The Genetic Transformation of Bone Biology

Total Page:16

File Type:pdf, Size:1020Kb

The Genetic Transformation of Bone Biology Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The genetic transformation of bone biology Gerard Karsenty1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 The skeleton, like every organ, has specific developmen- condensations differentiate into chondrocytes forming tal and functional characteristics that define its identity the “cartilage anlagen” of the future bones. In the pe- in biologic and pathologic terms. Skeleton is composed riphery of the anlage, cells from the perichondrium dif- of multiple elements of various shapes and origins spread ferentiate into osteoblasts, while the periphery of the throughout the body. Most of these skeletal elements are anlage become hypertrophic. Eventually, the matrix sur- formed by two different tissues, cartilage and bone, and rounding these hypertrophic chondrocytes calcifies and each of these two tissues has its own specific cell types: blood vessel invasion of the calcified cartilage brings in the chondrocyte in cartilage, and the osteoblast and os- osteoblasts ∼14.5–15.5 dpc (Horton 1993; Erlebacher et teoclast in bone. Finally, each of these cell types has its al. 1995). Once a bone matrix is deposited the bone mar- own differentiation pathway, physiological functions, row forms and the first osteoclasts appear (Hofstetter et and therefore pathological conditions. The complexity of al. 1995). Thus, sequential appearance of a cartilage an- this organ in terms of developmental biology, physiol- lage, calcified cartilage, and then bona fide bone charac- ogy, and pathology, along with the multitude of impor- terizes the endochondral ossification. Regardless of the tant conceptual advances in our understanding of skel- mode of ossification, osteoblast differentiation precedes etal biology, are such that it has become impossible to osteoclast differentiation. present in a short review an up-to-date summary of both One peculiar characteristic of bone resides in its physi- cartilage and bone biology. Thus, this review will con- ology. Bone is the only organ that contains a cell type, centrate only on bone biology beyond embryonic pat- the osteoclast, whose only function is to constantly de- terning. The entire bone field is dominated by the impact stroy the organ hosting it. This destruction, or resorp- of degenerative diseases, such as osteoporosis. This mere tion, of bone occurs throughout life and in healthy indi- fact does influence the research in bone biology and will viduals is counterbalanced by de novo bone formation in influence the topics presented in this review. It is no a process called bone remodeling (Frost 1969). It is surprise that, like for most other organogenesis pro- through bone remodeling that bone mass is maintained cesses, human and mouse genetic studies have been a at a constant level between the end of puberty and go- major driving force in redefining bone biology. Genetic nadal failure, and bone remodeling is the process affected studies have opened new areas of research, elucidated at during osteoporosis, a disease characterized at the cellu- the molecular level some known phenomena, and some- lar level by a relative increase of bone resorption over times challenged untested textbook assumptions, thus bone formation (Rodan et al. 1996). Recently, we have transforming the field profoundly. begun to understand at the molecular level how bone In mammals, bone development is a late embryonic resorption is controlled. It is striking how little we know event as it is the last event of skeleton development. about the molecular mechanisms governing bone forma- Once the mesenchymal condensations prefiguring each tion. future skeletal element have formed, between 10.5 and The first goal of this review is to present an up-to-date 12.5 days postcoitum (dpc) in mouse, they can evolve perspective on the genetic control of cell differentiation along two different paths. In some skeletal elements, in the skeleton. The second goal is to describe our cur- prefiguring part of the skull and the clavicles, the cells of rent understanding of bone physiology and pathology. the mesenchymal condensations differentiate directly The last and most elusive goal is to use our current into osteoblasts that appear at 15.5 dpc of mouse devel- knowledge of bone biology to formulate, along the way, opment (Hall and Miyake 1992; Huang et al. 1997). This some of the novel questions that need to be addressed. process is called intramembranous ossification. For the Before going any further in this review a few definitions rest of the future skeleton, cells of the mesenchymal are important as these words will be commonly used to summarize phenotypic abnormalities. A loss of function of the osteoclast leads to osteopetrosis, a gain of function of the osteoblast leads to osteosclerosis, and a relative This paper is dedicated to the memory of Dr. Louis Avioli. 1Corresponding author. increase of bone resorption over bone formation results E-MAIL [email protected]; FAX (713) 798-1465. in osteoporosis. GENES & DEVELOPMENT 13:3037–3051 © 1999 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/99 $5.00; www.genesdev.org 3037 Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Karsenty Regulation of osteoclast differentiation and function mous manner to differentiate along a particular lineage, thus, one of the challenges in the field will be to identify By far, the aspect of bone biology that has made the most the extracellular signals that induce the expression of progress in the last few years is the genetic control of Pu.1 and of other cell-specific transcription factors in- osteoclast differentiation and function. This is why the volved in osteoclast differentiation. biology of the osteoclast, the cell type resorbing miner- Another transcription factor that plays a critical role alized bone matrix, is discussed first in this review even during osteoclast differentiation is c-fos (for review, see though it is the last specific cell type of the skeleton to Grigoriadis et al. 1995). c-fos is the cellular homolog of appear during development. The systematic and logical the v-fos oncogene and is a major component of the AP-1 study of many mouse mutants generated to study osteo- transcription factor. The first indication that c-fos might clast differentiation or, more often for other reasons, has play a role in bone cell differentiation came from the led to the establishment of a fairly detailed genetic cas- observation that v-fos-containing constructs injected cade controlling either osteoclast differentiation or func- into rodents led to the appearance of osteosarcomas (ma- tion. Some of this progress has important implications lignant tumors of mesenchymal origin with the ability not only for bone resorption but is also, as discussed to form bone tissue) (Ward and Young 1976). Likewise, below, leading to novel hypotheses about the molecular transgenic mice expressing high levels of c-fos in mul- control of bone formation. tiple tissues and cell types eventually developed only The osteoclast belongs to the monocyte/macrophage one type of tumor: chondroblastic osteosarcoma, and cell lineage (Teitelbaum et al. 1996). Phenotypically, the clonal cell lines derived from these transgenic mice have osteoclasts are distinct from other cells in this lineage as altered osteoblastic gene expression (Grigoriadis et al. it is a giant multinucleated cell (1–50 nuclei per cell 1993). Given the results of these overexpression types of depending of the species) found in contact with calcified studies it came as a surprise that the deletion of c-fos in bone surfaces. Only a relatively small number of genes mice led to an early arrest of osteoclast differentiation have been shown to be expressed in osteoclasts and not without any overt consequences on osteoblast differen- in other monocyte/macrophage cells, yet more regula- tiation. As a result of this block in osteoclast differen- tory genes have been shown to control osteoclast differ- tiation, the main phenotype of the c-fos-deficient mice is entiation than for any other cell type in the skeleton. osteopetrosis (Johnson 1992; Wang et al. 1992). The pres- ence of a large number of macrophages in c-fos-deficient mice places c-fos downstream of Pu.1 in the genetic Transcriptional control of osteoclast differentiation pathway controlling osteoclast differentiation (Fig. 1). and function The osteopetrotic phenotype of the c-fos-deficient mice A recurrent theme in bone biology is that many of the was rescued by bone marrow transplantation and by ex- genes that were identified as regulators of cell differen- tiation or function have been known for a long time. Yet, perhaps because bone cells are more difficult to isolate, or because skeletogenesis appeared less attractive ini- tially than other processes of organogenesis, they were not originally studied in the context of the skeleton. Pu.1 function in osteoclast differentiation is one of the best illustrations of this. Pu.1 is an ETS domain-containing transcription factor that is expressed specifically in the monocytic and B lymphoid lineages (Klemsz et al. 1990). It has been known for several years that the deletion of Pu.1 results in a multilineage defect in the generation of progenitors for B and T lymphocytes, monocytes, and granulocytes (Scott et al. 1994; McKercher et al. 1996). The fact that Pu.1 was thought to regulate transcription of c-fms, the gene encoding the receptor for M-CSF (Sherr et al. 1985), which plays an important role in osteoclast biology (see Figure 1. Genetic control of osteoclast differentiation. Osteo- below), led Tondravi et al. (1996) to explore the possibil- clasts differentiate from a myeloid progenitor cell common with ity that Pu.1 might also control osteoclast development. macrophages. This process is under the control of the transcrip- As hypothesized by this group, Pu.1-deficient mice ex- tion factor Pu.1 and of a growth factor, M-CSF.
Recommended publications
  • ICRS Heritage Summit 1
    ICRS Heritage Summit 1 20th Anniversary www.cartilage.org of the ICRS ICRS Heritage Summit June 29 – July 01, 2017 Gothia Towers, Gothenburg, Sweden Final Programme & Abstract Book #ICRSSUMMIT www.cartilage.org Picture Copyright: Zürich Tourismus 2 The one-step procedure for the treatment of chondral and osteochondral lesions Aesculap Biologics Facing a New Frontier in Cartilage Repair Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Biologic approaches to tissue repair and regeneration represent the future in healthcare worldwide. Available Sizes Aesculap Biologics is leading the way. 2x2 cm Learn more at www.aesculapbiologics.com 5x5 cm NEW SIZE Aesculap Biologics, LLC | 866-229-3002 | www.aesculapusa.com Aesculap Biologics, LLC - a B. Braun company Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 ICRS Heritage Summit 3 The one-step procedure for the treatment of chondral and osteochondral lesions Visit Anika at Booth #16 Easy and fast to be applied via arthroscopy. Fixation is not required in most cases. The only entirely hyaluronic acid-based scaffold supporting hyaline-like cartilage regeneration Available Sizes 2x2 cm 5x5 cm NEW SIZE Website: http://hyalofast.anikatherapeutics.com E-mail: [email protected] Telephone: +39 (0)49 295 8324 4 Level 1 Study Proves Efficacy of ACP in
    [Show full text]
  • Defining Osteoblast and Adipocyte Lineages in the Bone Marrow
    Bone 118 (2019) 2–7 Contents lists available at ScienceDirect Bone journal homepage: www.elsevier.com/locate/bone Full Length Article Defining osteoblast and adipocyte lineages in the bone marrow T ⁎ J.L. Piercea, D.L. Begunb, J.J. Westendorfb,c, M.E. McGee-Lawrencea,d, a Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA b Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA c Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA d Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA ARTICLE INFO ABSTRACT Keywords: Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for he- Bone marrow mesenchymal/stromal cell matopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting Osteogenesis of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst Osteoblast these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, Adipogenesis adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue Adipocyte homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis Marrow fat Aging slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pa- thological and aging conditions.
    [Show full text]
  • Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration
    Journal of Functional Morphology and Kinesiology Review Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration Graziana Monaco 1,2, Alicia J. El Haj 2,3, Mauro Alini 1 and Martin J. Stoddart 1,2,* 1 AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; [email protected] (G.M.); [email protected] (M.A.) 2 School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK; [email protected] 3 Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK * Correspondence: [email protected]; Tel.: +41-81-414-2448 Abstract: Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions. Keywords: bioreactors; osteochondral; integration; tissue engineering Citation: Monaco, G.; El Haj, A.J.; Alini, M.; Stoddart, M.J.
    [Show full text]
  • REVIEW ARTICLE Interactions Between GH, IGF-I, Glucocorticoids
    0031-3998/02/5202-0137 PEDIATRIC RESEARCH Vol. 52, No. 2, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. REVIEW ARTICLE Interactions between GH, IGF-I, Glucocorticoids, and Thyroid Hormones during Skeletal Growth HELEN ROBSON, THOMAS SIEBLER, STEPHEN M. SHALET, AND GRAHAM R. WILLIAMS Department of Clinical Research [H.R.], Department of Endocrinology [S.M.S.], Christie Hospital National Health Service Trust, Manchester, U.K.; University Children’s Hospital, University of Leipzig, Leipzig, Germany [T.S.]; IC Molecular Endocrinology Group, Division of Medicine and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College School of Science Technology and Medicine, Hammersmith Hospital, London, U.K. [G.R.W.] ABSTRACT Linear growth occurs during development and the childhood Abbreviations years until epiphyseal fusion occurs. This process results from 5'-DI, 5'-iodothyronine deiodinase endochondral ossification in the growth plates of long bones and FGF, fibroblast growth factor is regulated by systemic hormones and paracrine or autocrine FGFR, fibroblast growth factor receptor factors. The major regulators of developmental and childhood GC, glucocorticoid growth are GH, IGF-I, glucocorticoids, and thyroid hormone. GHR, GH receptor Sex steroids are responsible for the pubertal growth spurt and GR, glucocorticoid receptor epiphyseal fusion. This review will consider interactions between HSPG, heparan sulfate proteoglycan GH, IGF-I, glucocorticoids, and thyroid hormone during linear 11␤HSD, 11␤-hydroxysteroid dehydrogenase growth. It is well known from physiologic and clinical studies IGF-IR, IGF-I receptor that these hormones interact at the level of the hypothalamus and IGFBP, IGF binding protein pituitary. Interacting effects on peripheral tissues such as liver are Ihh, Indian hedgehog also well understood, but we concentrate here on the epiphyseal JAK-2, Janus-activated kinase-2 growth plate as an important and newly appreciated target organ PTHrP, PTH-related peptide for convergent hormone action.
    [Show full text]
  • The Epiphyseal Plate: Physiology, Anatomy, and Trauma*
    3 CE CREDITS CE Article The Epiphyseal Plate: Physiology, Anatomy, and Trauma* ❯❯ Dirsko J. F. von Pfeil, Abstract: This article reviews the development of long bones, the microanatomy and physiology Dr.med.vet, DVM, DACVS, of the growth plate, the closure times and contribution of different growth plates to overall growth, DECVS and the effect of, and prognosis for, traumatic injuries to the growth plate. Details on surgical Veterinary Specialists of Alaska Anchorage, Alaska treatment of growth plate fractures are beyond the scope of this article. ❯❯ Charles E. DeCamp, DVM, MS, DACVS athologic conditions affecting epi­ foramen. Growth factors and multipotent Michigan State University physeal (growth) plates in imma­ stem cells support the formation of neo­ ture animals may result in severe natal bone consisting of a central marrow P 2 orthopedic problems such as limb short­ cavity surrounded by a thin periosteum. ening, angular limb deformity, or joint The epiphysis is a secondary ossifica­ incongruity. Understanding growth plate tion center in the hyaline cartilage forming anatomy and physiology enables practic­ the joint surfaces at the proximal and distal At a Glance ing veterinarians to provide a prognosis ends of the bones. Secondary ossification Bone Formation and assess indications for surgery. Injured centers can appear in the fetus as early Page E1 animals should be closely observed dur­ as 28 days after conception1 (TABLE 1). Anatomy of the Growth ing the period of rapid growth. Growth of the epiphysis arises from two Plate areas: (1) the vascular reserve zone car­ Page E2 Bone Formation tilage, which is responsible for growth of Physiology of the Growth Bone is formed by transformation of con­ the epiphysis toward the joint, and (2) the Plate nective tissue (intramembranous ossifica­ epiphyseal plate, which is responsible for Page E4 tion) and replacement of a cartilaginous growth in bone length.3 The epiphyseal 1 Growth Plate Closure model (endochondral ossification).
    [Show full text]
  • Postnatal Maturation and Radiology of the Growing Spine Sharon E
    Neurosurg Clin N Am 18 (2007) 431–461 Postnatal Maturation and Radiology of the Growing Spine Sharon E. Byrd, MDa,b,*, Elizabeth M. Comiskey, MDa,c aRush Medical College, 1653 West Congress Parkway, Chicago, IL 60612, USA bSection of Neuroradiology, Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA cSection of Pediatric Radiology, Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA The spine is part of the supporting framework Anatomy of the body and is composed of vertebrae, discs, The spine consists of osseous and soft tissue and ligaments. It continues to mature postnatally, components that provide support and mobility for with marked changes occurring predominantly in the body and a protective covering for the central the vertebrae during infancy, childhood, and early nervous system. The vertebral column is com- adolescence. Maturation of the spine is not only posed of 7 cervical, 12 thoracic, and 5 lumbar manifested by the ossification process but by vertebrae; the sacrum (composed of 5 fused changes in the shape of the vertebrae, spinal vertebrae that become progressively smaller); curvature, spinal canal, discs, and bone marrow. and the coccyx (3 to 5 rudimentary vertebrae). A The parts of the spine and the maturation process typical vertebra consists of a body and neural can be evaluated by various imaging modalities arch. The neural arch is composed of bilateral such as conventional plain spine imaging (CPSI pedicles, laminae, superior and inferior articulat- [plain spine radiography]), CT, and MRI.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
    Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage.
    [Show full text]
  • The Histology of Epiphyseal Union in Mammals
    J. Anat. (1975), 120, 1, pp. 1-25 With 49 figures Printed in Great Britain The histology of epiphyseal union in mammals R. WHEELER HAINES* Visiting Professor, Department of Anatomy, Royal Free Hospital School of Medicine, London (Accepted 11 November 1974) INTRODUCTION Epiphyseal union may be defined as beginning with the completion of the first mineralized bridge between epiphyseal and diaphyseal bone and ending with the complete disappearance of the cartilaginous epiphyseal plate and its replacement by bone and marrow. The phases have been described by Sidhom & Derry (1931) and many others from radiographs, but histological material showing union in progress is rare, probably because of the rapidity with which union, once begun, comes to completion (Stephenson, 1924; Dawson, 1929). Dawson (1925, 1929) described the histology of 'lapsed union' in rats, where the larger epiphyses at the 'growing ends' of the long bones remain un-united through- out life. He and Becks et al. (1948) also discussed the early and complete type of union found at the distal end of the humerus in the rat. Here a single narrow per- foration pierced the cartilaginous plate near the olecranon fossa and later spread to destroy the whole plate. Lassila (1928) described a different type of union in the metatarsus of the calf, with multiple perforations of the plate. Apart from a few notes on human material (Haines & Mohiuddin, 1960, 1968), nothing else seems to have been published on the histology of union in mammals. In this paper more abundant material from dog and man is presented and will serve as a basis for discussion of the main features of the different types of union.
    [Show full text]
  • Delineating the Heterogeneity of Matrix-Directed Differentiation Toward Soft and Stiff Tissue Lineages Via Single-Cell Profiling
    Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling Shlomi Briellea,b,c, Danny Bavlid, Alex Motzikd, Yoav Kan-Torc, Xue Sund, Chen Kozulind, Batia Avnie, Oren Ramd,1, and Amnon Buxboima,b,c,1 aAlexander Grass Center for Bioengineering, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; bDepartment of Cell and Developmental Biology, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; cRachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; dDepartment of Biological Chemistry, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; and eDepartment of Bone Marrow Transplantation, Hadassah Medical Center, 91120 Jerusalem, Israel Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 7, 2021 (received for review August 2, 2020) Mesenchymal stromal/stem cells (MSCs) form a heterogeneous (7, 8). Characterizing MSC heterogeneity and its clinical implica- population of multipotent progenitors that contribute to tissue tions will thus improve experimental reproducibility and biomedical regeneration and homeostasis. MSCs assess extracellular elasticity standardization. by probing resistance to applied forces via adhesion, cytoskeletal, MSCs are highly sensitive to the mechanical properties of their and nuclear mechanotransducers that direct differentiation to- microenvironment. These extracellular, tissue-specific cues are ward soft or stiff tissue lineages.
    [Show full text]
  • The Osteocyte: from “Prisoner” to “Orchestrator”
    Journal of Functional Morphology and Kinesiology Review The Osteocyte: From “Prisoner” to “Orchestrator” Carla Palumbo * and Marzia Ferretti Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; [email protected] * Correspondence: [email protected] Abstract: Osteocytes are the most abundant bone cells, entrapped inside the mineralized bone matrix. They derive from osteoblasts through a complex series of morpho-functional modifications; such modifications not only concern the cell shape (from prismatic to dendritic) and location (along the vascular bone surfaces or enclosed inside the lacuno-canalicular cavities, respectively) but also their role in bone processes (secretion/mineralization of preosseous matrix and/or regulation of bone remodeling). Osteocytes are connected with each other by means of different types of junctions, among which the gap junctions enable osteocytes inside the matrix to act in a neuronal-like manner, as a functional syncytium together with the cells placed on the vascular bone surfaces (osteoblasts or bone lining cells), the stromal cells and the endothelial cells, i.e., the bone basic cellular system (BBCS). Within the BBCS, osteocytes can communicate in two ways: by means of volume transmission and wiring transmission, depending on the type of signals (metabolic or mechanical, respectively) received and/or to be forwarded. The capability of osteocytes in maintaining skeletal and mineral homeostasis is due to the fact that it acts as a mechano-sensor, able to transduce mechanical strains into biological signals and to trigger/modulate the bone remodeling, also because of the relevant role of sclerostin secreted by osteocytes, thus regulating different bone cell signaling pathways.
    [Show full text]