Silver-Catalysed Reactions of Alkynes: Recent Advances

Total Page:16

File Type:pdf, Size:1020Kb

Silver-Catalysed Reactions of Alkynes: Recent Advances Chemical Society Reviews Silver -Catalysed Reactions of Alkynes: Recent Advances Journal: Chemical Society Reviews Manuscript ID: CS-REV-01-2015-000027.R2 Article Type: Review Article Date Submitted by the Author: 02-Jun-2015 Complete List of Authors: Fang, Guichun; Northeast Normal University, Department of Chemistry Bi, Xihe; Northeast Normal University, Page 1 of 48Chem Soc Rev Chemical Society Reviews Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/ csr CRITICAL REVIEW Silver-Catalysed Reactions of Alkynes: Recent Advances Guichun Fang,a Xihe Bi*a,b Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Silver is a less expensive noble metal. Superior alkynophilicity due to π-coordination with the carbon- carbon triple bond, makes silver salts ideal catalysts for alkyne-based organic reactions. This review highlights the progress in alkyne chemistry via silver catalysis primarily over the past five years (ca. 2010–2014). The discussion is developed in terms of the bond type formed with the acetylenic carbon (i.e. , C–C, C–N, C–O, C–Halo, C–P and C–B). Compared with other coinage metals such as Au and Cu, 10 silver catalysis is frequently observed to be unique. This critical review clearly indicates that silver catalysis provides a significant impetus to the rapid evolution of alkyne-based organic reactions, such as alkynylation, hydrofunctionalization, cycloaddition, cycloisomerization, and cascade reactions. alkynylation, cycloaddition, cycloisomerization of functionalized 1. Introduction alkynes (enynes, multiynes, propargyl compounds, etc. ), and hydrofunctionalization.9 Moreover, in addition to the activation Alkynes and their derivatives are among the most valuable 50 of carbon-carbon triple bonds, other functional groups, such as 15 chemical motifs, because of their abundance and versatile 1 imines and carbonyls are also activated through coordination with reactivities. These fundamental chemicals can serve as molecular silver, providing a useful and important method for facilitating building blocks in designing novel organic reactions and 2 many different organic transformations with high atom assembling functional materials. In particular, as verified by the 10 efficiency. recent advances in transition metal-catalysed transformations, 20 they can be used to rapidly access complex molecular architectures.3 Silver, which possesses the electronic configuration [Kr] 4d 10 5s 1 in group 11, the so-called “coinage metals”, is inexpensive compared to gold. The outer orbital 5s 1 electronic configuration of silver allows it, either alone or in 25 combination with other transition metals, to form a series of silver(I) salts with a variety of counter anions. Similar to gold(I) 55 salts that have been shown to be powerful catalysts for alkyne Fig. 1 Activation of the carbon-carbon triple bond by silver catalyst. transformations, 4 silver(I) salts also function as σ- and/or π-Lewis acids.5 Silver exhibits special properties towards alkyne A survey of the literature related to the topic of silver-catalysed 10 30 activation due to its d electronic configuration, favouring reactions of alkynes revealed a considerable number of alkyne- interactions with the carbon-carbon π-bond of alkynes, referred to based reactions catalysed by this noble metal, particularly over as alkynophilicity; therefore, silver can be considered to be one of 60 the past decade (Fig. 2). A number of excellent reviews have the most powerful activators of a carbon-carbon triple bond. 6 As incorporated the advances in the silver-catalysed reactions of shown in Fig. 1, upon coordination to the carbon-carbon triple alkynes from different aspects, particularly the special issue of 11 35 bond of alkynes, silver salts lead to the formation of a silver-π- “Coinage Metals in Organic Synthesis ” in Chem. Rev. (2008), complex, facilitating the formation of C–X bonds (X = C, N, O, “The Organic Chemistry of Silver Acetylides ” by Pale et al . 12 Halo, P, etc .) by nucleophilic attack on this activated multiple 65 (2007), and a book titled “Silver in Organic Chemistry ” edited bond. For a terminal or silylated alkyne, the reaction pathway by Harmata (2010). 13 However, a review that focuses on the could involve a different conversion into silver acetylide via specific topic of silver-catalysed reactions of alkynes remains 7 14 40 deprotonation/desiliconization in the presence of bases, which elusive. Moreover, rapid development in this field since 2010 itself reacts either as a nucleophile to be trapped by electrophiles has been witnessed. Therefore, this review is timely in or by engaging in cross-coupling reactions through the 70 highlighting these advances to the chemical community. transmetalation process.8 This ability of silver to induce π- activation is not the only factor responsible for its activity and 45 effectiveness; additionally, the transformation exhibits good functionality in a number of important reactions such as This journal is © The Royal Society of Chemistry [year] [journal] , [year], [vol] , 00–00 | 1 Chemical Society Reviews Page 2 of 48 hierarchic reaction pathway that is fundamentally different from the classical coupling schemes in wet chemistry. The reaction is initiated by covalent coupling between two molecules rather than by single-molecule dehydrogenation. The resulting dimer 45 undergoes two subsequent dehydrogenation processes, which are expected to be rate-limiting according to the comparatively large barriers. Notably, the Ag(111) surface is more efficient compared with Au(111) and Cu(111). The on-surface coupling reaction is formally reminiscent of classic Glaser−Hay coupling schemes, 50 but is essentially different; this can be interpreted as a basic step of surface-confined acetylide chemistry. This reaction presents a Fig. 2 A statistical analysis is made of the silver-catalysed reactions of new approach towards the realization of two-dimensional carbon- alkynes through the survey of the articles published in ACS , RSC , Wiley , rich or all-carbon polymers. Elsevier , etc . during the past fourteen years. 5 Scope and Organization This review presents an overview of the transformations of alkynes under silver catalysis over the past five years (ca. 2010– 2014). A comprehensive review is an overwhelming task. Thus, this text will cover silver(I)-catalysed organic reactions of 10 alkynes and their important derivatives via functionalization of the C–C triple bond and the formation of new C–C, C–N, C–O, C–Halo, C–P and C–B bonds (Fig. 3). To fully profile some specific reactions, a brief description of the background will be provided. Unless necessary, reactions with silver(I) salts as 55 15 cocatalysts together with other metal salts have not been included Scheme 1 in this review. The differences in reaction pathways resulting from diverse reagent combinations will be addressed with an More recently, the Wen group reported a convenient AgNO 3- emphasis on discussing the reaction mechanism, aiming to inspire catalyzed efficient homocoupling of (hetero)aryl/alkyl alkynes new ideas for the further design and development of novel using PPh 3 as a ligand, which afforded a wide range of 1,3-diynes 20 19 reactions. 60 3 in excellent yields (Scheme 2). Scheme 2 Fig. 3 Classification of the reactions by the types of bonds formed with acetylenic carbon. Formation of Csp 2–Csp bonds: The transition metal-catalysed Sonogashira coupling of terminal alkynes with aryl and alkenyl 2. Formation of Carbon−Carbon Bonds 65 halides has become one of the most efficient and straightforward methods to form Csp 2–Csp bonds in organic synthesis. This 20 25 2.1 Alkynylation coupling reaction was first established in the 1970's. So far, a great number of modifications for palladium catalyst systems Formation of Csp –Csp bonds: Glaser−Hay coupling, a well- have been developed to overcome the disadvantages of the known named reaction, proceeds identically through the 70 reaction such as homocoupling products caused by CuI, dehydrogenation of a terminal alkyne with a Cu(I) ion and expensive palladium complexes, and ugly smell of amines. establishment of a Cu–acetylide intermediate. 15 Likewise, a However to date, only one report related to the silver(I)-catalysed 30 related silver acetylide can be attained using a silver ion. Sonogashira-type coupling of terminal alkynes with aryl iodides However, research findings on Ag-related syntheses of butadiyne or bromides 4 has been described by Wang and co-workers in moieties remain scarce. Recently, the research groups of 75 2006 (Scheme 3). This reaction proceeded in the presence of AgI Klappenberger 16 and Studer and Fuchs 17 successively reported (10 mol%), PPh (30 mol%) and K CO (2 equiv) in DMF at the homo-coupling of terminal alkynes 1 on the noble metal 3 2 3 100 °C for 8–12 h, affording the corresponding internal alkynes 5 35 surface (Scheme 1). Alkyne homo-coupling occurs on the in 62–99% yields. The mechanism for this silver-based Ag(111) metal surface in ultra -high vacuum under mild Sonogashira reaction is not fully clear. 21 conditions, leaving volatile H 2 as the sole by-product. The mechanism for the surface-assisted covalent coupling of terminal alkynes on Ag(111) was elucidated using density functional 18 40 theory (DFT)-based transition state calculations, suggesting a 2 | Journal Name , [year], [vol] , 00–00 This journal is © The Royal Society of Chemistry [year] Page 3 of 48 Chemical Society Reviews 45 concentration of CO 2 and the purity of the combustion gas had significant impacts on the yields because the directly introduced gas did not work. Furthermore, the aqueous MEA solution could be continuously recycled without any decrease in the CO 2 capture and release efficiency, thus demonstrating the practicality of this Scheme 3 50 protocol for CO 2 capture. Carbon dioxide (CO 2) is one of the most abundant C1 feedstocks on earth. 22 In this respect, a high-energy active reagent, 5 powerful catalyst, extra energy or high CO 2 pressure is generally required for successful CO 2 incorporation.
Recommended publications
  • And C,N-Chelated Organocopper Compounds†
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2021 Review C,C- and C,N-Chelated Organocopper Compounds† Liang Liu1, Hui Chen2, Zhenqiang Yang2, Junnian Wei1* and Zhenfeng Xi1,3* 1 Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China; [email protected] (L.L.), [email protected] (J.W.), [email protected] (Z.X.) 2 Henan Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, China; [email protected] (H.C.), [email protected] (Z.Y.) 3 State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Shanghai 200032, China; [email protected] (Z.X.) * Correspondence: [email protected] (J.W.), [email protected] (Z.X.) † Dedicated to Professor Gerard van Koten on the occasion of his 80th birthday Abstract: Copper-catalyzed and organocopper-involved reactions are of great significance in organic synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations of organocopper intermediates become indispensable. Meanwhile, the structure- function relationship of organocopper compounds would advance rational design and development of new Cu-based reactions and organocopper reagents. Compared to the mono- carbonic ligand, the C,N- and C,C-bidentate ligands better stabilize the unstable organocopper compounds. The bidentate ligands can chelate to the same copper atom via 휂2-mode, forming a mono-cupra-cyclic compounds with at least one acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via 휂1-mode at each coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles.
    [Show full text]
  • Conversion of Carbon Dioxide to Acetylene on a Micro Scale
    810 NATURE June 14, 1947 Vol. 159 orbitale of the ethmoid is reduced". In the orang Stainless steel was found to be the most satis­ and the gibbon a large planum orbitale articulates factory furnace material tried. From mild steel in front with the lacrimal, as in man. The figure relatively large amounts of acetylene were produced we give of the orbital wall in Pleaianthropus shows in blank experiments, and a fused silica envelope a condition almost exactly as in man. fitted with a nickel thimble was found, after it had We are here not at present concerned with the been used with calcium and barium metals, to absorb question of whether man and the Australopithecinre carbon dioxide when hot even when no calcium or have arisen from an early anthropoid, or a pre­ barium was present. In carrying out the absorption anthropoid, or an Old World monkey or a tarsioid ; of carbon dioxide by barium metal in the stainless but we think the evidence afforded by this new skull steel furnace it was found that when the pressure of Plesianthropus shows that the Australopithecinre at which the gas was admitted was less than about and man are very closely allied, and that these small­ 10·1 mm. of mercury, the yield of acetylene was brained man-like beings were very nearly human. variable and only about 45 per cent. Good yields R. BROOM were obtained when the carbon dioxide at its full J. T. RoBINSON pressure was admitted to the furnace before raising Transvaal Museum, Pretoria. the temperature above 400° C.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • 1 Vita Peter J. Stang Personal Data
    VITA PETER J. STANG PERSONAL DATA: BORN: November 17, 1941, Nurnberg, Germany CITIZENSHIP: U.S.A. (Naturalized, June, 1962) MARRIED: 1969, Christine M.E. Schirmer CHILDREN: Antonia (b. 1973); B.S. Brown Univ. 1995; M.D. and MBA McGill Univ. 2001 Alexandra (b. 1977); Honors B.S. Univ. of Utah 2000 ADDRESS: 1406 S Chancellor Way, Salt Lake City, Utah 84108 Chemistry Department, 315 S 1400 E, Rm. 2020, University of Utah, Salt Lake City, Utah 84112 PHONE: Office – (801) 581-8329; Home – (801) 581-9749; FAX: Office – (801) 581-8433 EDUCATION B.S. Chemistry, 1963, DePaul University, Chicago, Illinois (Magna Cum Laude) Ph.D., Chemistry, 1966, University of California, Berkeley (NIH Fellow, with A. Streitwieser) Postdoctoral, 1966-68, Princeton University (NIH Fellow, with P.v.R. Schleyer) ACADEMIC EXPERIENCE David P. Gardner Chair of Chemistry, 2014-present Distinguished Professor of Chemistry, University of Utah, 1992-present Dean, College of Science, University of Utah, 1997-2007 Chairperson, Department of Chemistry, University of Utah, 1989-1995 Professor, University of Utah, 1979-1992 Honorary Professor of Chemistry, CAS Institute of Chemistry, Beijing, China Honorary Professor, Zhejiang Univ., East China Normal Univ. and East China Univ. of Science and Technology, Soochow University, Nanjing Normal University, University of Science & Technology of China Senior Fellow, Loker Hydrocarbon Research Inst., U. of Southern Calif. 1991-Present Visiting Scientist, MIT, Cambridge, Mass., 1978 Associate Professor, University of Utah, 1975-79 Assistant Professor, University of Utah, 1969-75 Instructor, Princeton University, 1968-69 RESEARCH INTERESTS Molecular Architecture via Coordination: Formation of discrete supramolecular species with well defined geometries and shapes via self-assembly (molecular triangles, squares, rectangles, pentagons, hexagons, 3D assemblies).
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Lewis Acid Catalyzed Intramolecular Condensation of Ynol Ether-Acetals
    ORGANIC LETTERS 2012 Lewis Acid Catalyzed Intramolecular Vol. 14, No. 23 Condensation of Ynol Ether-Acetals. 6100–6103 Synthesis of Alkoxycycloalkene Carboxylates Vincent Tran and Thomas G. Minehan* Department of Chemistry and Biochemistry, California State University, Northridge 18111 Nordhoff Street, Northridge, California 91330, United States [email protected] Received November 3, 2012 ABSTRACT Treatment of ynol ether-tethered dialkyl acetals with catalytic quantities of scandium triflate in CH3CN gives rise to five-, six-, and seven-membered alkoxycycloalkene carboxylates in good to excellent yields. Tri- and tetrasubstituted carbocyclic and heterocyclic alkenes may be formed by this method, and the products obtained may serve as useful intermediates for natural product synthesis. Alkoxycycloalkene carboxylates are highly useful trialkyl phosphonacetate.5 Since the efficiency of this proto- starting materials for organic synthesis (Figure 1). col is often low, the development of an alternative method for Stereoselective introduction of carbon substituents the preparation of cycloalkenol carboxylates of varying ring β to the ester functional group may be accomplished sizes would clearly be of value for natural product synthesis. by allylic substitution or Michael addition reactions, Here we report our efforts toward the realization of this goal as shown by Villieras et al.1 Ogasawara has prepared and detail a novel Lewis acid catalyzed condensation of ynol the nitraria alkaloids (þ)-nitramine, (þ)-isonitramine, and ether-acetals
    [Show full text]
  • Download Download
    — Studies on Lithium Acetylide Kenneth N. Campbell and Barbara K. Campbell, The University of Notre Dame In contrast to the large amount of work done on the acetylene derivatives of sodium, potassium and calcium, little attention has been paid to the analogous compounds of lithium. In 1898 Moissani prepared lithium acetylide on a small scale, by the action of acetylene on a liquid ammonia solution of lithium. He reported that lithium acetylide was less soluble in liquid ammonia than sodium acetylide, and that when isolated from the solvent, it was less stable, undergoing decomposition with evolu- tion of acetylene. On the basis of the weight of lithium acetylide obtained from a given weight of lithium, and from the amount of acetylene liberated on hydrolysis, he assigned to lithium acetylide the formula C2Li2.C2H2.2NH3. Since that time no references to lithium acetylide or lithium alkylacetylides have appeared in the literature. It was the pur- pose of the present work, therefore, to prepare and analyze lithium acetylide and a lithium alkylacetylide, and to compare their reactions with those of the better known sodium derivatives. Experimental Procedure Preparation of Lithium and Sodium Acetylides.—Acetylene gas, washed by bubbling through concentrated sulfuric acid, was passed into two liters of liquid ammonia, while 7 g. (1 mole) of metallic lithium, cut in small pieces, was added gradually, with stirring, at a rate such that the solution did not develop a permanent deep blue color. When the solution became colorless after the addition of the last piece of lithium, the flow of acetylene was stopped.
    [Show full text]
  • Electrophilic Alkynylation of Ketones Using Hypervalent Iodine
    ChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemcomm Page 1 of 4 Chemical Communications ChemComm Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Electrophilic Alkynylation of Ketones Using Hypervalent Iodine Aline Utaka a, Livia N. Cavalcanti a, and Luiz F. Silva Jr. a* Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 A new method for the electrophilic α-alkynylation of ketones in the presence of gold and an amine. The alkynation product was was developed using hypervalent iodine under mild and a minor component. 55 Herein, we report a practical, metal-free and efficient metal-free conditions.
    [Show full text]
  • Design, Synthesis and in Vitro Investigations of Novel Fluorescently Labeled Steroids
    Design, Synthesis and in vitro investigations of Novel Fluorescently Labeled Steroids by Nisal U. Gajadeera B.S. in Chemistry, Northeastern University A thesis submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Master of Science December 2018 Thesis directed by Robert Hanson Matthews Distinguished University Professor of Chemistry and Chemical Biology 1 Acknowledgements Firstly, I would like to thank my advisor, Dr Robert Hanson for providing me the opportunity to work in his lab. His guidance and support has been incredible for me throughout my time at Northeastern. I would also like to take this opportunity to thank all the past Hanson lab members, Dr Emily Corcoran, Dr James Teh and Kelton Barnsely. I would also like to thank Dr Vladimir Torchilin and Dr Tatiana Levchenko for the opportunity to conduct cell studies in their lab. My heartfelt gratitude goes to Dr Livia Mendez for conducting all the incubation studies and competitive binding studies. It was under her guidance that I learned the techniques such as passaging cells, FACS and fluorescence microscopy. She played a huge role the in vivo data gathering for my compounds. I would also like to take this opportunity to thank Dr Michael Pollastri and the members of his group, especially Dr Dana Klug, Dr Lori Ferrins and Dr Baljinder Singh for the support they’ve shown in my research by allowing me to use their analytical instruments ( LC-MS). Without their support, my research would not have been possible. A special thanks goes to - John Bottomy and Brian D’Amico for the tremendous support they’ve given in helping me with my TA duties.
    [Show full text]
  • Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes
    AngewandteA Journal of the Gesellschaft Deutscher Chemiker International Edition Chemie www.angewandte.org Accepted Article Title: Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes. Authors: Dongseong Park, Carina I. Jette, Jiyun Kim, Woo-ok Jung, Yongmin Lee, Jongwoo Park, Seungyoon Kang, Min Su Han, Brian Stoltz, and Sukwon Hong This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201913057 Angew. Chem. 10.1002/ange.201913057 Link to VoR: http://dx.doi.org/10.1002/anie.201913057 http://dx.doi.org/10.1002/ange.201913057 Angewandte Chemie International Edition 10.1002/anie.201913057 COMMUNICATION Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes. Dongseong Park, 1,# Carina I. Jette, 2,# Jiyun Kim, 1,# Woo-Ok Jung, 1 Yongmin Lee, 3 Jongwoo Park, 4 Seungyoon Kang, 1 Min Su Han, 1 Brian M. Stoltz, 2,* and Sukwon Hong1,3,* Abstract: Cation-binding salen nickel catalysts were developed for A. Examples of bioactive compounds containing a chiral trifluorocarbinol the enantioselective alkynylation of trifluoromethyl ketones in high MeO HO CF H 3 F C N O yield (up to 99%) and high enantioselectivity (up to 97% ee).
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptTetrahedron Author Manuscript Lett. Author Author Manuscript manuscript; available in PMC 2017 January 20. Published in final edited form as: Tetrahedron Lett. 2016 January 20; 57(3): 415–419. doi:10.1016/j.tetlet.2015.12.041. A Single-Flask Synthesis of α-Alkylidene and α-Benzylidene Lactones from Ethoxyacetylene, Epoxides/Oxetanes, and Carbonyl Compounds Kevin Nga, Vincent Trana, and Thomas Minehana,* aDepartment of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA Abstract Low temperature treatment of (ethoxyethynyl)lithium with epoxides or oxetanes in the presence of BF3•OEt2, followed by addition of aldehydes or ketones and warming to room temperature, affords structurally diverse five- and six-membered α-alkylidene and α-benzylidene lactones (5) in good to excellent yields. This one-pot process, in which three new carbon-carbon bonds and a ring are formed, affords substituted α,β-unsaturated lactones of predominantly Z-configuration. The reaction likely occurs via alkyne-carbonyl metathesis of a hydroxy-ynol ether intermediate, acid-promoted alkene E- to Z-isomerization, and lactonization. Graphical abstract Keywords Ynol ethers; α-alkylidene lactones; α-benzylidene lactones; tandem reactions; BF3•OEt2 promotion The α–alkylidene lactone moiety is found in numerous synthetically challenging and biologically important natural products, many of which possess anticancer, antimalarial, antibacterial, antifungal, antiviral, and/or anti-inflammatory activities.1 Of particular significance are the numerous members of the α-methylene-γ-butyrolactone family of sesquiterpenes, to which belong the germacranolides, (pseudo)guaianolides, eudesmanolides, and the cembranolides.2 Recently, synthetic attention has also been *Corresponding author.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]