Intergeneric Make up Listing - September 1, 2017

Total Page:16

File Type:pdf, Size:1020Kb

Intergeneric Make up Listing - September 1, 2017 Intergeneric Make Up Listing - September 1, 2017 Name: Abbr. Intergeneric Make-Up Aberconwayara Acw. Broughtonia x Caularthron x Guarianthe x Laelia Acampostylis Acy. Acampe x Rhynchostylis Acapetalum Acpt. Anacallis x Zygopetalum Aceratoglossum Actg. Aceras x Himantoglossum Acinbreea Acba. Acineta x Embreea Aciopea Aip. Acineta x Stanhopea Adachilium Adh. Ada x Cyrtochilum Adacidiglossum Adg. Brassia x Oncidiium x Rossioglossum Adacidium Adcm. Ada x Oncidium Adamara Adm. Brassavola x Cattleya x Epidendrum x Laelia Adapasia Adps. Ada x Aspasia Adenocalpa Adp. Adenoncos x Pomatoalpa Adioda Ado. Ada x Cochlioda Adonclinoda Anl. Ada x Cochiloda x Oncidium Adoncostele Ans. Ada x Oncidium x Rhynchostele Aerachnochilus Aac. Aerides x Arachnis x Staurochilis Aerangaeris Arg. Aerangis x Rangeris Aeranganthes Argt. Aerangis x Aeranthes Aeridachnanthe Aed. Aerides x Arachnis x Papilionanthe Aeridachnis Aerdns. Aerides x Arachnis Aeridochilus Aerchs. Aerides x Sarcochilus Aeridofinetia Aerf. Aerides x Neofinetia Aeridoglossum Aergm. Aerides x Ascoglossum Aeridoglottis Aegts. Aerides x Trichoglottis Aeridopsis Aerps. Aerides x Phalaenopsis Aeridovanda Aerdv. Aerides x Vanda Aeridovanisia Aervsa. Aerides x Luisia x Vanda Aeridsonia Ards. Aerides x Christensonia Aeristomanda Atom. Aerides x Cleisostoma x Vanda Aeroeonia Aoe. Aerangis x Oeonia Agananthes Agths. Aganisia x Cochleanthes Aganella All. Aganisia x Warczewiczella Aganopeste Agt. Aganisia x Lycaste x Zygopetalum Agasepalum Agsp. Aganisia x Zygosepalum Aitkenara Aitk. Otostylis x Zygopetalum x Zygosepalum Alantuckerara Atc. Neogardneria x Promenaea x Zygopetalum Aliceara Alcra. Brassia x Miltonia x Oncidium Allenara Alna. Cattleya x Diacrium x Epidendrum x Laelia Amenopsis Amn. Amesiella x Phalaenopsis Amesangis Am. Aerangis x Amesiella Amesilabium Aml. Amesiella x Tuberolabium Anabaranthe Abt. Anacheilium x Barkeria x Guarianthe Anabarlia Anb. Anacamptis x Barlia Anacamptiplatanthera An. Anacamptis x Platanthera Anacamptorchis Ana. Anacamptis x Orchis Anagymnorhiza Agz. Anacamptis x Dactylorhiza x Gymnadenia Anamantoglossum Amtg. Anacamptis x Himantoglossum Anaphorkis Apk. Ansellia x Graphorkis Ancistrolanthe Anh. Ancistrochilus x Calanthe Ancistrophaius Astp. Ancistrochilus x Phaius Brassavola x Cattleya x Caularthron x Guarianthe x Laelia x Andersonara Ande. Rhyncholaelia Andreara Andr. Cattleya x Leptotes x Rhyncholaelia Andreettara Are. Miltonia x Oncidium x Zelenkoa Andrewara Andw. Arachnis x Renanthera x Trichoglottis x Vanda Andrewckara Adk. Arachnis x Renanthera x Staurochilis x Vanda Angellea Agl. Angraecum x Jumellea Angida Agd. Anguloa x Ida Angraecopsis Ago. Angraecum x Phalaenopsis Angraecostylis Angsts. Angraecum x Rhynchostylis Angraecyrtanthes Ancyth. Aeranthes x Angraecum x Cyrtorchis Angraeorchis Angchs. Angraecum x Cyrtorchis Angrangis Angrs. Aerangis x Angraecum Angranthellea Angtla. Aeranthes x Angraecum x Jumellea Angranthes Angth. Aeranthes x Angraecum Angreoniella Angnla. Angraecum x Oeoniella Angularia Alr. Anguloa x Maxillaria Angulocaste Angcst. Anguloa x Lycaste Anoectodes Atd. Anoectochilus x Macodes Ansecymphyllum Ayp. Ansellia x Cymbidium x Grammatophyllum Anselangis Asg. Ansellia x Grammangis Ansidium Asdm. Ansellia x Cymbidium Anteriocamptis Arpt. Anacamptis x Anteriorchis Anterioherorchis Ahc. Anteriorchis x Herorchis Anteriomeulenia Atml. Anteriochis x Vermeulenia Anterioserapias Atsp. Anteriorchis x Serapias Appletonara Aea. Cattleya x Encyclia x Laelia x Rhyncholaelia Aracampe Arcp. Acampe x Arachnis Arachnedenia Ara. Arachnis x Seidenfadenia Arachnocentron Act. Arachnis x Cleisocentron Arachnochilus Arnc. Arachnis x Staurochilis Arachnoglossum Arngm. Arachnis x Ascoglossum Arachnoglottis Arngl. Arachnis x Trichoglottis Arachnopsis Arnps. Arachnis x Phalaenopsis Arachnostylis Arnst. Arachnis x Rhynchostylis Arachnostynopsis Asy. Arachnis x Phalaenopsis x Rhynchostylis Aranda Aranda Arachnis x Vanda Aranthera Arnth. Arachnis x Renanthera Arguellesara Agu. Aerides x Papilionanthe x Rhynchostylis x Vanda Arizara Ariz. Cattleya x Domingoa x Epidendrum Armanda Ard. Armodorum x Vanda Armocentrum Art. Armodorum x Cleisocentron Armochilus Arl. Armodorum x Staurochilus Armodachnis Arm. Arachnis x Armodorum Arthurara Aru. Brassia x Miltonia x Oncidium x Rhynchostele Aschersonra Ach. Broughtonia x Cattleya x Myrmecophilia x Prostechea Ascofadanda As. Ascocentrum x Seidenfadenia Ascoparanthera Apn. Ascoglossum x Paraphalaenopsis x Renanthera Ascorenanthochilus Asnc. Ascoglossum x Renanthera x Staurochilus Aspacidopsis Acdp. Aspasia x Miltoniopsis x Oncidium Aspacidostele Acid. Aspasia x Oncidium x Rhynchostele Aspaleomnia Alm. Aspasia x Leochilus x Tolumnia Aspasiopsis Apo. Aspasia x Miltoniopsis Aspasium Aspsm. Aspasia x Oncidium Aspezia Apz. Aspasia x Rodriguezia Aspioda Asid. Aspasia x Cochlioda Asplundara Aspl. Brassia x Gomesa x Miltonia x Miltoniopsis x Oncidium Aspodonia Aspd. Aspasia x Miltonia x Oncidium Aspoglossum Aspgm. Aspasia x Odontoglossum Aspomesa Apm. Aspasia x Gomesa Aspopsis Aso. Aspasia x Psychopsis Aspostele Asl. Aspasia x Rhynchostele Australia Ast. Australorchis x Dockrillia Ayubara Ayb. Aerides x Arachnis x Ascoglossum Backhouseara Bka. Cattleya x Epidendrum x Guarianthe x Laelia x Rhyncholaelia Balaguerara Blga. Broughtonia x Epidendrum x Laeliopsis x Tetramicra Baldwinara Bdwna. Aspasia x Cochlioda x Odontoglossum x Oncidium Balenkezia Blk. Gomesa x Rodriguezia x Zelenkoa Ballantineara Bln. Broughtonia x Cattleya x Encyclia x Guarianthe Banfieldara Bnfd. Ada x Brassia x Odontoglossum Baptichilum Btc. Gomesa x Cyrtochilum Bapticidium Btcm. Gomsea x Oncidium Baptiguezia Bpt. Gomesa x Rodriguezia Baptikoa Btk. Gomesa x Zelenkoa Baptioda Bpd. Gomesa x Cochlioda Baptirettia Btta. Gomesa x Comparettia Baptistoglossum Bpgm. Gomsea x Odontoglossum Baravolia Bvl. Barkeria x Brassavola x Encyclia Barcatanthe Bkt. Barkeria x Cattleya x Guarianthe Barclia Bac. Barkeria x Encyclia Bardendrum Bard. Barkeria x Epidendrum Barkeranthe Bkn. Barkeria x Guarianthe Barkerara Bak. Brassia x Miltonia x Odontoglossum x Oncidium Barkleyadendrum Bkd. Barkeria x Cattleya x Epidendrum Barkorima Bkm. Artorima x Barkeria Barlorchis Bos. Barlia x Orchis Barosaara Bbra. Cochlioda x Gomsea x Odontoglossum x Onidium Bateostylis Btst. Batemannia x Otostylis Baumannara Bmnra. Comparettia x Oncidium Bennett-Poeara Bpr. Broughtonia x Cattleya x Laelia x Prosthechea Bergmanara Brg. Brassavola x Cattleya x Encyclia x Laelia Aganisia x Batemannia x Otostylis x Promenaea x Zygopetalum x Berlinerara Brln. Zygosepalum Bernardara Bern. Cattleya x Encyclia x Epidendrum x Laelia Bernsteinia Bns. Benzingia x Kefersteinia Bettsara Bet. Broughtonia x Cattleya x Encyclia x Laelia x Rhyncholaelia Bifranisia Bfsa. Aganisia x Bifrenaria Bifrenidium Bifdm. Bifrenaria x Cymbidium Bifreniella Bifla. Bifrenaria x Rudolfiella Bifrinlaria Bfa. Bifrenaria x Maxillaria Biltonara Bilt. Ada x Cochlioda x Miltonia x Odontoglossum Binotioda Bid. Binotia x Cochlioda Blackara Blkr. Aspasia x Cochlioda xMiltonia x Odontoglossum Bleitzara Btz. Galeottia x Pabstia x Zygosepalum Bleteleorchis Blet. Bletilla x Eleorchis Bletiaglottis Blgts. Bletia x Spathoglottis Bletundina Bt. Arunda x Bletilla Broughtonia x Cattleya x Cattleyopsis x Caularthron x Epidendrum Bleuara Blu. x Guarianthe x Rhyncholaelia x Sophronitis Blietzara Btz. Galeottia x Pabstia x Zysosepalum Bloomara Blma. Broughtonia x Laeliopsis x Tetramicra Blumeara Blr. Gomesa x Leochilus x Rhynchostele x Rodriguezia Bohnhofara Boh. Cattleya x Encyclia x Epidendrum x Prosthechea Bohnhoffara Bnf. Oncidium x Otoglossum x Rhynchostele Bolbicymbidium Bby. Bolbidium x Cymbidium Bolleanthes Blth. Pescatoria x Cochleanthes Bolleoscaphe Bop. Pescatoria x Chondroscaphe Bollopetalum Blptm. Pescatoria x Zygopetalum Bonplandara Bnp. Cuitlauzina x Miltonia x Oncidium Bootara Boo. Brassavola x Cattleya x Guarianthe x Prosthechea Bradeara Brade. Comparettia x Gomesa x Rodriguezia Bradshawara Brd. Oncidium x Rhynchostele x Zelenkoa Bramesa Bms. Brassia x Gomesa Bramiltumnia Bmt. Brassia x Miltonia x Tolumnia Brapacidium Bpc. Aspasia x Brassia x Oncidium Braparmesa Bme. Brassia x Comparettia x Gomesa Brapasia Brap. Aspasia x Brassia Brapilia Bil. Brassia x Trichopilia Brasadastele Btd. Ada x Brassia x Rhynchostele Brascidostele Bcd. Brassia x Oncidium x Rhynchostele Brasophrolia Bsl. Brassovola x Encyclia x Sophronitis Brassacathron Bcn. Brassavola x Cattleya x Caularthron Brassada Brsa. Ada x Brassia Brassanthe Bsn. Brassavola x Guarianthe Brassidiocentrum Bssd. Brassia x Oncidium x Trichocentrum Brassidium Brsdm. Brassia x Oncidium Brassidomesa Bdm. Brassia x Gomesa x Oncidium Brassioda Broda. Brassia x Cochlioda Brassocatanthe Bct. Brassavola x Cattleya x Guarianthe Brassocattleya Bc. Brassavola x Cattleya Brassochilum Bss. Brassia x Cyrtochilum Brassochilus Brchs. Brassia x Leochilus Brassoepidendrum Bepi. Brassavola x Epidendrum Brassoepilaelia Bpl. Brassavola x Epidendrum x Laelia Brassokeria Brsk. Barkeria x Brassavola Brassolaelia Bl. Brassavola x Laelia Brassolaeliocattleya Blc. Brassavola x Cattleya x Laelia Brassolaeliophila Blpr. Brassavola x Laelia x Myrmecophila Brassomicra Bmc. Brassavola x Tetramicra Brassoncidopsis Bcp. Brassia x Miltoniopsis x Oncidium Brassopsis Brp. Brassia x Miltoniopsis Brassostele Bst. Brassia x Rhynchostele Brassotonia Bstna. Brassavola x Broughtonia Bratonia Brat. Brassia x Miltonia Brianara Brn. Galeottia x Pabstia x Promenaea x Zygopetalum Aspasia x Brassia x Cochlioda x Miltonia x Odontoglossum x Brilliandeara
Recommended publications
  • Clonal Propagation of Phalaenopsis a Dissertation
    CLONAL PROPAGATION OF PHALAENOPSIS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE MAY 1974 By Oradee Intuwong DISSERTATION COMMITTEE: Yoneo Sagawa, Chairman Haruyuki Kamemoto Charles H. Lamoureux Henry Y. Nakasone John T. Kunisaki Marion 0. Mapes We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE CfaU6 Chairman 01j- <XAs<^<rv^ & ■ . ACKNOWLEDGEMENT The author expresses deep appreciation to the East-West Center, Harold L. Lyon Arboretum, Hawaii Agricultural Experiment Station, and Asia Foundation for their financial assistance to pursue graduate work at the University of Hawaii, and to Kodama Nursery for donation of some plant materials. ABSTRACT Phalaenopsis was clonally propagated by use of in vivo and _in vitro methods. In vivo, plantlets formed naturally on the node and tip of inflorescence, or root. Application of N-6-benzyl adenine to exposed buds on the inflorescence spike to induce plantlet formation was not very successful. Rapid clonal propagation was successfully accomplished by use of in vitro culture techniques. Explants from the nodal buds of inflorescence were the most suitable material for culture, although apical and axillary buds from the stem could also be used. When basal nodes from inflorescences after flowering or young inflorescences were cultured in basal media (BM = Vacin and Went 4- 15% coconut water), one to four plantlets rather than protocorm-like bodies (plbs) were obtained from a single node.
    [Show full text]
  • An Introduction to the Epiphytic Orchids of East Africa
    Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge.
    [Show full text]
  • Tools to Develop Genetic Model Plants in the Orchidaceae Family
    ogy iol : Op r B e a n l A u c c c e l e Tsai and Sawa, Mol Biol 2018, 7:3 o s s M Molecular Biology: Open Access DOI: 10.4172/2168-9547.1000217 ISSN: 2168-9547 Short communication Open Access Tools to Develop Genetic Model Plants in the Orchidaceae Family Allen Yi-Lun Tsai and Shinichiro Sawa* Graduate School of Science & Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto , Japan promote fungal growth contained within a plastic box [15]. Interestingly, Introduction G. pubilabiata was not only viable in the ACS, but was able to set seeds up to three times a year, compare to in the natural habitat where it may take at The Orchidaceae family is estimated to contain about 28,000 species least one year to set seed [15]. These results suggest that orchid generation and over 100,000 hybrids, making it one of the largest taxonomic time can potentially be shortened under artificial conditions, such that the groups among flowering plants [1]. The variations in flower colours, timeframes of genetic analyses become feasible. floral organ morphology and scents make orchids highly sought-after in ornamental horticulture. In addition, orchids are found in nearly In summary, advancements in the Orchidaceae family research all regions of the world with diverse adaptations, making them an highlight the orchids’ potential to be used as a genetic tool for basic invaluable resource to study plant evolution and speciation. research. One direction is to utilize orchid transposon as a mutation mapping tool. Phenotypic instability is a significant problem in the Despite orchids’ great economic values and potential in basic orchid breeding industry.
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
    LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans.
    [Show full text]
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • The Intergeneric Crossing of Phalaenopsis Sp. and Vanda Tricolor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sebelas Maret Institutional Repository Journal of Biotechnology and Biodiversity, March 2010; 1(1): 32 -36 ISSN: 2087-0183 RESEARCH The intergeneric crossing of Phalaenopsis sp. and Vanda tricolor Sri Hartatia* aDepartment of Agronomy, Faculty of Agriculture, Sebelas Maret University, Jl. Ir. Sutami no 36A, Surakarta 57126, Indonesia Received : 5 August 2009 Accepted: 27 August 2009 Abstract To study the intergeneric crossing between orchids of Phalaenopsis sp. and Vanda tricolor, three species of Phalaenopsis sp. (Phalaenopsis Joane Kileup June, Phalaenopsis Pinlong Cinderella, and (Phal. Fortune Buddha x Phal. Princess Kaiulani) were crossed reciprocally with Vanda tricolor in time-different value (within the first, second and third week after full opened flower). The crossing of Phalaenopsis sp. and Vanda tricolor was compatible, and the use of Phalaenopsis sp. as male parent had better probability in producing fruits rather than the opposite. The crossing which was done at the first and the second weeks after blooming produced more fruit than the crossing at the third week after blooming, even though it did not affect the success of crossing, time of fruit formation, and duration of fruit hanging. Key words: Intergeneric Crossing, Orchids, Phalaenopsis sp., Vanda tricolor INTRODUCTION One strategy to make a new-hybrid compatible to Doritis pulcherrima var. cultivars of orchids is by crossing between the Champornensis (Hartati, unpublished results). orchid-parents having different characters. To assess the effect of time of crossing (week Orchid hobbyist usually prever to collect after blooming) in order to make new hybrid hybrid resulted from crossing orchids, orchids with more attractive flower characters because the hybrided orchids have more to the fruit formation in, Phalaenopsis sp.
    [Show full text]
  • Estudio De Factibilidad De Exportación De Orquídeas Ecuatorianas Utilizando La Estrategia B2c”
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS ECONÓMICAS MAESTRÍA EN NEGOCIOS INTERNACIONALES CON MENCION EN COMERCIO EXTERIOR TESIS PRESENTADA PARA OPTAR EL GRADO DE MAGÍSTER EN NEGOCIOS INTERNACIONALES CON MENCIÓN EN COMERCIO EXTERIOR “ESTUDIO DE FACTIBILIDAD DE EXPORTACIÓN DE ORQUÍDEAS ECUATORIANAS UTILIZANDO LA ESTRATEGIA B2C” ELABORADOR POR: TANIA PALACIOS SARMIENTO TUTOR DE TESIS: ING. MARIO VASQUEZ J. GUAYAQUIL – ECUADOR DICIEMBRE - 2015 1 DERECHOS DE AUTORÍA POR MEDIO DE LA PRESENTE CERTIFICO QUE LOS CONTENIDOS DESARROLLADOS EN ESTA TESIS SON DE ABSOLUTA PROPIEDAD Y RESPONSABILIDAD DE TANIA PALACIOS S. CON C.C. No. 0917542672, CUYO TEMA ES: “ESTUDIO DE FACTIBILIDAD DE EXPORTACIÓN DE ORQUÍDEAS ECUATORIANAS UTILIZANDO LA ESTRATEGIA B2C” TANIA PALACIOS S. C.C. No. 0917542672 GUAYAQUIL, DICIEMBRE DE 2015. 2 CERTIFICACIÓN DEL TUTOR ING. COM. MARIO VASQUEZ JIMENEZ, TUTOR DE LA TESIS PARA GRADO DENOMINADA: “ESTUDIO DE FACTIBILIDAD DE EXPORTACIÓN DE ORQUÍDEAS ECUATORIANAS UTILIZANDO LA ESTRATEGIA B2C” COMO REQUISITO PARA OPTAR POR EL TÍTULO DE MAGISTER EN NEGOCIOS INTERNACIONALES POR LA EGRESADA: TANIA PALACIOS S. C.C. No. 0917542672 CERTIFICA QUE: SE HA DESARROLLADO, REVISADO Y APROBADO EN TODAS SUS PARTES, POR CONSIGUIENTE SE ENCUENTRA APTA PARA SU TRÁMITE DE SUSTENTACIÓN. ______________________________________ Ing. Com. Mario Vásquez Jiménez TUTOR DE TESIS 3 AGRADECIMIENTO TANIA PALACIOS Agradezco a mi amiga Viviana Medina, mi compañera y amiga de estudios del pregrado en la ESPOL, ya que gracias a su intensa insistencia y tortura diaria me ayudó a encender motores para terminar este gran reto; el mismo que ha sido a base de mucho sacrificio. Y también agradezco a mi Dios, ya que me ha concedido vida y gracias a su voluntad puedo terminar este sueño que creí no lograrlo.
    [Show full text]
  • ANNEX HIGHLIGHTS of ORCHIDS of the ANDES Brassia Aurantiaca This Species Is a High Elevation Cool-To-Cold Growing Epiphyte
    ANNEX HIGHLIGHTS OF ORCHIDS OF THE ANDES Brassia aurantiaca This species is a high elevation cool-to-cold growing epiphyte (plant that grows on another plant for support) found in Colombia and Venezuela, and is pollinated by hummingbirds. It has an arching or nodding inflorescence that carries between seven and 18 bright orange semi-tubular flowers. These flowers are semi-open, with the sepals, petals and lip spreading outwards only from midpoint. Cyrtochilum macranthum This species occurs at elevation of up to 3,000m in the montane cloud forests of Ecuador, Peru and Colombia. It produces the largest flower within the genus Cyrtochilum, and is also known as “The Large Flowered Cyrtochilum”. The long, twining inflorescence has many branches. Each branch carries two to five long-lasting flowers, and the flowers can grow up to 10cm in diameter. Sepals are dull yellow-brown, while petals are golden- yellow, and the showy brilliance of the colours makes this an impressive specimen. Epidendrum medusae This species with bizarre-looking flowers is a cool growing epiphyte (plant that grows on another plant for support) found in the moist cloud forests of Ecuador at elevations between 1,800m and 2,700m. It has clustered, cane-like arching pendulous stems and overlapping fleshy leaf- sheaths. Each stem produces between one and three terminal flowers (flowers that bloom at the end of the stem). The deep maroon lip of the orchid with its fringed margin is likened to Medusa’s hair of snakes, which gave rise to its common name “The Medusa Epidendrum”, as well as its scientific name “Epidendrum medusae”.
    [Show full text]
  • Redalyc.DETERMINANTS of ORCHID SPECIES DIVERSITY IN
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica Štípková, Zuzana; Traxmandlová, Iva; Kindlmann, Pavel DETERMINANTS OF ORCHID SPECIES DIVERSITY IN LATIN AMERICA Lankesteriana International Journal on Orchidology, vol. 16, núm. 2, 2016 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44347813011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 16(2): 00–00. 2016. doi: http://dx.doi.org/10.15517/lank.v15i2.00000 WHY WE HAVE NO SERIOUS ALTERNATIVES BUT COOPERATIVE TAXONOMY FRANCO PUPULIN Lankester Botanical Garden, University of Costa Rica Harvard University Herbaria, Cambridge, Massachusetts, U.S.A. The Marie Selby Botanical Gardens, Sarasota, Florida, U.S.A [email protected] ABSTRACT. Taxonomic work has been historically regarded as a two-fold discipline. The first, which is basically aimed at answering the question about the diversity in whatever group under study, includes most of the “biological” questions of the research. Understanding of genetic and morphological variation, structure of populations and life cycles, biogeography and phylogeography, ecological modeling, pollination and other biological components is required to define the relationships among the taxa of the group and eventually to describe their diversity. The second part of the work consists in applying a correct name to all of the organisms as they result from the biological work.
    [Show full text]
  • RHS Orchid Hybrid Supplement 2005 January to March
    NEW ORCHID HYBRIDS 1 January to 31 March 2005 REGISTRATIONS Supplied by the Royal Horticultural Society as International Cultivar Registration Authority for Orchid Hybrids NAME PARENTAGE REGISTERED BY (O/U = Originator unknown) AERIDES Edward Aer. quinquevulnerum x Aer. Amy Ede Singapore Bot.Gdn. ALICEARA Kauai's China Oka Brsdm. Chinatown x Alcra. Dorothy Oka Yamada Nursery Royal Ebony Mtssa. Royal Robe x Onc. leucochilum Paradise [NZ] Woodland's Dazzler Mtssa. Cairns x Onc. [Odm.] hastilabium Woodland ARACHNOSTYLIS Silver Jubilee Arach. [Amm.] labrosa [labrosum] x Rhy. retusa Saleem & Sathish ASCOCENDA Alf Steel Ascda. Viravudh x Ascda. Tubtim Velvet A.Steel Banjong Fantasy Ascda. Duang Porn x Ascda. Yip Sum Wah Banjong Orch. Devvon Holst V. coerulea x Ascda. Tubtim Velvet R.F. Orchids(Patsanan) Duang Kaew Ascda. Thananbarg x V. Sankamphaeng T.Orchids Frosty Moon V. Darres' Golden Heritage x Ascda. Suksamran Gold D.Grove(Udom Orch.) Henry Oakeley V. Mimi Palmer x Ascda. Fiftieth State Beauty Singapore Bot.Gdns Joanne Jones Ascda. Lenachai x V. Gordon Dillon R.F. Orchids(Patsanan) Kathi Holst V. denisoniana x Ascda. Larry Katz R.F. Orchids Lena Kamolphan V. Bitz's Heartthrob x Ascda. Lenachai S.Chuapong Lese's Sunshine Ascda. Theptong x Ascda. Guo Chia Long T.Coffey(R.F. Orchids) Merinda Magic Ascda. Fuchs Joy x V. Black Widow M.Edgerton Papon V. Tanu Gold x Ascda. Suksamran Spots P.Chindavat Viboon Sunset Ascda. Thai Spots x Ascda. Bangkhuntian Gold Viboon ASPOMESA * Saron's Delight Asp. lunata x Gom. crispa J.P.Waldock BEALLARA Royal Fire Mtssa. Royal Robe x Oda. Fireflower Everglades BRASSIDIUM Lois Huffman Brsdm.
    [Show full text]
  • Phalaenopsis
    Chapter 23 Phalaenopsis Chia-Chi Hsu, Hong-Hwa Chen, and Wen-Huei Chen Abstract Phalaenopsis is one of the most popular cultivated orchids worldwide. So far, 92 native species and 34,112 hybrids of Phalaenopsis have been registered in the Royal Horticultural Society (RHS), but only 18 native species are frequently used for breeding. In Phalaenopsis market, large flowers with various colors are most popular. Phal. amabilis and Phal. aphrodite are the major species used for breeding the white-and-large-flower hybrids. The colored hybrids include pink, red- to- purple, green, yellow-to-orange, and black colors, as well as distinct colors in tepals with red lip. For large-and-red flowers,Phal. schilleriana and Phal. sanderiana are the major parent species, whereas Phal. equestris and Phal. pulcherrima are important for the development of the small- and medium-sized red flowers. Members of the subgenusPolychilos are the most important ancestors for yellow-to-orange flowers. More recently, there is an increased interest in plants with white, pink, or yellow colors with red stripes and/or spots. These traits are introduced from Phal. lindenii, Phal. stuartiana, and Phal. amboinensis. Furthermore, harlequin flowers which have clown-like spots and very complicated color patterns are released in the market, as well as hybrids with peloric and Bigfoot flowers. Besides color, scent and (a)biotic stress resistance are becoming important targets in Phalaenopsis breeding. Keywords Bigfoot · Breeding · Harlequin · Orchids · Peloric · Phalaenopsis C.-C. Hsu Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan H.-H. Chen Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan e-mail: [email protected] W.-H.
    [Show full text]