Thames Byelaws 2012 PORT of LONDON
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Service Operations Vessel 9020 Standard
1. Click with cursor in the blank space above 2. Drag & Drop Picture (16:9 ratio) 3. Optional: add hyperlink to Damen.com product page to the picture SERVICE OPERATIONS VESSEL 9020 STANDARD PICTURE OF SIMILAR VESSEL GENERAL DECK LAY-OUT Basic functions To provide stepless access onto Lift 2 tonne lift connecting 4 access levels (option: 6) for continuous windfarm assets for technicians, tools access between warehouse, weather deck and WTG via optional and parts by access system, crane and gangway. daughter craft. in both Construction Pedestals - for optional crane Support and Service Operations. - for optional gangway system Classification DNV-GL Maritime, notation: Helicopter winch area on foreship, stepless access to warehouse, hospital. Option: X 1A1, Offshore Service Vessel, helideck D-size 21m COMF(C-3, V-3), DYNPOS(AUTR), CTV landing facilities 1 fixed steel landing at stern. Clean, SF, E0, DK(+), SPS, NAUT(OSV- 1 removable alum. landing SB / PS. A), BWM(T), Recyclable, Crane Flag ACCOMMODATION Owner Crew/ special personnel 15-20x crew, 40-45x SP, all single cabins provided with WiFi, LAN, telephone and audio / video entert. (VOD and sat. TV). DIMENSIONS Other facilities up to 6 Offices and 5 meeting/ conference rooms for Charterer’s Length overall 89.65 m use. Beam moulded 20.00 m 2 Recr.-dayrooms, reception, hospital, drying rooms (M/F), Depth moulded 8.00 m changing rooms (M/F), wellness area (gym and sauna). Draught base (u.s. keel) 4.80 (6.30) m Gross Tonnage 6100 GT NAUTICAL AND COMMUNICATION EQUIPMENT Nautical Radar X-band + S-band, ECDIS, Conning, GMDSS Area 1, 2 and CAPACITIES 3. -
SIMPLIFIED MEASUREMENT TONNAGE FORMULAS (46 CFR SUBPART E) Prepared by U.S
SIMPLIFIED MEASUREMENT TONNAGE FORMULAS (46 CFR SUBPART E) Prepared by U.S. Coast Guard Marine Safety Center, Washington, DC Phone (202) 366-6441 GROSS TONNAGE NET TONNAGE SAILING HULLS D GROSS = 0.5 LBD SAILING HULLS 100 (PROPELLING MACHINERY IN HULL) NET = 0.9 GROSS SAILING HULLS (KEEL INCLUDED IN D) D GROSS = 0.375 LBD SAILING HULLS 100 (NO PROPELLING MACHINERY IN HULL) NET = GROSS SHIP-SHAPED AND SHIP-SHAPED, PONTOON AND CYLINDRICAL HULLS D D BARGE HULLS GROSS = 0.67 LBD (PROPELLING MACHINERY IN 100 HULL) NET = 0.8 GROSS BARGE-SHAPED HULLS SHIP-SHAPED, PONTOON AND D GROSS = 0.84 LBD BARGE HULLS 100 (NO PROPELLING MACHINERY IN HULL) NET = GROSS 1. DIMENSIONS. The dimensions, L, B and D, are the length, breadth and depth, respectively, of the hull measured in feet to the nearest tenth of a foot. See the conversion table on the back of this form for converting inches to tenths of a foot. LENGTH (L) is the horizontal distance between the outboard side of the foremost part of the stem and the outboard side of the aftermost part of the stern, excluding rudders, outboard motor brackets, and other similar fittings and attachments. BREADTH (B) is the horizontal distance taken at the widest part of the hull, excluding rub rails and deck caps, from the outboard side of the skin (outside planking or plating) on one side of the hull, to the outboard side of the skin on the other side of the hull. DEPTH (D) is the vertical distance taken at or near amidships from a line drawn horizontally through the uppermost edges of the skin (outside planking or plating) at the sides of the hull (excluding the cap rail, trunks, cabins, deck caps, and deckhouses) to the outboard face of the bottom skin of the hull, excluding the keel. -
A Study of the Size of Nuclear Fuel Carriers, the Most Required Ships for Safety : How Large Can Ship's Tonnage Be? Azusa Fukasawa World Maritime University
World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 2013 A study of the size of nuclear fuel carriers, the most required ships for safety : how large can ship's tonnage be? Azusa Fukasawa World Maritime University Follow this and additional works at: http://commons.wmu.se/all_dissertations Part of the Risk Analysis Commons Recommended Citation Fukasawa, Azusa, "A study of the size of nuclear fuel carriers, the most required ships for safety : how large can ship's tonnage be?" (2013). World Maritime University Dissertations. 228. http://commons.wmu.se/all_dissertations/228 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden A STUDY OF THE SIZE OF NUCLEAR FUEL CARRIERS, THE MOST REQUIRED SHIP FOR SAFETY How large can ship’s tonnage be? By AZUSA FUKASAWA Japan A dissertation submitted to the World Maritime University in partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE In MARITIME AFFAIRS (MARITIME SAFETY AND ENVIRONMENTAL ADMINISTRATION) 2013 Copyright Azusa Fukasawa, 2013 DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the University. -
Branch's Elements of Shipping/Alan E
‘I would strongly recommend this book to anyone who is interested in shipping or taking a course where shipping is an important element, for example, chartering and broking, maritime transport, exporting and importing, ship management, and international trade. Using an approach of simple analysis and pragmatism, the book provides clear explanations of the basic elements of ship operations and commercial, legal, economic, technical, managerial, logistical, and financial aspects of shipping.’ Dr Jiangang Fei, National Centre for Ports & Shipping, Australian Maritime College, University of Tasmania, Australia ‘Branch’s Elements of Shipping provides the reader with the best all-round examination of the many elements of the international shipping industry. This edition serves as a fitting tribute to Alan Branch and is an essential text for anyone with an interest in global shipping.’ David Adkins, Lecturer in International Procurement and Supply Chain Management, Plymouth Graduate School of Management, Plymouth University ‘Combining the traditional with the modern is as much a challenge as illuminating operations without getting lost in the fascination of the technical detail. This is particularly true for the world of shipping! Branch’s Elements of Shipping is an ongoing example for mastering these challenges. With its clear maritime focus it provides a very comprehensive knowledge base for relevant terms and details and it is a useful source of expertise for students and practitioners in the field.’ Günter Prockl, Associate Professor, Copenhagen Business School, Denmark This page intentionally left blank Branch’s Elements of Shipping Since it was first published in 1964, Elements of Shipping has become established as a market leader. -
2020 Tide Tables
PLA Cover 2020:Layout 1 24/10/2019 15:45 Page 1 TIDE TABLES AND PORT INFORMATION 2020 Published by: The Port of London Authority London River House Royal Pier Road Gravesend DA12 2BG Telephone +44 (0) 1474 562200 Fax +44 (0) 1474 562281 www.pla.co.uk @LondonPortAuth PLA Cover 2020:Layout 1 24/10/2019 15:45 Page 2 PLA HYDROGRAPHIC SERVICES Withastatutoryresponsibilitytosurvey400squaremiles oftheThamesfromTeddingtontothesouthernNorthSea, thePLAhasthemostsophisticatedin-housesurvey capabilityofanyUKport.Takeadvantageofaservicethat offers: Value-lowmobilisationorweatherdowntimecosts Experience-timeservedsurveyorsandlocalcrews Quality-purposebuiltcraftandthelatestequipment, includingmultibeam Response-surveyscompletedwithafastturnaround includeBathymetriccharting,dredgingsupport, engineeringsurveys,volumecomputations, environmentalmonitoring,samplingandanalysis,object locationandwatermovementmeasurement. r .pla.co.uk/hydrohomepage Call01474562207 www.pla.co.uk @LondonPortAuth PORT OF LONDON AUTHORITY Handbook of Tide Tables and Port Information 2020 Price R.R.P. £3 Printed in England by Real Print & Media Ltd MAIDSTONE KENT ME15 6TA 01622 200123 Published and copyright by the Port of London Authority www.pla.co.uk About the Port of London Authority The Port of London Authority has been managing a range of duties on the tidal Thames for more than 100 years. Our principal responsibility is the safety of navigation along 95 miles of river from Teddington Lock to the North Sea. We also promote the use of the tidal Thames, work to ensure security of port operations, and are responsible for protecting the marine environment. We have a team of more than 300 skilled staff within the organisation and our Hydrographic department, which prepares these tide tables annually, is renowned as a centre of excellence in the UK ports industry. We operate two Vessel Traffic Services (VTS) Centres at Gravesend and adjacent to the Thames Barrier. -
Course Objectives Chapter 2 2. Hull Form and Geometry
COURSE OBJECTIVES CHAPTER 2 2. HULL FORM AND GEOMETRY 1. Be familiar with ship classifications 2. Explain the difference between aerostatic, hydrostatic, and hydrodynamic support 3. Be familiar with the following types of marine vehicles: displacement ships, catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines 4. Learn Archimedes’ Principle in qualitative and mathematical form 5. Calculate problems using Archimedes’ Principle 6. Read, interpret, and relate the Body Plan, Half-Breadth Plan, and Sheer Plan and identify the lines for each plan 7. Relate the information in a ship's lines plan to a Table of Offsets 8. Be familiar with the following hull form terminology: a. After Perpendicular (AP), Forward Perpendiculars (FP), and midships, b. Length Between Perpendiculars (LPP or LBP) and Length Overall (LOA) c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B) d. Flare, Tumble home and Camber e. Centerline, Baseline and Offset 9. Define and compare the relationship between “centroid” and “center of mass” 10. State the significance and physical location of the center of buoyancy (B) and center of flotation (F); locate these points using LCB, VCB, TCB, TCF, and LCF st 11. Use Simpson’s 1 Rule to calculate the following (given a Table of Offsets): a. Waterplane Area (Awp or WPA) b. Sectional Area (Asect) c. Submerged Volume (∇S) d. Longitudinal Center of Flotation (LCF) 12. Read and use a ship's Curves of Form to find hydrostatic properties and be knowledgeable about each of the properties on the Curves of Form 13. Calculate trim given Taft and Tfwd and understand its physical meaning i 2.1 Introduction to Ships and Naval Engineering Ships are the single most expensive product a nation produces for defense, commerce, research, or nearly any other function. -
PLA Tide Tables 2021
TIDE TABLES AND PORT INFORMATION 2021 @LondonPortAuth PLA Tide Tables Master 2021:PLA Tide Tables 06/11/2020 11:55 Page 2 PLA HYDROGRAPHIC SERVICES With°a°statutory°responsibility°to°survey°400°square°miles° of°the°Thames°from°Teddington°to°the°southern°North°Sea,° the°PLA°has°the°most°sophisticated°in-house°survey° capability°of°any°UK°port.°Take°advantage°of°a°service°that° offers: °Value°-°low°mobilisation°or°weather°downtime°costs Experience°-°time°served°surveyors°and°local°crews Quality°-°purpose°built°craft°and°the°latest°equipment,°° ° including°multibeam Response°-°surveys°completed°with°a°fast°turn°around :LY]PJLZ°include°Bathymetric°charting,°dredging°support,° JP]PS°engineering°surveys,°volume°computations,° environmental°monitoring,°sampling°and°analysis,°object° location°and°water°movement°measurement.°°° -VY°TVrL°PUMVYTH[PVU°]PZP[°^^^.pla.co.uk/hydrohomepage Call°01474°562207° www.pla.co.uk @LondonPortAuth PLA Tide Tables Master 2021:PLA Tide Tables 06/11/2020 12:31 Page 3 PORT OF LONDON AUTHORITY Handbook of Tide Tables and Port Information 2021 Price R.R.P. £3 Printed in England by Real Print & Media Ltd MAIDSTONE KENT ME15 6TA 01622 200123 Published and copyright by the Port of London Authority www.pla.co.uk Front cover: HMM Algeciras, one of the biggest container ships in the world, prepares to berth at DP World London Gateway in June 2020, overseen by a PLA cutter. PLA Tide Tables Master 2021:PLA Tide Tables 06/11/2020 12:31 Page 4 About the Port of London Authority The Port of London Authority has been managing a range of duties on the tidal Thames for more than 100 years. -
NOAA Form 57-19-01 Annual Small Boat Evaluation/Small Boat
NOAA Form 57-19-01 U.S. DEPARTMENT OF COMMERCE (1-13) Page 1 of 9 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION ANNUAL SMALL BOAT EVALUATION/SMALL BOAT EXAMINATION Instructions Annual Small Boat Evaluation (ASBE) is an inspection conducted by Vessel Operations Coordinator (VOC), Commanding Officer (CO), or designee(s). All boats shall be inspected annually. • The ASBE checklist has been condensed from the detailed ASBE outline for use in the field. Evaluators shall use the checklists during the inspection, and shall refer to the outline for additional details as needed. Evaluators are responsible for all information contained within the ASBE outline. • The ASBE outline and checklist are based on NAO 209-125, The NOAA Small Boat Standards and Procedures Manual (SBSPM), 46 CFR, 33 CFR, NFPA 302, MARPOL, ABYC standards and recommendations, United States Coast Guard (USCG) inspection criteria, and standard marine survey practices. Small Boat Examination (SBEX) is an examination conducted by the Small Boat Program or a certified Marine Surveyor. Class I boats shall be examined every three (3) years and Class II boats shall be examined every two (2) years. • Some items may not apply to all boats. Evaluators are responsible for determining applicability. Consult the SBSPM for equipment carriage requirements. Installed equipment in excess of requirements must be maintained to inspection standards. • Completed evaluation checklists, reports, records of findings, and recommendations shall be signed by the evaluator or surveyor; signed and retained by the VOC with a copy forwarded to and signed by the Line Office Small Boat Officer (LOSBO). Completed evaluations shall be submitted to the NOAA Small Boat Program (SBP) Coordinator. -
The IMO Number Explained
A fact sheet from May 2017 Adam Baske The IMO Number Explained What is an IMO number? The International Maritime Organization (IMO) introduced its Ship Identification Number Scheme in 1987 to help prevent maritime fraud and enhance the security of merchant vessels. It is recognized by regional fisheries organizations and most governments and is considered the best available global identification system for ships. IHS Maritime & Trade, a company based in the U.K., administers the scheme on behalf of the IMO. The unique seven-digit vessel number the company issues to each vessel, preceded by the letters IMO, stays with it until it is scrapped and never changes, regardless of the ship’s owner, country of registration or name. The records based on the IMO number provide an independent audit trail for each vessel. The scheme was applied to fishing vessels in 2013, and the eligibility criteria were amended in 2016 to cover smaller and non-steel hull vessels. Why do fishing vessels need an IMO number? Illegal, unreported, and unregulated fishing worldwide accounts for up to 26 million metric tons of fish annually, worth up to $23.5 billion. IMO numbers are an essential tool in the fight against illegal fishing because they help to improve monitoring, control, surveillance and enforcement of fishing operations. They: • Allow flag States to accurately manage vessels under their authority. • Give national authorities information to help them police their waters more effectively. • Bring clarity and consistency to Regional Fisheries Management Organization (RFMO) records, helping governments determine whether vessels are authorized to fish in their waters. -
Basic Ship Theory to Marine Science Student
Tujuan Tatap Muka Matakuliah Rancang Bangun Kapal Perikanan 1. Mahasiswa Memahami Beberapa Definisi Dasar Geometry Perkapalan Dalam Rancang Bangun Kapal Perikanan. 2. Mahasiswa Memahami Beberapa Definisi Dasar Hydrostatic Curve dan Bonjean Curve 3. Mahasiswa Memahami Teori Stabilitas Kapal Perikanan 4. Mahasiswa Memahami tentang Sheel Expantion. What is your mind about this movie1 , movie2Abeille Flandre.flv, movie3 and movie4 BasicBasic ShipShip TheoryTheory DefinitionsDefinitions DISPLACEMENT Archimedes principle: Every floating body displaces its own weight of the liquid in which it floats For a vessel to float freely in water, the weight of the vessel must be equal to the weight of the volume of water it displaces Displacement is the volume of water the vessel displaces DRAUGHT Draught relates to the depth of water required for a vessel to float freely and is measured vertically from the underneath side of the keel to the waterline FREEBOARD Freeboard is the vertical distance from the top of the lowest point of the working deck at the side of the vessel to the waterline LIGHT SHIP WEIGHT The light ship weight is the actual weight of a vessel when complete and ready for service but empty DEADWEIGHT Deadweight is the actual amount of weight in tonnes that a vessel can carry when loaded to the maximum permissible draught (includes fuel, fresh water, gear supplies, catch and crew) DISPLACEMENT MASS Displacement mass is the total weight of the vessel, i.e.: Lightship weight + deadweight = displacement mass LIST A vessel is said to be listed when it is inclined by forces within the vessel, e.g. movement of weight within the vessel A list reduces the stability of the vessel When a list is corrected by increasing the displacement mass, the additional weight should be placed as low as possible in the vessel HEEL A vessel is said to be heeled when it is inclined by an external force, e.g. -
Millennium Class Tanker Structural Design – from Owner Experience to Shipyard Launching Ways
Millennium Class Tanker Structural Design – From Owner Experience to Shipyard Launching Ways James Read1, Arne Stenseng2, Rod Hulla3 and Darold Poulin4 ABSTRACT Three 125,000 DWT double hull tankers are currently under construction for ARCO Marine, Inc. at Litton Avondale Industries in New Orleans, LA. These Millennium Class tankers are being built to transport crude oil from Valdez, AK to Cherry Point, WA. The design satisfies the requirements of OPA 90 and incorporates a unique structural design philosophy intended to enhance the structural performance of the vessel. This paper will illustrate how the Owner’s experience with previous vessels in Gulf of Alaska trade is reflected in the structural design of the new ships. The human elements of safety, inspection and maintenance are discussed and the influence of these factors on the structural arrangement is highlighted. In concert with these human factors are structural design improvements that have been implemented to specifically address fatigue and stress cracking with the intent of reducing repair requirements. These topics are presented in a discussion that follows the structural design from concept, through design and analysis and into the construction of the vessels. Lessons learned throughout the process are presented. 1 ARCO Marine, Inc., Long Beach, California 2 MCA Engineers, Inc., Costa Mesa, California 3 John J. McMullen and Associates, New York, New York 4 Litton-Avondale Industries, Avondale, Louisiana 1 FOREWORD vessels was quickly dismissed. Cargo capacity lost in retrofitting an inner hull to an exiting 120,000 DWT The goal of this paper is to broadly illustrate the vessel was impractical. It was also understood that the process by which the structure for the Millennium Class outer hull, while in good structural condition, would tankers was conceived, designed and constructed. -
Thames Freight Standard)
PORT OF LONDON AUTHORITY TECHNICAL STANDARDS FOR COMMERCIAL VESSELS ON THE TIDAL THAMES (THAMES FREIGHT STANDARD) 1st Edition ISBN Number: 978-0-900598-14-2 © Port of London Authority 2013 CONTENTS 1. FOREWORD ..................................................................................................... 1 2. DEFINITIONS .................................................................................................... 3 3. APPLICATION AND INTERPRETATION .......................................................... 8 3.1. Application ................................................................................................. 8 3.2. Areas of Operation ..................................................................................... 8 3.3. Licenses .................................................................................................... 8 3.4. Interpretation .............................................................................................. 8 3.5. The Right of Appeal ................................................................................... 8 3.6. Updating the Thames Freight Standard ..................................................... 9 3.7. Alternative Safety Standards ...................................................................... 9 3.8. Equivalent Standards ................................................................................. 9 3.9. Carriage of Additional Equipment ............................................................. 10 4. CONSTRUCTION AND STRUCTURAL STRENGTH.....................................