Closure Joinpoints: Block Joinpoints Without Surprises
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 13 Encapsulation Chapter Overview
Chapter 13 Encapsulation Chapter Overview • How do I package up implementation details so that a user doesn't have to worry about them? • How do I make my code easier to read, understand, modify, and maintain? Good design separates use from implementation. Java provides many mechanisms for accomplishing this. In this chapter, we review a variety of mechanisms that allow this sort of separation. Procedural abstraction is the idea that each method should have a coherent conceptual description that separates its implementation from its users. You can encapsulate behavior in methods that are internal to an object or methods that are widely usable. Methods should not be too complex or too long. Procedural abstraction makes your code easier to read, understand, modify, and reuse. Packages allow a large program to be subdivided into groups of related classes and instances. Packages separate the names of classes, so that more than one class in a program may have a given name as long as they occur in different packages. In addition to their role in naming, packages have a role as visibility protectors. Packages provide visibility levels intermediate between public and private. Packages can also be combined with inheritance or with interfaces to provide additional encapsulation and separation of use from implementation. © 2002 Lynn Andrea Stein. Reproduced with permission from Interactive Programming in Java. This chapter is excerpted from a draft of Interactive Programming In Java, a forthcoming textbook from Morgan Kaufmann Publishers. It is an element of the course materials developed as part of Lynn Andrea Stein's Rethinking CS101 Project at Franklin W. -
Solving the Funarg Problem with Static Types IFL ’21, September 01–03, 2021, Online
Solving the Funarg Problem with Static Types Caleb Helbling Fırat Aksoy [email protected] fi[email protected] Purdue University Istanbul University West Lafayette, Indiana, USA Istanbul, Turkey ABSTRACT downwards. The upwards funarg problem refers to the manage- The difficulty associated with storing closures in a stack-based en- ment of the stack when a function returns another function (that vironment is known as the funarg problem. The funarg problem may potentially have a non-empty closure), whereas the down- was first identified with the development of Lisp in the 1970s and wards funarg problem refers to the management of the stack when hasn’t received much attention since then. The modern solution a function is passed to another function (that may also have a non- taken by most languages is to allocate closures on the heap, or to empty closure). apply static analysis to determine when closures can be stack allo- Solving the upwards funarg problem is considered to be much cated. This is not a problem for most computing systems as there is more difficult than the downwards funarg problem. The downwards an abundance of memory. However, embedded systems often have funarg problem is easily solved by copying the closure’s lexical limited memory resources where heap allocation may cause mem- scope (captured variables) to the top of the program’s stack. For ory fragmentation. We present a simple extension to the prenex the upwards funarg problem, an issue arises with deallocation. A fragment of System F that allows closures to be stack-allocated. returning function may capture local variables, making the size of We demonstrate a concrete implementation of this system in the the closure dynamic. -
Dynamic Variables
Dynamic Variables David R. Hanson and Todd A. Proebsting Microsoft Research [email protected] [email protected] November 2000 Technical Report MSR-TR-2000-109 Abstract Most programming languages use static scope rules for associating uses of identifiers with their declarations. Static scope helps catch errors at compile time, and it can be implemented efficiently. Some popular languages—Perl, Tcl, TeX, and Postscript—use dynamic scope, because dynamic scope works well for variables that “customize” the execution environment, for example. Programmers must simulate dynamic scope to implement this kind of usage in statically scoped languages. This paper describes the design and implementation of imperative language constructs for introducing and referencing dynamically scoped variables—dynamic variables for short. The design is a minimalist one, because dynamic variables are best used sparingly, much like exceptions. The facility does, however, cater to the typical uses for dynamic scope, and it provides a cleaner mechanism for so-called thread-local variables. A particularly simple implementation suffices for languages without exception handling. For languages with exception handling, a more efficient implementation builds on existing compiler infrastructure. Exception handling can be viewed as a control construct with dynamic scope. Likewise, dynamic variables are a data construct with dynamic scope. Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 http://www.research.microsoft.com/ Dynamic Variables Introduction Nearly all modern programming languages use static (or lexical) scope rules for determining variable bindings. Static scope can be implemented very efficiently and makes programs easier to understand. Dynamic scope is usu- ally associated with “older” languages; notable examples include Lisp, SNOBOL4, and APL. -
Declare Private Function Python
Declare Private Function Python Chloritic and barricaded Garrott never drabblings his purity! Is Yaakov always excretive and podgiest invalidationswhen pierces or some platinizes plethora obediently. very overfreely and mercifully? Unjustifiable Corwin usually plans some What is declared as a syntax is generally works, because class has expressed a static methods of a different types, compiled programming blog? Curated by eminent Real Python team. They declared private functions or python performs name, functionality to declare the declaration of their meaning of the module containing these knights the scope. These function access private using ruby it clear what is python offer ways depending on these parameters after me i do not declare attributes. This function declaration of python is declared inside a keyword __________ is used as a strictly service provider on the functionality of the child class hierarchy. When using a descriptor the bunch is actually declared at the class level. Private methods are those methods that reason neither be accessed outside the class nor by native base class. Migrate and private functions in a private, declaring the declaration followed by. What are Python Arrays and dent to wage them? Run your code style of requests to adjust the private resources allocated memory allocation underlies python code that are all can call private in traditional oop. In python spyder ide support any time the same object and being clever and on the variable arguments to use it, we have to. They declared private functions, declaring or the declaration followed too, descending down the objects? Instance of the defined by instantiating class definition of complexity of universities for overloading methods names and declare private function python. -
On the Expressive Power of Programming Languages for Generative Design
On the Expressive Power of Programming Languages for Generative Design The Case of Higher-Order Functions António Leitão1, Sara Proença2 1,2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa 1,2{antonio.menezes.leitao|sara.proenca}@ist.utl.pt The expressive power of a language measures the breadth of ideas that can be described in that language and is strongly dependent on the constructs provided by the language. In the programming language area, one of the constructs that increases the expressive power is the concept of higher-order function (HOF). A HOF is a function that accepts functions as arguments and/or returns functions as results. HOF can drastically simplify the programming activity, reducing the development effort, and allowing for more adaptable programs. In this paper we explain the concept of HOFs and its use for Generative Design. We then compare the support for HOF in the most used programming languages in the GD field and we discuss the pedagogy of HOFs. Keywords: Generative Design, Higher-Order Functions, Programming Languages INTRODUCTION ming language is Turing-complete, meaning that Generative Design (GD) involves the use of algo- almost all programming languages have the same rithms that compute designs (McCormack 2004, Ter- computational power. In what regards their expres- dizis 2003). In order to take advantage of comput- sive power, however, they can be very different. A ers, these algorithms must be implemented in a pro- given programming language can be textual, visual, gramming language. There are two important con- or both but, in any case, it must be expressive enough cepts concerning programming languages: compu- to allow the description of a large range of algo- tational power, which measures the complexity of rithms. -
Nested Class Modularity in Squeak/Smalltalk
Springer, Nested Class Modularity in Squeak/Smalltalk Nested Class Modularity in Squeak/Smalltalk Modularität mit geschachtelten Klassen in Squeak/Smalltalk by Matthias Springer A thesis submitted to the Hasso Plattner Institute at the University of Potsdam, Germany in partial fulfillment of the requirements for the degree of Master of Science in ITSystems Engineering Supervisor Prof. Dr. Robert Hirschfeld Software Architecture Group Hasso Plattner Institute University of Potsdam, Germany August 17, 2015 Abstract We present the concept, the implementation, and an evaluation of Matriona, a module system for and written in Squeak/Smalltalk. Matriona is inspired by Newspeak and based on class nesting: classes are members of other classes, similarly to class instance variables. Top-level classes (modules) are globals and nested classes can be accessed using message sends to the corresponding enclosing class. Class nesting effec- tively establishes a global and hierarchical namespace, and allows for modular decomposition, resulting in better understandability, if applied properly. Classes can be parameterized, allowing for external configuration of classes, a form of dependency management. Furthermore, parameterized classes go hand in hand with mixin modularity. Mixins are a form of inter-class code reuse and based on single inheritance. We show how Matriona can be used to solve the problem of duplicate classes in different modules, to provide a versioning and dependency management mech- anism, and to improve understandability through hierarchical decomposition. v Zusammenfassung Diese Arbeit beschreibt das Konzept, die Implementierung und die Evaluierung von Matriona, einem Modulsystem für und entwickelt in Squeak/Smalltalk. Ma- triona ist an Newspeak angelehnt und basiert auf geschachtelten Klassen: Klassen, die, wie zum Beispiel auch klassenseitige Instanzvariablen, zu anderen Klassen gehören. -
Declaring Variables in Class Python
Declaring Variables In Class Python Corky whinings her floorwalkers backstage, desiccated and ecaudate. Unchary Cy leverages falsely and creakily, she taunt her spermatocele vanned soulfully. Sigfrid remains plaintive: she rusticated her exclusivists jutted too respectfully? Global name an error and assign a derived class itself is that points describing the same way as a variable in python variables in class python. If to declare a class named Device and initialize a variable dev to plumbing new. The grab to porter this are nonlocal definitions, should be pleasure in the global namespace. This class contains a single constructor. It is faster and more add to attend the real Python course outside a classroom. Make sure your community account class, this allows multiple pieces of an interface, and how to take in class but the collection, known as spam! PHP because when are less structure than the traditional languages with your fancy features. Each tutorial at Real Python is created by a soft of developers so leaving it meets our incredible quality standards. Object Oriented Programming in Python Stack Abuse. The special function are not create an input data type object oriented programming languages often think of m_value: if we are. Python class Objects and classes Python Tutorial Pythonspot. Objects can be a double underscores when you define what are in order for. Understanding Class and Instance Variables in Python 3. For example also it in which makes up! Instances of a Class Python Like root Mean It. This stage notice provides an overturn of our commitment to privacy and describes how we color, and undo some applications that might achieve a real choice. -
Inner Classes Specification
Inner Classes Specification The newest release of the Java language allows classes to be defined in any scope. This paper specifies how the language has been extended to permit this, and shows how Java programmers can benefit from the change. For more up-to-date and detailed information about the Java language, platform, and development environment, refer to the JavaSoft web site http://java.sun.com/products/JDK/1.1/. Java is developed by JavaSoft, an operating company of Sun Microsystems, Inc. 1 Contents • What are top-level classes and inner classes?. 3 – Example: A simple adapter class . 4 – Example: A local class . 6 – Anonymous classes . 7 • How do inner classes work? . 8 – References to local variables. 9 • Why does Java need inner classes? . 11 – Why anonymous classes? . 12 – What about dynamic typing and computed selectors (“perform”)? . 12 • How do inner classes affect the idea of this in Java code? . 13 – Enclosing classes and instantiation . 14 • Do inner classes affect the correct synchronization of Java code?. 15 • Can a nested class be declared final, private, protected, or static?. 16 – Members that can be marked static . 16 • How do inner classes affect the organization of the Java Virtual Machine? . 17 – Class name transformations . 17 – Names of generated variables and methods . 18 – Security implications . 18 • How does the Java Language Specification change for inner classes? . 19 • Other changes in the Java 1.1 language. 21 – Instance initializers . 21 – Anonymous array expressions . 21 – Class literals . 22 – Blank finals and final local variables. 23 • What are the new binary compatibility requirements for Java 1.1 classes? . -
CONS Should Not CONS Its Arguments, Or, a Lazy Alloc Is a Smart Alloc Henry G
CONS Should not CONS its Arguments, or, a Lazy Alloc is a Smart Alloc Henry G. Baker Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436, (818) 501-4956 (818) 986-1360 (FAX) November, 1988; revised April and December, 1990, November, 1991. This work was supported in part by the U.S. Department of Energy Contract No. DE-AC03-88ER80663 Abstract semantics, and could profitably utilize stack allocation. One would Lazy allocation is a model for allocating objects on the execution therefore like to provide stack allocation for these objects, while stack of a high-level language which does not create dangling reserving the more expensive heap allocation for those objects that references. Our model provides safe transportation into the heap for require it. In other words, one would like an implementation which objects that may survive the deallocation of the surrounding stack retains the efficiency of stack allocation for most objects, and frame. Space for objects that do not survive the deallocation of the therefore does not saddle every program with the cost for the surrounding stack frame is reclaimed without additional effort when increased flexibility--whether the program uses that flexibility or the stack is popped. Lazy allocation thus performs a first-level not. garbage collection, and if the language supports garbage collection The problem in providing such an implementation is in determining of the heap, then our model can reduce the amortized cost of which objects obey LIFO allocation semantics and which do not. allocation in such a heap by filtering out the short-lived objects that Much research has been done on determining these objects at can be more efficiently managed in LIFO order. -
Automatically Achieving Elasticity in the Implementation of Programming Languages Michael Lee Horowitz
Automatically Achieving Elasticity in the Implementation of Programming Languages Michael Lee Horowitz January 1988 CMU-CS-88- I04 Submitted to CarnegieMellon Universityin partial fulf'dlment of the requirements for the degree of Doctor of Philosophy in Computer Science. Department of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Copyright © 1988 Michael Lee Horowitz. All fights reserved. This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976 under contract F33615-87-C-1499 and monitored by the: Avionics Laboratory Air Force Wright Aeronautical Laboratories Aeronautical Systems Division (AFSC) Wright-Patterson AFB, OHIO 45433-6543 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government. Abstract Several developments in programming language design and software engineering lead to a re- examination of the role of binding times in programming language implementation. We can alleviate problems associated with these developments by using event-driven processing to determine translation binding times. Our ultimate goal is to clarify the effects of different designs on binding times and to reduce binding time concerns in the language design process. Determining the binding time of a translation action involves two concerns: the ordering of the action's execution relative to other actions and the translation phase in which the execution occurs (e.g. compile- time, link-time, or run-time). Some issues that affect these concerns include: how to handle forward references, language designs that require dynamic interpretation, the role of link-time in languages that allow separate compilation, and how to achieve elasticity. -
Efficient Implementation of Run-Time Generic Types for Java
Efficient Implementation of Run-time Generic Types for Java Eric Allen, Robert Cartwright, Brian Stoler Rice University 6100 Main St. Houston TX 77005 {eallen, cork, bstoler}@cs.rice.edu Abstract: We describe an efficient compiler and run-time system for NextGen, a compatible extension of the Java programming language supporting run-time generic types designed by Cartwright and Steele. The resulting system is comparable in performance with both standard Java and the GJ extension of Java, which does not support run-time generic types. Our implementation of NextGen consists of a compiler extending the GJ compiler and a special class loader that constructs type instantiation classes on demand. The compiler relies on the implementation strategy proposed by Cartwright and Steele with one major exception: to support polymorphic recursion in the definition of generic classes, the compiler generates templates for instantiation classes which are constructed on demand by the class loader. We include an extensive set of benchmarks, specifically developed to stress the use of generic types. The benchmarks show that the additional code required to support run-time generic types has little overhead compared with ordinary Java and GJ. Key words: JAVA GJ NEXTGEN GENERIC TYPES TYPE DEPENDENT OPERATION JVM EXTENSIONS COMPATIBILITY SPECIFICATION DESIGN IMPLEMENTATION CLASS LOADER REFLECTION ERASURE PERFORMANCE BENCHMARKS RUN-TIME OBJECT-ORIENTED PROGRAMMING PARAMETRIC POLYMORPHISM POLYMORPHIC RECURSION POLYJ C#. 1 2 Eric Allen, Robert Cartwright, Brian Stoler 1. INTRODUCTION One of the most common criticisms of the Java programming language is the lack of support for generic types. Generic types enable a programmer to parameterize classes and methods with respect to type, identifying important abstractions that otherwise cannot be expressed in the language. -
Principal Typings for Interactive Ruby Programming
Principal Typings for Interactive Ruby Programming A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Computer Science University of Saskatchewan Saskatoon, Saskatchewan, Canada by Andriy Hnativ Copyright Andriy Hnativ, December 2009. All rights reserved. Permission To Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Computer Science 176 Thorvaldson Building 110 Science Place University of Saskatchewan Saskatoon, Saskatchewan, Canada S7N 5C9 i Abstract A novel and promising method of software development is the interactive style of development, where code is written and incrementally tested simultaneously.