(12) Patent Application Publication (10) Pub. No.: US 2016/0052835 A1 KLUNKER Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2016/0052835 A1 KLUNKER Et Al US 2016.0052835A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0052835 A1 KLUNKER et al. (43) Pub. Date: Feb. 25, 2016 (54) DETONATOR-SENSITIVE ASSEMBLED (30) Foreign Application Priority Data BOOSTER CHARGES FOR USE IN BLASTING ENGINEERING AND THE USE Nov. 14, 2012 (DE) ...................... 10 2012 110955.9 THEREOF (71) Applicant: EST ENERGETICS GMBH, Rothenburg (DE) Publication Classification (51) Int. Cl. (72) Inventors: Jirgen KLUNKER, Niesky (DE): C06B 23/00 (2006.01) Konrad ZIEGLER, Bernburg Saale F42D3/00 (2006.01) (DE) C06B 25/34 (2006.01) (73) Assignee: EST ENERGETICS GMBH, (52) U.S. Cl. Rothenburg (DE) CPC ............... C06B 23/003 (2013.01); C06B 25/34 (2013.01); F42D 3/00 (2013.01) (21) Appl. No.: 14/442,197 (22) PCT Fled: Nov. 12, 2013 (57) ABSTRACT PCT NO.: PCT/EP2013/0736.58 (86) This invention relates to detonator-sensitive assembled S371 (c)(1), booster charges for use in blasting engineering. The booster (2) Date: May 12, 2015 charge comprises nitroalkane and a cavity-forming agent. US 2016/0052835 A1 Feb. 25, 2016 DETONATOR-SENSITIVE ASSEMBLED dispersed microspheres. The microspheres can be hollow BOOSTER CHARGES FOR USE IN glass microspheres, resin beads, ceramic beads, etc. BLASTING ENGINEERING AND THE USE 0008 Further disclosed, in U.S. Pat. No. 4,334,476A, is an THEREOF initial explosive charge for granular or liquid explosives, with 0001. The invention concerns detonator-sensitive an interior channel to hold the ignition device, whereby the assembled booster charges for use in blasting engineering. interior channel exhibits a small wall thickness so as to 0002 Insensitive, non-toxic and inexpensive explosives, improve the detonation. This ensures the separation of the mostly based on ammonium nitrate, are preferentially used in liquid explosive and the ignition device. civil blasting applications. In Salt mining or tunnel driving, 0009 Finally, U.S. Pat. No. 3,797.392 A discloses micro for example, so-called pumping explosives are used in addi spheres, used for the sensitization of liquid explosives. These tion to the long familiar ANFO. Pump explosives are differ microspheres, such as hollow glass spheres, ceramic micro entiated into emulsion explosives and Suspension explosives spheres or silicon carbide, are dispersed in the liquid explo (slurries, explosive slurries). sive right away and Subsequently ignited. The use of open 0003 ANFO (Ammonium Nitrate Fuel, trade name e.g. pored polyurethane foams is described as well. ANDEX) is a mixture of porous ammonium nitrate and min 0010. Therefore, the task of the invention is to specify an eral oil or diesel oil (fuel oil), which is used in the mining IG detonator that can be used safely, is inexpensive and safe industry as a safe-to-handle explosive. to manufacture, and can be handled with no risk to health. 0004. In addition, if not sufficient for safe ignition, these 0011. The task is solved with a detonator-sensitive booster explosives require so-called primary explosives in conjunc charge according to Claim 1. Advantageous embodiments are tion with detonator-sensitive assembled initiation charges specified in the dependent claims. (boosters, amplifier charges or primers). Primary explosives 0012. According to the invention, a detonator-sensitive can be found in commercial detonators. Primary explosives booster charge comprising a mixture including a nitroalkane are characterized by high sensitivity to friction, shock, impact and a cavity-forming means, as well as a slot for an ignition and heat. Mercury fulminate, for example, can already be device, is Suggested. detonated by heating to 160°C. (detonating cord) or by a 2 kg 0013 Surprisingly, it was found that nitroalkanes are well drop hammer falling from a height of 4 cm. Initial detonation Suited for use in detonator-sensitive booster charges. with blasting caps was invented in 1862 by Alfred Nobel. 0014 Nitroalkanes can be activated chemically, e.g. by Important primary explosives are mercury fulminate, lead addition of amine, and/or mechanically via the creation of azide, silver azide, silver acetylide, silver fulminate, diazod Smallhollow spaces or gas-filled cavities (foaming), i.e. they initrophenol, lead picrate (trinitrophenol lead), lead styphnate become detonator sensitive and behave like volatile explo (lead trinitroresorcinate), tetracene, nickel hydrazine nitrate sives. In order to maintain a uniform distribution of the cavity (NHN), hexamethylene triperoxide diamine (HMTD). formers, the addition of a thixotropic agent is indicated. Such acetone peroxide (DADP, TATP or APEX), 3-nitrobenzene mixtures are disclosed in U.S. Pat. No. 3,713,915. diazonium perchlorate, mercury azides, tetraamine copper 0015 Nitromethane mixtures, which are produced with (II) chlorate (TACC) and copper acetylide. commercially available hollow glass microspheres (glass 0005 Pressed cylindrical explosive devices made of tetryl, microballoon, GMB) and which detonate at more than 6000 trinitrotoluene, phlegmatized (reduction of sensitivity) hexo m/s and are detonator-sensitive, are also known (Presles et al. gen, pentaerythritol tetranitrate (PETN), picric acid and other Shock Waves, April 1995, Volume 4, Issue 6, p. 325-329). explosives are usually used as detonator-sensitive assembled 0016. In one embodiment of the invention, the detonator booster charges, also referred to as initial gain detonator or IG sensitive booster charge is made of a liquid-impermeable detonator. Common to all these Substances is a greater sensi material. This prevents leaking of the nitroalkane. tivity to the initial pulse than that of the explosive of the main 0017. In a further embodiment of the invention, the deto charge (e.g. ANFO, cast TNT, powdery explosives). Primer nator-sensitive booster charge exhibits a concave curvature cartridges of gelatinized explosives are often used in rock arranged on the opposite side of the slot for the ignition blasting as an additional amplification charge to initiate the device. In the sense of the present invention, a concave cur main charge of powdery explosives or emulsion explosives. Vature is a conical or hemispherical curvature on the direction The weight and the shape of the IG detonator are calculated so of the center of the booster charge. With the concave curva that, at detonation, a pulse is produced that ensures the trig ture the effect of a hollow charge is achieved, which results in gering of the detonation of the main charge and the desired an increased detonation velocity. The curvature causes the detonation behavior. The initiation of the IG detonator is energy released by the detonation to be focused in this direc triggered by a blasting cap, an electric detonator or a NE tion. For this reason the booster charge is inserted with the igniter (non-electric igniter). concave curvature in the direction of the main charge. The 0006. The problem with the IG detonators used to date is advantageous design with concave curvature significantly that they either consist of long term no longer available mili increases the effectiveness of the inventive booster charge. tary explosives (pressed TNT, cast Composition B, etc.), or 0018. In a further embodiment of the invention, the con that classic primer cartridges made of gelatinous explosives cave curvature exhibits a metallic coating. The metallic coat (dynamite Successors on the basis of blasting oil) are used, ing can be made of aluminum and applied to the Surface of the which becomes problematic in the long term. Besides the concave curvature by spraying, steaming or as a metallic film. increased health hazard from nitric acid ester, the compli The metallic coating of the concave curvature affects an cated and hazardous production and the associated high cost intensifying initial pulse in a specified direction. are a significant issue. 0019. The concave curvature with a metallic coating is of 0007 U.S. Pat. No. 3,902,933 A discloses an initial explo particular importance for achieving a high chemical imple sive charge for detonation of nitromethane. The initial explo mentation rate, in which the implementation process comes sive charge is formed by a polyurethane foam containing very close to the theoretical value. This significantly reduces US 2016/0052835 A1 Feb. 25, 2016 the level of harmful substances in the borehole column charge product that, due to the gas-phase nitration of propane, is for the commercial explosives to be activated. available for the long term—even when recycled military 0020. In another embodiment of the invention, the ignition explosives become scarce. device is a blasting cap, a detonating cord or a non-electric 0035) Nitromethane is also not a classic explosive, which detonator. makes transport and storage inexpensive, and is of storage 0021. In a further embodiment of the invention, the deto class 3 (flammable liquids). In addition, nitromethane has low nator-sensitive booster charge exhibits a suitable wall thick toxicity: LD50 oral rat: 940 mg/kg, WHC 2. ness. This ensures a secure ignition transfer from the cap or 0036. It is also advantageous that, in the event of damage, the cord to the nitroalkane mixture. The wall thickness is the inventive detonator-sensitive booster charges “deacti dependent on the material of the wall as well as the mixture vate themselves by complete volatilization of the used. nitromethane into the air. 0022. In a further embodiment of the invention, the 0037. The inventive detonator-sensitive booster charges nitroalkane is selected from
Recommended publications
  • Punked the Warped Tech of a Victorian World That Never Was
    THE MAGAZINE OF TECHNOLOGY INSIDERS 10.08 STEAM PUNKED THE WARPED TECH OF A VICTORIAN WORLD THAT NEVER WAS www.spectrum.ieee.org volume 45 number 10 north american 10.08 UPDATE 13 OPEN-SOURCE VOTING Can open-source software save electronic voting? By Mark Anderson 14 VIRTUAL COLONOSCOPY 16 CAR TALK 18 KEEPING MEMS MOVING 20 HOME FUEL CELLS TO SELL IN JAPAN OPINION 22 48 9 SPECTRAL LINES Is the United States ready for digital television? The transition may not be so smooth. By Tekla S. Perry 10 FORUM Futurist Ray Kurzweil gets the last word on the singularity. 21 TECHNICALLY SPEAKING New words are needed to reprocess old electronics. By Paul McFedries DEPARTMENTS 4 BACK STORY 28 On the road to Tikrit. SPARKS FLY: COVER STORY 6 CONTRIBUTORS Engineers build community and 22 HANDS ON more at TechShop 48 THE STEAMPUNK TechShop, a high-tech hands-on [top left]; strange workshop, is expanding—perhaps to steam-powered CONTRAPTORS a city near you. By David Schneider critters inhabit Do-it-yourself enthusiasts are drawing on the aesthetics of the I-Wei Huang’s CAREERS garage [top right]; 19th-century Victorian era to create fantastic brass-adorned, steam-driven 24 Sam Altman is only 23 and on and solar panels machines. All hail the steampunk subculture. By Erico Guizzo leave from Stanford, but his software on a U.S. Air Force base harvest may already be on your cellphone. energy from the 28 A LESS WELL-OILED WAR MACHINE By Susan Karlin sun [bottom]. One of the world’s most profligate users of energy, the U.S.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Chapter 2 EXPLOSIVES
    Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Chapter 6 INITIATION
    Chapter 6 INITIATION COMPONENTS USED IN ELECTRIC BLASTING The electric power source used to initiate a blast may be a twist or push type generator blasting machine and a remote radio device, a condenser discharge machine, or an AC power line through a blasting switch. Never use batteries directly; only a blasting machine or blasting switch provides the current and time control necessary to prevent cap arcing and misfires. The generator type blasting machine converts the mechanical energy of the blaster’s hand motion into electrical energy and then closes the contacts to the firing circuit when the peak electric energy is generated. A condenser discharge machine uses dry-cell batteries to charge a set of capacitors. When the fire button is pushed, the stored electrical energy in these capacitors is discharged into the firing circuit. The remote detona- tion system can be activated and controlled with the commonly used King radio that has been retrofitted with a dual tone modulated frequency chip (DTMF). The entire remote detonation system allows the blaster-in- charge more flexibility in selecting a location to initiate the blast. No alterations or repairs of an electric blasting machine should be attempted, unless by the manufacturer. Ordinary maintenance by the blaster should be limited to changing the batteries in the condenser discharge type machines and to lubricating the moving parts in the generator type. The LEAD WIRE, or the FIRING LINE as it is sometimes called, connects the power source to the blasting circuit. It should be a two-conductor, insulated, solid copper wire (with exception of the multiconduc- tor cable for a sequential blasting machine) and be at least 14-gauge thickness.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Remote Desktop Redirected Printer
    Safety Data Sheet CS: 3.4.18 Page: 1 of 7 Infosafe No ™ 3CHO6 Issue Date : November 2020 RE-ISSUED by CHEMSUPP Product Name :SILVER NITRATE Classified as hazardous 1. Identification GHS Product SILVER NITRATE Identifier Company Name CHEM-SUPPLY PTY LTD (ABN 19 008 264 211) Address 38 - 50 Bedford Street GILLMAN SA 5013 Australia Telephone/Fax Tel: (08) 8440-2000 Number Emergency phone CHEMCALL 1800 127 406 (Australia) / +64-4-917-9888 (International) number E-mail Address www.chemsupply.com.au Recommended use of Photographic film, catalyst for ethylene oxide, indelible inks, silver the chemical and plating, silvering mirrors, silver salts, germicide (as a wall spray), hair restrictions on use dyeing, analytical chemistry, antiseptic, purification of drinking water, fused form to cauterize wounds and laboratory reagent. Other Names Name Product Code SILVER NITRATE SL087 SILVER NITRATE SA087 Other Information Chem- Supply Pty Ltd does not warrant that this product is suitable for any use or purpose. The user must ascertain the suitability of the product before use or application intended purpose. Preliminary testing of the product before use or application is recommended. Any reliance or purported reliance upon Chem-Supply Pty Ltd with respect to any skill or judgement or advice in relation to the suitability of this product of any purpose is disclaimed. Except to the extent prohibited at law, any condition implied by any statute as to the merchantable quality of this product or fitness for any purpose is hereby excluded. This product is not sold by description. Where the provisions of Part V, Division 2 of the Trade Practices Act apply, the liability of Chem-Supply Pty Ltd is limited to the replacement of supply of equivalent goods or payment of the cost of replacing the goods or acquiring equivalent goods.
    [Show full text]
  • Silver-Catalysed Reactions of Alkynes: Recent Advances
    Chemical Society Reviews Silver -Catalysed Reactions of Alkynes: Recent Advances Journal: Chemical Society Reviews Manuscript ID: CS-REV-01-2015-000027.R2 Article Type: Review Article Date Submitted by the Author: 02-Jun-2015 Complete List of Authors: Fang, Guichun; Northeast Normal University, Department of Chemistry Bi, Xihe; Northeast Normal University, Page 1 of 48Chem Soc Rev Chemical Society Reviews Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/ csr CRITICAL REVIEW Silver-Catalysed Reactions of Alkynes: Recent Advances Guichun Fang,a Xihe Bi*a,b Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Silver is a less expensive noble metal. Superior alkynophilicity due to π-coordination with the carbon- carbon triple bond, makes silver salts ideal catalysts for alkyne-based organic reactions. This review highlights the progress in alkyne chemistry via silver catalysis primarily over the past five years (ca. 2010–2014). The discussion is developed in terms of the bond type formed with the acetylenic carbon (i.e. , C–C, C–N, C–O, C–Halo, C–P and C–B). Compared with other coinage metals such as Au and Cu, 10 silver catalysis is frequently observed to be unique. This critical review clearly indicates that silver catalysis provides a significant impetus to the rapid evolution of alkyne-based organic reactions, such as alkynylation, hydrofunctionalization, cycloaddition, cycloisomerization, and cascade reactions. alkynylation, cycloaddition, cycloisomerization of functionalized 1. Introduction alkynes (enynes, multiynes, propargyl compounds, etc. ), and hydrofunctionalization.9 Moreover, in addition to the activation Alkynes and their derivatives are among the most valuable 50 of carbon-carbon triple bonds, other functional groups, such as 15 chemical motifs, because of their abundance and versatile 1 imines and carbonyls are also activated through coordination with reactivities.
    [Show full text]
  • Hazardous Substance Fact Sheet
    Right to Know Hazardous Substance Fact Sheet Common Name: SILVER NITRATE Synonyms: Argerol; Lunar Caustic CAS Number: 7761-88-8 Chemical Name: Nitric Acid Silver (1+) Salt RTK Substance Number: 1672 Date: May 2000 Revision: May 2009 DOT Number: UN 1493 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Silver Nitrate is an odorless, colorless or white, crystalline Hazard Summary (sand-like) solid. It is used in photography, medicines, hair Hazard Rating NJDOH NFPA dyes, making mirrors and silver plating, and as a chemical HEALTH 3 - intermediate. FLAMMABILITY 0 - REACTIVITY 0 - CORROSIVE AND STRONG OXIDIZER POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Silver Nitrate is on the Right to Know Hazardous Substance 4=severe List because it is cited by OSHA, ACGIH, DOT, NIOSH, DEP and EPA. f Silver Nitrate can affect you when inhaled and by passing f This chemical is on the Special Health Hazard Substance through the skin. List. f Silver Nitrate is CORROSIVE and contact can severely irritate and burn the skin and eyes with possible eye damage. f Inhaling Silver Nitrate can irritate the nose, throat and lungs. f Exposure to Silver Nitrate can cause headache, dizziness, SEE GLOSSARY ON PAGE 5. nausea and vomiting. f High levels of this substance may reduce the blood’s ability to transport Oxygen, causing headache, fatigue, dizziness, FIRST AID and a blue color to the skin and lips (methemoglobinemia). Eye Contact f Repeated exposures to Silver Nitrate can cause blue-gray f Immediately flush with large amounts of water for at least 30 discoloration (argyria) of the eyes, skin, inner nose, mouth, minutes, lifting upper and lower lids.
    [Show full text]
  • Laboratory Chemical Hygiene Plan
    SOUTHERN UTAH UNIVERSITY’S LABORATORY CHEMICAL HYGIENE PLAN SECTION 1 CHEMICAL HYGIENE PLAN 1.1 INTRODUCTION The Occupational Safety and Health Administration's (OSHA) laboratory health standard (Occupational Exposures to Hazardous Chemicals in Laboratories (CFR 1910.1450)) requires employers of laboratory employees to implement exposure control programs and convey chemical health and safety information to laboratory employees working with hazardous materials. Specific provisions of the standard require: 1. Chemical fume hood evaluations; 2. Establishment of standard operating procedures for routine and "high hazard" laboratory operations; 3. Research protocol safety reviews; 4. Employee exposure assessments; 5. Medical consultations/exams; 6. Employee training; 7. Labeling of chemical containers; and, 8. The management of chemical safety information sheets (Material Safety Data Sheets) and other safety reference materials. The standard's intent is to ensure that laboratory employees are apprised of the hazards of chemicals in their work area, and that appropriate work practices and procedures are in place to protect laboratory employees from chemical health and safety hazards. The standard operating procedures (laboratory practices and engineering controls) recommended in this manual identify the safeguards that should be taken when working with hazardous materials. These safeguards will protect laboratory workers from unsafe conditions in the vast majority of situations. There are instances, however, when the physical and chemical properties, the proposed use, the quantity used for a particular purpose or the toxicity of a substance will be such that either additional, or fewer, controls might be appropriate to protect the laboratory worker. Professional judgement is essential in the interpretation of these standard operating procedures, and individual 1 laboratories may modify these procedures to meet their specific uses and operational needs.
    [Show full text]