nat à Nat. theoretically possible to introduce them n Example: as an element of Nat the number 7 through suitable data type declarations. would be represented by Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero)))))) Chapter 15: Functional Programming 3 Chapter 15: Functional Programming 4 Natural Numbers Natural Numbers Every natural number is represented by a Multiplication ca be defined by unique value of Nat. (x) :: Nat à Nat à Nat m x Zero = Zero On the other hand, not every value of Nat m x Succ n = (m x n) + m represents a well-defined natural number. n Example: ^, Succ ^, Succ(Succ ^) Nat can be a member of the type class Eq Addition ca be defined by instance Eq Nat where Zero == Zero = True (+) :: Nat à Nat à Nat Zero == Succ n = False m + Zero = m Succ m == Zero = False m + Succ n = Succ(m + n) Succ m == Succ n = (m == n) Chapter 15: Functional Programming 5 Chapter 15: Functional Programming 6 1 Natural Numbers Haskell Numbers Nat can be a member of the type class Ord instance
    [Show full text]
  • Subtyping on Nested Polymorphic Session Types 3 Types [38]
    Subtyping on Nested Polymorphic Session Types Ankush Das1, Henry DeYoung1, Andreia Mordido2, and Frank Pfenning1 1 Carnegie Mellon University, USA 2 LASIGE, Faculdade de Ciˆencias, Universidade de Lisboa, Portugal Abstract. The importance of subtyping to enable a wider range of well- typed programs is undeniable. However, the interaction between subtyp- ing, recursion, and polymorphism is not completely understood yet. In this work, we explore subtyping in a system of nested, recursive, and polymorphic types with a coinductive interpretation, and we prove that this problem is undecidable. Our results will be broadly applicable, but to keep our study grounded in a concrete setting, we work with an extension of session types with explicit polymorphism, parametric type construc- tors, and nested types. We prove that subtyping is undecidable even for the fragment with only internal choices and nested unary recursive type constructors. Despite this negative result, we present a subtyping algo- rithm for our system and prove its soundness. We minimize the impact of the inescapable incompleteness by enabling the programmer to seed the algorithm with subtyping declarations (that are validated by the al- gorithm). We have implemented the proposed algorithm in Rast and it showed to be efficient in various example programs. 1 Introduction Subtyping is a standard feature in modern programming languages, whether functional, imperative, or object-oriented. The two principal approaches to un- derstanding the meaning of subtyping is via coercions or as subsets. Either way, subtyping allows more programs as well-typed, programs can be more concise, and types can express more informative properties of programs. When it comes to the interaction between advanced features of type systems, specifically recursive and polymorphic types, there are still some gaps in our arXiv:2103.15193v1 [cs.PL] 28 Mar 2021 understanding of subtyping.
    [Show full text]
  • Estacada City Council Estacada City Hall, Council Chambers 475 Se Main Street, Estacada, Oregon Monday, January 25, 2016 - 7:00 Pm
    CITY OF ESTACADA AGENDA MAYOR BRENT DODRILL COUNCILOR SEAN DRINKWINE COUNCILOR LANELLE KING COUNCILOR AARON GANT COUNCILOR PAULINA MENCHACA COUNCILOR JUSTIN GATES COUNCILOR DAN NEUJAHR ESTACADA CITY COUNCIL ESTACADA CITY HALL, COUNCIL CHAMBERS 475 SE MAIN STREET, ESTACADA, OREGON MONDAY, JANUARY 25, 2016 - 7:00 PM 1. CALL TO ORDER BY PRESIDING OFFICER (An invocation will be offered prior to call to order) . Pledge of Allegiance . Roll Call 2. CITIZEN AND COMMUNITY GROUP COMMENTS Instructions for providing testimony are located above the information table and the back of this agenda 3. CONSENT AGENDA Council members have the opportunity to move items from the Consent Agenda to Council Business. Council actions are taken in one motion on Consent Agenda Items. a. Approve January 11, 2016 Council minutes b. Approve January 16, 2016 Council Retreat minutes c. System Development Charge Annual Report 2015 Estacada Urban Renewal District Annual Report 2014-15 d. OLCC Annual Renewals 4. DEPARTMENT & COMMITTEE REPORTS a. Committee, Commission and Liaison b. City Manager Report c. Mayor Report 5. COUNCIL BUSINESS Items may be added from the Consent Agenda upon request of the Mayor or Councilor. a. SECOND CONSIDERATION – Ordinance Series of 2016 – 001 – An ordinance amending Section 5.04.020 D. of the Estacada Municipal Code regarding business and occupation licenses. b. 2016 Council Goals 6. CITIZEN AND COMMUNITY GROUP COMMENTS Instructions for providing testimony are located above the information table and the back of this agenda 7. COUNCIL REPORTS & COMMENTS 8. ADJOURNMENT OF MEETING Estacada City Council Meeting January 11, 2016 – Page | 1 ESTACADA CITY COUNCIL MEETING MINUTES ESTACADA CITY HALL, COUNCIL CHAMBERS 475 SE MAIN STREET, ESTACADA, OREGON MONDAY, JANUARY 11, 2016 - 7:00 PM CALL TO ORDER BY PRESIDING OFFICER The meeting was called to order at 7:00pm.
    [Show full text]
  • First-Class Functions and Patterns
    First-class Functions and Patterns Corky Cartwright Stephen Wong Department of Computer Science Rice University 1 Encoding First-class Functions in Java • Java methods are not data values; they cannot be used as values. • But java classes include methods so we can implicitly pass methods (functions) by passing class instances containing the desired method code. • Moreover, Java includes a mechanism that closes over the free variables in the method definition! • Hence, first-class functions (closures) are available implicitly, but the syntax is wordy. • Example: Scheme map 2 Interfaces for Representing Functions For accurate typing, we need different interfaces for different arities. With generics, we can define parameterized interfaces for each arity. In the absence of generics, we will have to define separate interfaces for each desired typing. map example: /** The type of unary functions in Object -> Object. */ interface Lambda { Object apply(Object arg); } abstract class ObjectList { ObjectList cons(Object n) { return new ConsObjectList(n, this); } abstract ObjectList map(Lambda f); } ... 3 Representing Specific Functions • For each function that we want to use a value, we must define a class, preferably a singleton. Since the class has no fields, all instances are effectively identical. • Defining a class seems unduly heavyweight, but it works in principle. • In OO parlance, an instance of such a class is called a strategy. • Java provides a lightweight notation for singleton classes called anonymous classes. Moreover these classes can refer to fields and final method variables that are in scope. In DrJava language levels, all variables are final. final fields and variables cannot be rebound to new values after they are initially defined (immutable).
    [Show full text]