UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA E EVOLUÇÃO

REVISÃO DO GÊNERO PERS. (LYCOPERDACEAE, ) MEDIANTE ANÁLISES MORFOLÓGICAS E MOLECULARES

DÔNIS DA SILVA ALFREDO ______Tese de Doutorado Natal/RN, março de 2017 DÔNIS DA SILVA ALFREDO

REVISÃO DO GÊNERO LYCOPERDON PERS. (LYCOPERDACEAE, AGARICALES) MEDIANTE ANÁLISES MORFOLÓGICAS E MOLECULARES

Tese de doutorado apresentada ao

Programa de Pós-Graduação em Sistemática e Evolução da Universidade Federal do Rio Grande do Norte, em cumprimento às exigências para a obtenção do título de Doutor em Sistemática e Evolução

Área de concentração: taxonomia e sistemática Orientador: Dr. Iuri Goulart Baseia

Coorientadora: Dra. María Paz Martín Coorientador: Dr. Paulo Marinho

NATAL – RN 2017 0

Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Leopoldo Nelson - •Centro de Biociências - CB

Alfredo, Dônis da Silva. Revisão do gênero Lycoperdon Pers. (Lycoperdaceae, Agaricales) mediante análises morfológicas e moleculares / Dônis da Silva Alfredo. - Natal, 2017. 298 f.: il.

Tese (Doutorado) - Universidade Federal do Rio Grande do Norte. Centro de Biociências. Programa de Pós-Graduação em Sistemática e Evolução. Orientador: Dr. Iuri Goulart Baseia. Coorientadora: Dra. María Paz Martín. Coorientador: Dr. Paulo Marinho.

1. - Tese. 2. Fungos gasteroides - Tese. 3. ITS barcode - Tese. 4. - Tese. 5. Taxonomia - Tese. I. Baseia, Iuri Goulart. II. Martín, María Paz. III. Marinho, Paulo. IV. Universidade Federal do Rio Grande do Norte. V. Título.

RN/UF/BSE-CB CDU 582.284 DÔNIS DA SILVA ALFREDO

REVISÃO DO GÊNERO LYCOPERDON PERS. (LYCOPERDACEAE, AGARICALES) MEDIANTE ANÁLISES MORFOLÓGICAS E MOLECULARES

Tese de doutorado apresentada ao

Programa de Pós-Graduação em Sistemática e Evolução da Universidade Federal do Rio Grande do Norte, em cumprimento às exigências para a obtenção do título de Doutor em Sistemática e Evolução

Aprovado em: 30 de março de 2017

Comissão examinadora

Dr. Luiz Fernando Pascholati Gusmão, UEFS Examinador Externo à instituição

Dra. Tiara Sousa Cabral, INPA Examinadora Externa à Instituição

Dr. Bruno Cavalvanti Bellini, UFRN Examinador Interno

Dra. Raquel Cordeiro Theodoro, UFRN Examinadora Interna

Dr. Iuri Goulart Baseia, UFRN Presidente

2

Dedico aos meus pais José Benedito Alfredo e Isabel S. Alfredo por sempre acreditarem e me incentivarem a chegar até aqui. 3

AGRADECIMENTOS

Primeiramente gostaria de agradecer à Universidade Federal do Rio Grande do Norte por oferecer o curso de doutorado no Programa de Pósgraduação em Sistemática e Evolução. Também, devo agradecimentos à Coordenação de Aperfeiçoamente de Pessoa de Nível Superior / CAPES, por proporcionar o apoio financeio de bolsa de estudo no Brasil e estágio sanduíche na Espanha (Programa Ciéncias Sem Fronteiras), que viabilizou diversos resultados e parcerias; ao Conselho Nacional de Desenvolvimento Científico e Técnológico / CNPq, pelo suporte financeiro do Projeto Pesquisador Visitante Especial (PVE-MEC/MCTI/CNPq/FAPs nº71/2013), sem o qual as análises moleculares e o intercambio com o/a pesquisador(a) do exterior seria muito difícil de se realizar; também agradecer ao Programa de Pesquisa em Biodiversidade do Semiárido (PPBio/Semiárido) por ter custeado parte das análises em microscópio eletrônico de varredura.

Acima de tudo, não conseguiria encontrar palavras para agradecer ao meu orientador Prof. Dr. Iuri G. Baseia. Pois, desde que nossa parceria se formou a confiança mútua foi aumentando e o respeito por este excelente pesquisador tomou grandes proporções. Professor Iuri, sempre esteve disposto a ajudar, escutar e guiar em todas a situações; como um pai sempre se preocupou não somente com a situação acadêmica de seus alunos, mas também com a vida pessoal. Tenho uma profunda gratidão a esse parceiro profissional e amigo. Se hoje eu alcancei uma situação profissional melhor foi porque seis anos atrás ele meu deu um voto de confiança, e desde então, tenho me esforçado todos os dias para corresponder a confiança dada por ele. Professor muitíssimo obrigado! Claro, não poderia me esquecer de sua adorável esposa Tereza Cristina O. Galvão, pelos momentos alegres e descontraídos em nossas confraternizações. À ambos, que são meus padrinhos de casamento, Obrigado!

Também quero deixar meu profundo agradecimento a minha coorientadora no exterior Dra. Maria P. Martín, que foi fundamental para o sucesso dos estudos moleculares além das preciosas orientações na construção da tese. Profa. MariPaz, saiba que desejo tudo de bom a ti e muito sucesso em sua vida profissional e pessoal. Saiba que tenho por ti um profundo respeito e carinho. Agradeço pelos momentos vividos na Espanha, e por ter acolhido a mim e minha esposa como membros de sua família. Aprendi muito contigo durantes esses anos, ensinamentos que jamais irei me esquecer. Tu és uma

4

profissional de excelência, uma verdadeira amiga que irei levar no fundo de meu coração. Agradeço também, a Paco, Analí e Eva, todos vocês fizeram a distância e as saudades do Brasil e de nossos familiares ficarem menos perceptíveis. Tenho vocês como parte da família.

Ao meu coorientador Prof. Dr. Paulo Marinho, que me confiou o acesso ao seu laboratório de biologia molecular, também por me aceitar como aluno no estágio a docência, meus eternos agradecimentos, foi ótima nossa parceria na ciência e seus ótimos conselhos.

Aos Professores Doutores Bruno C. Bellini, Raquel C. Theodoro, Tiara Cabral e Luis Fernando P. Gusmão, fico muito agradecido por aceitarem a participarem da banca avaliadora; aos Professores Doutores Bruno T. Goto e a Vagner G. Cortez, obrigado por se disporem a participarem como suplentes da banca avaliadora.

De maneira muito especial, sou eternamente grato aos meus pais José Benedito Alfredo e Isabel da Silva Alfredo, que sempre me incentivaram a continuar meus estudos; por se preocuparem todos os dias pela distância que o desafio de estudar nos impôs; principalmente por terem me ensinado a trabalhar sempre com honestidade e sempre preserverar nos momentos difíceis. Do fundo do meu coração, muito obrigado! Amo vocês!

Aproveito para deixar meus agradecimentos aos meus irmãos, pela preocupação e pelo carinho que sempre tivemos um pelo outro.

Aos colegas do Laboratório de Biologia de Fungos pela companhia e preciosos momentos de convivência, e em especial a Rafaela Gurgel e Cinta Samara, pelo trabalho em enquipe e aprendizado mútuo. Também, agredeço a T. Accioly por ter cedido gentilmente os espécimes de L. exoelongatum.

Aos curadores dos herbários BAFC, CORDC, FH/HUH, LG, VDEMOULIN, MA-Fungi, MCF-Fungi, NY, K. ICN, PACA, UFRN-Fungos, pelos empréstimos das exsicatas. Em especial as pesquisadoras Dra. Laura Domínguez, Dra. María Luciana Hernández-Caffot e Dra. Silvana Longo por me acolherem estupendamente em minha visita ao herbário IMBIV-Museo Botánico (CORD) de Buenos Aires/Argentina.

5

Ao pesquisador Dr. Francisco de Diego Calonge (Paco), que durante meu doutorado sanduíche no Real Jardím Botánico, Marid/Espanha, me proporcionou ótimos momentos de trocas de experiência, ensinamentos e boas conversas. Da mesma forma, a todos do Real Jardín Botánico, em especial: M. Dueñas, M. Tereza Tellería, Ricarda Riina, Vlademir Sandoval, Javier Fernández-Lopez, Kina Gracia, Irene Villa Machio, Emilio Cabeza, Yolanda León e Yurena Arjona, muito obrigado por proporcionarem uma maravilhosa companhia durante os nove meses que convivemos. Um especial agradecimento à Fátima Duran, por to paciência e disposição em ajudar me nas atividades do laboratório.

Do mesmo modo, deixo meus agradecimentos às pesquisadoras do Iran, Dr. Farideh Moharrek and Tahmineh Shagholi, pelos momentos felizes e divertidos que passamos na Espanha. Também as pesquisadoras Dra. Laura Martinez-Suz e a curadora assistente Dra. Begoña Aguirre-Hudson, que me deram um especial suporte durante minha rápida visita ao herbário do Kew Botanical Gardens. Bem como, a pesquisadora da Macedonia, Dr. Katerina Rusevska, pelo trabalho em equipe realizado, e pela ótima companhia durante as extrações de DNA e alinhamentos das sequências.

Deixo também meus sinceros agradecimentos à Dra. Marian Glenn (Seton Hall University, USA), que exaustivamente realizou as correções da versão em inglês de todos os capítulos da presente tese, um muito obrigado pelo seu tempo e dispocição!

Agradeço aos meus sogros Joaci Lavor e Onelia Lavor pelo apoio durante esses anos, vocês são exemplos a serem seguidos.

Deixo meu agradecimento em especial a minha amada esposa e compamnheira de pesquisa Pâmela Lavor, que esteve comingo em todos os momentos, nas alegrias e nas frustações que às vezes a pesquisa nos proporciona. Também por ser essa maravilhosa pessoa que sempre sabe como me erguer diante das minhas dificuldades não só na pesquisa quanto na vida pessoal. Muito obrigado! Amo você!

Obrigado Deus, por me dar forças para sempre continuar diante das intempéries da vida.

6

Trabalhe duro e em silêncio. Deixe que seu sucesso faça barulho. (Dale Carnegie).

7

RESUMO

Em uma estimativa sobre a biodiversidade da terra acredita-se haver entorno de 50 milhões de espécies e para os fungos acredita-se que essa estimativa gira em torno de 5,1 milhões de espécies, o que levaria cerca de 1000 anos para os taxonomistas identificassem todas essas espécies. Os taxonomistas têm empregado muito esforço para identificar essas espécies de fungos, incluindo o gênero representante dos chamados “puffballs” - Lycoperdon Pers. Durante um longo período, a taxonomia do gênero Lycoperdon se baseou fundamentalmente em caracteres morfológicos, e muitos conceitos adotados para nomear espécies tem se mostrado divergentes entre os taxonomistas. Até o final da década de 80, diversos trabalhos de taxonomia morfológica foram publicados e ajudaram a ampliar o conhecimento sobre a diversidade de espécies de Lycoperdon em quase todos os continentes, no entanto, em muitos casos a morfologia não é suficiente para segregar espécies crípticas, ou esclarecer problemas de divergência quanto a sinonimização de táxons. No início da década de 90 houve uma revolução na taxonomia de fungos com o uso de ferramentas moleculares na classificação de espécies, relacões filogenéticas e identificação novos táxons. Representantes do gênero Lycoperdon foram estudados por meio dessa nova ferramenta somente no início do século 21, e logo em seguida em 2008, com os trabalhos de Larsoon e Jeppson, sendo que alguns gêneros como e foram reconhecidos como subgêneros de Lycoperdon. Durante esse período outra ferramenta passou a ganhar espaço na identificação de espécies por meio de um código de barras molecular, e essa ferramenta passou a ser usada na identificação de animais, plantas e fungos, usando dentre outra, a região espaçadora transcrita interna (ITS), embora, até o presente momento, nenhum trabalho de DNA “barcoding” havia sido realizado com as espécies do gênero Lycoperdon. O presente trabalho teve o objetivo de revisar as espécies do gênero Lycoperdon para América do Sul, identificando-as com base nos caracteres morfológicos e no uso da região ITS como DNA “barconding” de fungos e, posteriormente, adicionando a região da subunidade maior (LSU) do nrDNA para avaliar se ao adicionar as espécies sul-americanas, Morganella seguiria como subgênero de Lycoperdon. Para isso, foram realizados empréstimos de herbários nacionais e internacionais; usando literatura especializada na taxonomia do gênero Lycoperdon e com ajuda de renomados especialistas do grupo, as espécies de Lycoperdon foram identificadas. Posteriormente, foi extraído o DNA de pequenas porções internas do basidiomas; logo em seguida o produto extraído foi amplificado e sequenciado; as

8

sequências foram editadas e submetidas à busca por similaridade no GenBank utilizando o programa BLAST para checar se as sequências se assemelhavam as regiões comparadas; uma vez realizado esse processo as sequências foram corridas em análises de Máxima Parcimônia e distância (K2P) utilizando o programa PAUP; a árvore de distância se obteve por Neighbor-Joining. Além disso, foi realizada a análise Bayesiana no programa MrBayes; as árvores geradas foram visualizadas no FigTree e editadas no programa InkScap. Com base somente no ITS como DNA barcoding do gênero Lycoperdon, obteve-se os seguintes resultados: 65% das amostras obtiveram sucesso de amplificação; foram identificadas 19 espécies, excluindo aquelas que estavam sob Morganella, para América do Sul e Central; quatro táxons são primeiros registros para o continente sul-americacano: Lycoperdon calvescens, L. endotephrum, L. ericaeum e L. eximium; e foi erguido um novo subgênero: Lycoperdon subg. Arenicola. Com base nas análises de morfológia e DNA barcoding foi possível identificar 43 espécies do gênero Lycoperdon, sendo que destas, 30 espécies são reportadas para América do Sul e Central; poucas espécies se encontram nos dois hemisférios (aprox. 30 %). Com estes resultados, concluímos que ITS como DNA “barcoding” de Lycoperdon é promissor, embora alguns grupos necessitem incluir mais espécimes e marcadores. A taxonomia morfológica continua sendo crucial na interpretação de dados geradas pela taxonomia molecular.

Palavras-chave: Basidiomycota, fungos gasteroides, ITS barcode, puffballs, Taxonomia.

9

ABSTRACT

Earth’s biodiversity is estimated to include about 50 million . For Fungi this estimate is around of 5.1 million species, and to identify them all, it is believed would take the taxonomists about 1000 yrs. The taxonomists have been making the effort to identify these fungal species, including the puffballs , Lycoperdon Pers. Traditionally, the of Lycoperdon has been based only on morphological characters, and individual taxonomists have adopted their own distinct concepts to separate the species. Through the end of 1980`s many projects based on morphological taxonomy were published to describe the diversity of species of Lycoperdon encompassing almost all continents, to separate cryptic species, and to solve problems of divergence by synonymizing of taxons. In the beginning of the 90`s there was a revolution in the taxonomy of fungi with the introduction of molecular tools in species classification, as well to infer phylogenetic relationships and to identify new taxa. Lycoperdon taxonomy was hit by these new tools in the beginning of the 21th century; with the 2008 Larsson and Jeppson work, some genera, such as Morganella and Vascellum were recognized as being subgenera of Lycoperdon. During this period, identifying species by a molecular bar coding gained acceptance, opening the era of DNA barcoding to identify animals and plants, and for fungi, using the internal transcribed spaced region (ITS) to distinguish among species. The work described here is the first to focuss on extensive DNA barcoding to classify the species in the Lycoperdon genus. The present work aims to review the species of Lycoperdon from South America, based on morphological features and on the use of ITS as barcode. Also, using the large subunit (LSU) of nrDNA, to check wether the South American species, Morganella could be a subgenus of Lycoperdon. For this work, loans were made from nationals and international herbaria; the specialized literature in the taxonomy of Lycoperdon was studied, and renowned experts of Lycoperdon were consulted. Afterward the DNA was extracted from little portions of the inside of basidiomata; next the product extracted was amplified and sequenced. The sequences were edited and submitted to the search by similarity on the GenBank website using the BLAST software to check whether the sequences matched homologous sequences or were contaminants. Sequences were aligned with the aid of free software for download, such as Geneious Pro v4.8.5. After the editing of the sequences, analyses of maximum parsimony and distance (K2P) were carried out with the PAUP software; the distance tree was constructed by Neighbor-Joining. Also, a Bayesian analysis was

10

done using MrBayes software. The generated trees were viewed with FigTree software and edited on InkScap software. Based on ITS as barcoding of Lycoperdon genus, the following results were obtained: 65% of the samples were successfully amplified; 19 species, excluding those under Morganella, were identified from Central and South America; four are first records to South American continent: Lycoperdon calvescens, L. endotephrum, L. ericaeum and L. eximium. Adding the LSU region, Morganella is confirmed as a subgenus of Lycoperdon; L. demoulinii is a new species for science; and a new subgenus, Arenicola, emerged. Based on morphological analyses and DNA barcoding, it was possible to identify 43 species of Lycoperdon genus around the world; 30 species from Central and South America; few species are distributed in both Hemisphere (around 30%). Finally, we concluded that the ITS is promising as DNA barcode of Lycoperdon; however, some groups need to include more specimens and markers. Morphological data are crucial for interpretation of the data generated by molecular methods of taxonomy.

Key-words: Basidiomycota, ITS barcode, , puffballs, Taxonomy

11

LISTA DE FIGURAS

Figura 1. Tipos de formas dos basidiomas em Lycoperdon e Morganella. a. L. mammiforme basidioma piriforme (K s/n coletado por M.C. Cook 1885); b. L. pulcherrimum basidioma subgloboso (K 3933 – holotipo !); c. M. compacta, basidiomas depresso globosos (PDD10140 holotipo!); d. M. fuliginea basidioma globoso (UFRN- Fungos 1768); e. L. utriforme, basidioma depresso globose a obovoide (K200231); f. L. pratense, basidiomas subglobose a turbinado (VDEMOULIN 7412). Barras = 10 mm. 37 Figura 2. Tipos de subgleba em espécies de Lycoperdon. a. Subgleba reduzida e com células compactas, L. fuligineum (UFRN-Fungo 1768); b. Subgleba bem desenvolvida, celular e com diafragma L. marginatum (CORD756); c-d, f. Subgleba desenvolvida e celular: (c) L. perlatum (MA-Fungi 29372), (d) L. pratense (K200229), (f) L. utriforme (K200230) em basidioma parcialmente imaturo; e. subgleba bem desenvolvida e lanosa, (e) L. pyriforme (MA-Fungi 16908). Barras = 10 mm...... 37 Figura 3 Tipos de ornamentação do exoperídio e superfície do endoperídio. a, d. Espinhos com as pontas alongadas, delgadas e curvadas; b, e, f. Verrugoso; c. Espinhos piramidais; a-c, e-f. Superfície do endoperídio liso; d. Superfície do endoperídio areolada. Todas as ornamentações apresentadas são caducas com o tempo. Barras = 2 mm...... 40 Figura 4 Tipos de esferocistos e células alongadas do exoperídio apical; micoesclereídeos e hifas infladas do endoperídio apical. a. Células alongadas e dextrinoide de L. atrum; b. Esferocistos em cadeias de L. perlatum; c. Esferocistos com formas irregulares de L. pyriforme; d, f. Micoesclereídeos com formas irregulares de L. marginatum e Lycoperdon sp.; e. Hifas com terminações de L. umbrinum. a, c, e. Barras = 20 µm; b. Barra = 100 µm; d, f. Barras = 10 µm...... 41 Figura 5 Exemplos de basidiosporos quanto a forma e classificação da ornamentação espécies de Lycoperdon. a. basidiosporos lisos [A], L. pyriforme (NY0071979); b-d. Levemente verrugoso [B], L. marginatum (NY00398533), L. eximium (NY0071978), L. umbrinum (MA-Fungi 63394); e-f. Verrugoso [C], L atrum (UFRN-Fungos 832), L. perlatum (NY00793106); g-i. Fortemente verrugoso [D], M. nuda (UFRN-Fungos 1766), M. velutina (NY00839022), L. decipiens (MAF27674); f, g. Basidioporos com o número de ornamentações contadas e diâmetro medido para o cálculo de densidade de ornamentação. Barras = 10 µm...... 42 Figura 6 Exemplos de basidiosporos com as classificações de A-D em microscopia eletrônica de varredura (MEV). a, b. Punctados [A], L. pyriforme e L. compactun (= M.

12

compacta); c, d. Levemente verrucosos [B], L. arenicola (= M. arenicola), L. marginatum; e, f. Verrucoso [C], L. perlatum, L. atrum; g-i. Fortemente verrucoso [D], L. fuligineum (= M. fuliginea), L. atropurpureum e L. mauryanum. Barras = 1 µm...... 43 Figura 7. Materiais e equipamentos usados durante a extração e amplificação do DNA. a. Colunas (lilás e brancas) do kit de extração; b. Tubos eppendorfs contendo em seu interior uma esfera desidratada com todos os reativos para a amplificação por PCR; c. Termociclador; d. Transluminador acoplado com câmera fotográfica para a visualização e confecção de fotografias dos géis em agarose; e-f. Fotografias dos géis em agarose; e. Gel sem as bandas de amplificação da PCR; f. Gel contendo as bandas dos produtos amplificados da PCR...... 52 Figura 8. Esquema do nrDNA no qual se pode observar as regiões dos marcadores e a posição dos iniciadores. Baseado em http://sites.biology.duke.edu/fungi/mycolab/...... 53 Figure 9. Formação das sequências consensos e busca no megablast para verificar se há contaminação das mesmas. a. Visualização das sequências direto e reverso e formação da sequencias consenso; b-g. Submissão da sequencias consenso no megablast disponível na web site NCBI...... 54 Figura 10. Número de amostras analisadas, e porcentagem de falha e sucesso de amplificação da região ITS...... 58 Figure 11 Agarose gel to verify the PCR products. a. Amplification of ITS5 – ITS4 region: eleven positive PCR products; the eighth sample failed; b. Amplification of ITS3 – ITS4b region: all samples have been successful; c. Amplification of ITS5 – ITS4 have been unsuccessful in all samples; d. Amplification of ITS3 – ITS4b have been unsuccessful in all samples and the control sample is contaminated. M - is the run marker, and N - is the control sample...... 89 Figure 12 Example of search in the UNITE database. a. Set up of run analysis where the query sequences from the user are pasted and blasted; b. Results including the list of homolog sequences to; c. UNITE sequences linked to the SHs with threshold of at least 3% similarity; d. Selected SHs sequence with threshold of 1.5%, name and number access, and statistics on distribution distance...... 91 Figure 13 Neighbor-Joining tree using Kimura 2 Parameter based on sequences of ITS sequences of Lycoperdon species. The support values obtained from parsimony (bs) and Bayesian (pp) analyses are on the branches...... 93 Figure 14 PCI for each sample from each Lycoperdon species of dataset non-GenBank plus GenBank samples...... 100

13

Figure 15 Average intraspecific and interspecific genetic variability for conspecifics and congeneric of all sequences of dataset excluding and Morganella...... 100 Figure 16 Percent identity of sequences compared with UNITE Species Hypothesis (SHs)...... 101 Figure 17 Dry basidiomata of Lycoperdon species. a. Lycoperdon altimontanum (MA- Fungi 63392); b. L. atropurpureum (MA-Fungi 63389); c. L. decipiens (MA-Fungi 27674); d. L. echinatum (MA-Fungi 39586); e. L. ericaeum (MA-Fungi 63393); f. L. excipuliforme (MC-Fungi 06:6224); g. L. lividum (MA-Fungi 68348); h. L. mammiforme (MA-Fungi 31251); i. L. marginatum (MA-Fungi 31232); all bars = 10 mm...... 108 Figure 18 Dry basidiomata of Lycoperdon species. a. Lycoperdon molle (MA-Fungi 31259); b. L. nigrescens (MA-Fungi 22012); c. L. niveum (MA-Fungi 21618); d. L. perlatum (MA-Fungi 64953); e. L. pratense (MC-Fungi 08: 10114); f. L. pyriforme (MA- Fungi 16908); g. L. subumbrinum (MA-Fungi 63391); h. L. umbrinoides (MA-Fungi 53530); i. L. umbrinum MA-Fungi 63394 – unsuccessful amplification); all bars = 10 mm...... 116 Figure 19 Scanning microscope electronic of some Lycoperdon species. a. Lycoperdon atropurpureum (MA-Fungi 63389); b. L. ericaeum (MA-Fungi 63393); c. L. lividum (MA-Fungi 74402 – unsuccessful amplification); d. L. mammiforme (MA-Fungi 24103); e. L. marginatum (MA-Fungi 31252); f. L. nigrescens (MA-Fungi 63396 – unsuccessful amplification); g. L. perlatum (MA-Fungi 64953); h. L. subumbrinum (MA-Fungi 63391); i. L. umbrinum (MA-Fungi 73600 – unsuccessful amplification); all bars = 5 µm...... 117 Figure 20 Neighbord-Joining tree obtained after calculating the K2P distance of the ITS sequences included in Table 1. Names and vouchers numbers as mentioned in the text and tables. New sequences in bold. Colours to indicate the geographic origin of the specimens and sequences. Yellow, mainly specimens from Central and South America (it can be some specimens from other part from the Southern Hemisphere); Orange, specimens from the Southern Hemisphere, not Central or South America; Red, specimens from both Hemispheres; Blue, only specimens from the Northern Hemisphere...... 160 Figure 21 Dry basidiomata of Lycoperdon species. a. L. atrum (UFRN-Fungos 832); b. L. calvescens (CORD 997); c. L. curtisii (VDEMOULIN 4073); d. L. endotephrum (K (M): 200182); e. L. eximium (NY0071978); f. L. hyalinum (DSA 178, UFRN-Fungos 2829); g. L. lividum (NY 0071655); h. L. marginatum (CORD 72); i. L. mauryanum (LG 1570). Bars = 10 mm...... 175

14

Figure 22 Scaning electronic microscopy of basidisporoes. a. L. atrum (UFRN-Fungos 832; b. L. marginatum (CORD 573); c. L. mauryanum (VD 1570); d. L. nigrescens (PACA 13783); e. L. ovoidisporum (UFRN-Fungos 967); f. L. perlatum (UFRN-Fungos 811); g. L. pratense (ICN 154485); h. L. pyriforme (NY 0071971); i. Lycoperdon sp. 5 (UFRN-Fungos 152)...... 186 Figure 23. Dry basidiomata of Lycoperdon species. a. L. nigrescens (NY0071657); b. L. ovoidisporum (13771); c. L. perlatum (VDEMOULIN ex ENCB 1533); d. L. pratense (K(M): 200187); e. L. pyriforme (UFRN-Fungos 2271); f. L. umbrinum (VDEMOULIN 4784); g. L. utriforme (K (M): 2002300); h. Lycoperdon sp. 1 (CORD 167); i. Lycoperdon sp. 4 (UFRN-Fungos 495). Bars = 10 mm...... 194 Figure 24 Comparative between the species of Lycoperdon sp. 5, L. endotephrum and L. pratense. a-c. Lycoperdon sp. 5 (UFRN-Fungos 152); d-f. L. endotephrum (UFRN- Fungos 164); g-i. L. pratense (Basidioma – VDEMOULIN ex AGUCH-ET8; – ICN 154485); a, d, g. Dry basidiomata; b, e, h. Sphaerocysts; c, f, i. in scanning eletronic microscopy (SEM). Bars a, g = 10 mm; d = 5 mm; b, e, h = 20 µm; c, f, i = 1 µm...... 195 Figure 25 Phylogenetic tree obtained from parsimony analysis of ITS and LSU combined alignment. and subclades as described in the text. Numbers above branches are parsimony bootstrap (bs) and posterior probability (pp) values. Bovista, , Disciseda, and Tulostoma as outgroups. Vouchers numbers are indicated as in Table 1 and 2...... 234 Figure 26 Lycoperdon albostipitatum (Holotype INPA 239563). a. Dry specimen. b. Detail of apical pore. c. Detail of exoperidium ornamentation. d. Elongated dextrinoid hyphae from exoperidium ornamentation. e. Basidiospores strongly verrucose [D] in LM. f. Scanning electron microscopy of basidiospores. Bars (a) 10 mm; (b) 1 mm; (c) 0.2 mm; (d) 50 µm; (e) 5 µm; (f) 2 µm...... 238 Figure 27 Lycoperdon arenicola (Holotype UFRN-Fungos 1006). a. Basidiomata in situ. b. Dry specimen in cross section. c. Sphaerocysts from exoperidium ornamentation. d. Detail of capillitium and paracapillitium mixed. e. Basidiospores punctate [A] in LM. f. Scanning electron microscopy of basidiospores. Bars (a–b) 10 mm; (c) 50 µm; (d) 20 µm; (e) 5 µm; (f) 2 µm...... 240 Figure 28 Lycoperdon demoulinii (Holotype UFRN-Fungos 655). a. Dry specimen; b. Detail of exoperidium ornamentation; c. Detail of endoperidium surface areolate; d. Details of spines from exoperidium; e. sphaerocysts forming the spines; f. Mycosclerids

15 from apical endoperidium; g. Capillitium and basidiospores punctate in LM. Bars (a) 10 mm; (b) 2 mm; (c) 2 mm; (d) 50 µm; (e–f) 20 µm; (g) 5 µm...... 244 Figure 29 Lycoperdon exoelongatum. a. Basidiome in situ; b. Dry specimen; c. Detail of tufts in exoperidium of young basidiome; d. Detail of exoperidial surface in aged basidiome; e. Paracapillitium covered with glebal membrane; f. Basidiospores strongly verrucose [D] in LM; g. Scanning electron microscopy of basidiospores; h. Exoperidial elements. Bars: (a, b, d) bar = 5 mm.; (c) bar = 0.5 mm; (e) bar = 20 µm; (f) bar = 10 µm; (g) bar = 1 µm; (h) bar = 50 µm (Photos: Accioly, T.)...... 248 Figure 30 Lycoperdon fuligineum. a. Paratype of Morganella mexicana (NY00839022, J.B. Ellis 5013), dried specimens; b. Dry specimens of Morganella mexicana mixed with M. velutina (NY00839023, J.B. Ellis 5013); c. Detail of exoperidium ornamentation; d. Sphaerocysts from exoperidium ornamentation; e. Basidiospores strongly verrucose [D] in LM; f. Scanning electron microscope of basidiospores. Bars: (a–b) 10 mm; (c) 0.2 mm; (d) 50 µm; (e) 5 µm; (f) 2 µm...... 251 Figure 31 Lycoperdon nudum (Holotype UFRN-Fungos 1765). a. Dried specimen; b. Detail of exoperidium falls off; c. Detail chain of exoperidium ornamentation; d. Basidiospores strongly verrucose [D] and paracapillitium in LM; e. Scanning electron microscope of basidiospores. Bars (a) 2 mm; (b) 2 mm; (c) 50 µm; (d) 5 µm; (f) 2 µm...... 254 Figure 32 Lycoperdon velutinum. a. Dried specimens of type (NY00398807); b. Dried specimens of the mixed basidiomes with L. fuligineum (NY00839022); c. Exoperidium ornamentation; d. Elongated hyphae from exoperidium; e. Basidiospores strongly verrucose [D] in LM (type); f. Scanning electron microscope of basidiospores (type). Bars: (a) 10 mm; (b) 5 mm; (c) 0.2 mm: (d) 50 µm; (e) 5 µm; (f) 2 µm...... 257

16

LISTA DE TABELAS

Tabela 1 Iniciadores empregados na amplificação dos fragmentos ITS e LSU nrDNA. Indicação de suas sequências e temperatura de hibridização...... 51 Table 2 Sequences used in the molecular analysis. In bold new ITS sequences generated in this work ...... 138 Table 3 Identifications success based on ¨Best Match¨ and ¨Best Close Match¨...... 143 Table 4 Sequence names with incorrect identification based on "Best Match/Best Close Match" within threshold. In bold the values that repeat in the “Best Close Match”. .... 143 Table 5 All specimens used in this study with voucher number, country and Genbank Accession Numbers when available. C: Calvatia; L: Lycoperdon; M: Morganella; V: Vascellum. In black, the new sequences generated in this study, from some of them Genbank Accession Numbers (Acc. N.) are not obtained yet. NP: No herbarium permission to molecular studies; NT: Not DNA isolation; C: sequences obtained do not belong to Lycoperdon, different contamination; : not successful amplifications are indicated or not good sequences were not obtained...... 212 Table 6 Distance in percent of all specimens of terminal branch based on GenBank sample DQ112630...... 219 Table 7. Distance in percent of all specimens of Lycoperdon pyriforme terminal branch based on GenBank sample DQ112558...... 220 Table 8 Specimens studied in this work with voucher numbers, country, and the main morphological features considered. Collections which ITS and LSU sequences were obtained are indicated with (+), sequences were not obtained (-), sequences were not attempt (0)...... 266 Table 9 All the specimens used in the molecular phylogenetic analyses with voucher number and GenBank Accession Numbers. When ITS and LSU have different numbers, the first number corresponds to ITS and the second to LSU. In black are indicated the new sequences generated in this study...... 270

17

LISTA DE ABREVIAÇÕES

A seguir serão detalhadas algumas abreviações mais utilizadas ao longo desta tese de doutorado. Não se incluem as abreviaturas dos herbários que estão disponíveis no Index Herbariorum, tão pouco as abreviaturas padronizadas dos diferentes ranques taxonômicos que podem ser consultadas na Recomendação 5ª do Código Internacional de Nomeclatura para Algas, Fungos e Plantas. As abreviaturas dos autores seguem “Author of Fungal Names” que se pode consultar no “”.

ADN/DNA: Ácido desoxirribonucleico/deoxyribonucleic acid. No brasil é muito comum usar DNA.

ARN/RNA: Ácido ribonucleico/ ribonucleic acid.

CO1: Citocromo c oxidase/cytochrome c oxidose subunit. dNTP: Desoxirribonucleotídeos TriFosfatos/ Deoxynucleotide TriPhosphates.

EDTA: Ácido Etilenodiamino Tetra-acético/ Ethylenediamine Tetraacetic Acid. e.g.: Exempli gratia, por exemplo.

ITS: Espaçador transcrito interno/ internal transcribed spacer.

K2P: Kimura 2 parametros. l: litro, Equivalente a um decímetro cúbico.

LSU: Subunidade maior do DNA ribossômico/large subunit ribossomal. min.: Minuto, equivalente a 60 segundos. ml: Milímetro, equivale a um centímetro cúbico. mm: Milítemtro, equivale a um milésimo do metro. nr: Prefix que indica ribossômo nuclear, pode preceder a ADN, LSU, SSU etc./prefix for “nuclear ribosomal”; it may preced DNA, LSU, SSU, et.

MP: Máxima parcimonia/Maximum parcimony.

MCMC: Métodos de Monte Carlo via cadeias de Markov/Markov chain Monte Carlo.

PCI: Porcentagem de identificação correta/Percentage of correct identification.

18

PCR: Reação em cadeia da polimerase/Polymerase reaction chain.

RPB 1: Gene da RNA polimerase subunidade 1/RNA polymerase II gene subunit 1.

RPB2: Gene da RNA polimerase subunidade 1/RNA polymerase II gene subunit 2.

SH/plural SHs: Hipóteses de espécies/Species Hypotheis.

SSU: Subunidade menor do DNA ribossômico/small ribosomal subunit.

TAE: Solução Tampão Tris-Acetato-EDTA.

µl: microlitro equivalente a um milímetro cúbico.

µm: micrômetro equivale a um milécimo do metro

19

SUMÁRIO 1 INTRODUÇÃO GERAL ...... 24

1.1 A identificação de espécies em fungos ...... 24

1.2 Conceito de espécies em fungos ...... 26

1.3 O gênero Lycoperdon Pers...... 28

1.4 Histórico sobre os principais trabalhos do gênero Lycoperdon abordando morfologia e divergências na classificação das espécies...... 29

1.5 Classificação de Lycoperdon com base em análises moleculares de ITS e LSU... 33

1.6 Os subgêneros Morganella e Vascellum e seus históricos como espécies de Lycoperdon………...…………………………………………………………………...34

1.7 Caracteres macro e micromorfológicos em Lycoperdon, Morganella e Vascellum ……………………………………………………………………………………35

Caracteres macroscópicos...... 35

Caracteres microscópicos ...... 39

2 JUSTIFICATIVA, HIPÓTESES E OBJETIVOS ...... 44

3 MATERIAL E MÉTODOS ...... 46

3.1 Coleções estudadas...... 46

3.2 Análises morfológicas ...... 46

3.2.1 Analises dos caracteres macromorfológicos ...... 46

3.2.2 Análise dos caracteres micromorfológicos ...... 47

3.3 Análises moleculares ...... 49

3.3.1 Isolamento do DNA, amplificação e sequenciamento ...... 49

3.3.2 Identificação molecular das espécies de Lycoperdon .…………………………...55

3.4 Nomenclatura ...... 56

4 RESULTADOS ...... 58

5 DISCUSSÃO GERAL ...... 59

6 CONCLUSÕES GERAIS ...... 62

REFERENCES ...... 63

20

CAPÍTULO 1/ CHAPTER 1 ...... 78

1 INTRODUCTION ...... 81

1.1 Animal, algae, plant and oomycota barcode ...... 82

1.2 Fungi barcode and automatic identification tools ...... 84

1.3 The genus Lycoperdon Pers...... 86

2 MATERIAL AND METHODS ...... 88

2.1 Collections studied ...... 88

2.2 Morphological analysis ...... 88

2.3 Molecular analyses ...... 88

2.3.1 DNA isolation, amplification and sequencing ...... 88

2.3.2 Molecular identification of Lycoperdon species ...... 89

2.3.3 Performance of automatic identification through the unite database ...... 91

3 RESULTS ...... 92

3.1 Molecular analyses ...... 92

3.1.1 DNA, amplification and sequencing ...... 92

3.1.2 Molecular identification of Lycoperdon species ...... 92

3.1.3 Probability correct identification (PCI) of Lycoperdon species ...... 96

3.1.4 Automatic Identification through UNITE ...... 101

4 DISCUSSION ...... 118

5 CONCLUSION ...... 125

REFERENCES ...... 126

CAPÍTULO 2 / CHAPTER 2 ...... 144

1 INTRODUCTION ...... 146

1.1 Problems with the species concept and names in Lycoperdon ...... 148

1.2 Current taxonomy of Lycoperdon ...... 149

1.3 DNA Barcode to identify fungi ...... 150

2 MATERIAL AND METHODS ...... 152

21

2.1 Collections studied ...... 152

2.2 Morphological analyses ...... 152

2.2.1 Analyses of macrostructures ...... 152

2.2.2 Analyses of microstructures ...... 153

2.3 Molecular Analyses ...... 154

2.3.1 DNA isolation, amplification and sequecing ...... 154

2.3.2 The molecular identification of Lycoperdon species ...... 154

3 RESULTS ...... 157

3.1 Molecular analysis ...... 157

3.1.1 DNA, amplification, and sequencing ...... 157

3.2 Molecular identification of Lycoperdon species ...... 157

3.3 Probability Correct Identification (PCI) of Lycoperdon perlatum and L. pyriforme . …………………………………………………………………………..161

3.4 Taxonomy ...... 162

4 DISCUSSION ...... 196

5 CONCLUSIONS ...... 199

REFERENCES ...... 200

CAPÍTULO 3 / CHAPTER 3 ...... 223

1 INTRODUCTION ...... 225

2 MATERIAL AND METHODS ...... 227

2.1 Material studied ...... 227

2.2 Morphological analysis ...... 227

2.3 Molecular Analyses ...... 228

2.3.1 DNA isolation, amplification and sequencing ...... 228

2.3.2 Sequence alignment and phylogenetic analyses ...... 229

3 RESULTS ...... 231

3.1 Molecular and morphological analyses ...... 231

22

3.2 Taxonomy ...... 235

4 DISCUSSION ...... 260

REFERENCES ...... 261

CAPÍTULO 4 / CHAPTER 4 ...... 273

1 INTRODUCTION ...... 275

2 MATERIAL AND METHODS ...... 276

3 RESULTS ...... 277

3.1 List of species ...... 277

4 DISCUSSION ...... 285

5 CONCLUSIONS ...... 287

REFERENCES ...... 288

INDEX TAXONÔMICO ...... 292

23

1 INTRODUÇÃO GERAL 1.1 A identificação de espécies em fungos

A princípio, o planeta terra em uma subestimada previsão de sua biodiversidade teria entorno de 5 a 15 milhões de espécies (Stork, 1993), estimativas menos conservadoras consideram que esta diversidade possa ultrapassar os 50 milhões de espécies em todo planeta (Wilson, 2003; Scheffers et al., 2012). Para fungos a estimativa é que se tenha em torno de 3 a 5 milhões de espécies (Blackwell, 2011). Ao longo do tempo, os taxonomistas tem empregado um valioso tempo em descrever e nomear espécies, aumentando a cada ano a quantidade de nomes de espécies registradas em herbários ou museus (Alberch, 1993; Wilson, 2003).

Tendo isto em vista, a sistemática e a taxonomia tem um papel crucial em nomear e organizar o posicionamento das espécies quanto a seu reino, filo, classe, ordem, família, gênero e espécie. Obviamente, muitos desses nomes trazem consigo uma certa confusão, isto porque, para cada local adotavam-se nomes diferentes para um mesmo grupo de indivíduos e as descrições eram no mínimo imprecisas (Margulis e Sagan, 2002). Para isso, adotou-se o sistema binominal de Linnaeus (Linnaeus, 1753), teve um importante papel no desenvolvimento da taxonomia e classificação das espécies (Hitchcock, 1926; Cain, 1958a; b).

Do mesmo modo, muitos pesquisadores empenharam esforços na taxonomia e classificação de diversos grupos de fungos (Tournefort, 1700; Linnaeus, 1753; Scopoli, 1772; Schaeffer, 1774; Persoon, 1801; Fries, 1829; Vittadini, 1842; Berkeley, 1873). Assim como, outros tantos investiram tempo na taxonomia em grupos específicos, como por exemplo, do gênero Lycoperdon Pers. (Massee, 1887; Lloyd, 1905a; b).

Dessa forma, por muito tempo, a classificação e nomenclatura das espécies de Lycoperdon foram baseadas exclusivamente em caracteres macromorfológicos (Bonorden, 1857; Massee, 1887). Com o desenvolvimento da microscopia, os taxonomistas passaram a considerar as características micromorfólogicas, usando microscópio ótico para investigar as estruturas da , como esporos e capilícios (Cunningham, 1926, 1944; Coker e Couch, 1928; Johnson, 1929; Bottomley, 1948). Posteriormente, a melhoria da precisão dos microscópios de luz e o advento da microscopia eletrônica de varredura, proporcionou descrições mais detalhas do grupo (Cunningham, 1944; Bottomley, 1948; Demoulin, 1968a; Eckblad, 1971; Perreau, 1971;

24

Calonge, 1975), persistindo até o final da década 80 (Demoulin, 1983; Homrich and Wright, 1988; Domínguez de Toledo, 1989; Jeppson and Demoulin, 1989; Calonge, 1990).

Ao final da década de 80 e início dos anos 90, houve uma revolução na taxonomia não só em Lycoperdon, mas englobando grande parcela dos grupos de fungos conhecidos, foi então o início da era das ferramentas de genética molecular para classificar, identificar e inferir as suas interrelações evolutivas (Bruns et al., 1989, 1991; White et al., 1990; Baldwin, 1992, 1993). O gênero Lycoperdon foi efetivamente estudado por esta nova abordagem de classificação somente com o trabalho de Hibbett e colaboradores que abordaram aspectos evolutivos entre os fungos lamelados e gasteroides utilizando de DNA ribossomal (Hibbett et al., 1997).

A partir de então, muitos taxonomistas tem utilizado das ferramentas moleculares para classificar níveis hierárquicos superiores como famílias ou ordens, (Kurtzman e Robnett, 1998; Martín et al., 2000; Krüger e Kreisel, 2003). Uma nova ferramenta passou a ser usada para elucidação de espécies crípticas, identificação e descrição de novas espécies, o DNA barcode (Hebert et al., 2003), utilizando a mesma ideia de um código de barras usado em supermercados e lojas comercias. O DNA barcode surgiu com a ideia de um sequência universal, de rápida amplificação, curto número de pares de bases (600- 700 pb) e de fácil edição, para identificar especies (Hogg e Hebert, 2004; Hebert e Gregory, 2005; Summerbell et al., 2005).

Consequentemente, o DNA barcode passou a ser usado na taxonomia de vários grupos de fungos (Rehner e Buckley, 2005; Grasso et al., 2006; Schubert et al., 2007; Seifert et al., 2007; Nguyen e Seifert, 2008; Nilsson et al., 2009). Da mesma forma, em fungos gasteroides, como por exêmplo, nos gêneros Astraeus, Pisolithus y , o uso de sequências de barcode tem permitido identificar e descrever novas espécies (Phosri et al., 2014; Rusevska et al., 2014, 2015). Com respeito ao gênero Lycoperdon, somente os trabalhos de Larsson e Jeppson (2008) e Jeppson et al. (2012), utilizaram as sequências barcode, junto com um fragmento da região LSU nrDNA para inferir relações filogenéticas entre Lycoperdon e outros gêneros afins. Até o presente momento nenhum trabalho havia sido idealizado com a proposta de avaliar se a sequência de DNA barcode permitiria identificar as espécies de Lycoperdon.

25

Com isso, este trabalho tem como proposta integrar a taxonomia morfológica à taxonomia molecular, utilizando a região espaçadora interna (ITS) como barcoding de Lycoperdon e seus subgêneros Morganella e Vascellum. Assim, após detalhada e extenuante revisão literária do gênero e discussões sobre o tema com especialistas do grupo como o Dr. F.D. Calonge (Real Jardín Botánico de Madrid) e o Dr. Vincent Demoulin (Université de Liège – Bélgica), apresenta-se aqui algumas hipóteses: (i) as espécies de Lycoperdon podem ser identificadas com o uso do ITS como DNA “barcoding” quando integrado aos dados morfológicos; (ii) os nomes de espécies adotados para identificar os espécimes da América Central e Sul-americanos de Lycoperdon refletem os conceitos adotados pelos taxonomistas do velho mundo; (iii) ao adicionar as espécies Sul-americanas ao conjunto de dados de Larsson e Jepsson (2008), Morganella continuará sendo subgênero de Lycoperdon.

1.2 Conceito de espécies em fungos

A grande a necessidade do ser humano para nomear e classificar espécies (Stork, 1993), traz consigo um grande questão entre pesquisadores e naturalistas que se dedicam para descobrir sobre a diversidades das espécies; o que é uma espécie? Ou, qual o conceito de espécies? O conceito de espécie, então passou a ser discutido entre muitos pesquisadores do passado com intuito de unificá-lo (Mayr, 1969; Ghiselin, 1974; Ridley, 1989; Mayden, 1997). Ghiselin (1974), cita que o problema do conceito de espécies está no entendimento do status ontológico da fundamentação biológica. Para Mishler e Donoghue (1982), o reconhecimento de espécie que é feito pelos taxonomistas é baseado em suas experiências com a sistemática dos grupos de organismos de seus estudos.

Mayden (1997) comenta que muitas classificações podem existir para o mesmo grupo de organismos, dependendo de qual critério foi adotado para o conceito de espécie; ainda, se os relacionamentos descendem de um hipotético ancestral comum, então a categoria supra específica (gêneros ou famílias) são mais inclusivas do que a categoria de espécies. Para os taxonomistas o conceito de espécies (Taxonomic Species Concept - TSC), consiste de que todos os espécimes que são membros de um único tipo, mostrado por evidência ou suposição, são tão similares quanto sua prole ou parentes hereditários; levando-se em consideração esse critério, pesquisadores que não compartilham desse conceito, por exemplo, os pesquisadores afins do conceito genético de espécies (Genetic

26

Species Concept – GSC) podem não assumir as entidades consideradas espécies pelos taxonomistas e vice-versa (Mayden, 1997; de Queiroz, 2005).

Paralelamente aos 22 conceitos de espécies abordado por Mayden (1997), um conceito de espécies unificado foi proposto como solução dos problemas conceituais, eliminando rivalidades entres conceitos, onde as espécies não precisam ser feneticamente diferentes, ou diagnosticamente, ou ser monofiléticas, ou ainda estarem isoladas reprodutivamente, mas sim, as espécies tem que estar evoluindo separadamente (de Queiroz, 2005); Este conceito unificado nos leva a dois importantes pontos: o primeiro é que, ele serve como um importante critério operacional ou traços de evidências que são relevantes na separação de espécies, que podem ser fenéticos, grupos monofiléticos isolamento reprodutivo, e que são traços ou atributos adquiridos durante a divergência evolutiva; o segundo é que, estas propriedades permanecem importantes, e podem ser usadas na delimitação de espécies ou subcategorias de espécies (de Queiroz, 2006).

Assim como os demais gruposde organismos, para os fungos, os taxonomistas também tem se preocupado em definir o conceito de espécies (Petersen e Hughes, 1999) e, segundo os autores temos três conceitos de espécies mais usados em fungos, a saber: conceito biológico (Biological Species Concept (BSC)) – no qual os indivíduos se reconhecem como parceiros reprodutivos; o conceito morfológico (Morphological Species Concept (MSC)), onde as espécies são separadas por diferênças na morfologia, refletido pelas diferênças genéticas entre dois grupos; e terceiro conceito, o filogenético (Phylogenetic Species Concept (PSC), no qual populações pode ser ranqueadas como espécies, se elas compartilham linhagens evolutivas comuns, que são expressadas em nós terminais em uma árvore filogenética. Os autores acreditam que considerando as peculiaridades dos fungos como a variabilidade nos caracteres morfológicos intraespecíficos, reprodução clonal alternando para reprodução sexuada, etc., tornando difícil a elaboração de um conceito unificado de espécies, embora, eles sugiram que o conceito deva demonstrar uma coesão fenética, de descendência evolutiva comum e, quando possível isolamento reprodutivo.

Igualmente, Taylor et al. (2000), considerando que os fungos apresentam características insatisfatórias no reconhecimento de espécies, propuseram o reconhecimento de espécies por meio da concordância genealógica, onde as espécies estão em isolamento genético. De fato, este tipo de reconhecimento de espécies somente é possível devido aos avanços nos estudos de filogenia molecular, usando diversos tipos 27 de regiões como ITS e LSU (Bruns et al., 1989; Vilgalys e Hester, 1990; Gardes e Bruns, 1993; Rehner e Samuels, 1994). Assim o conceito filogenético de espécies passou a ser difundido, onde a definição de espécies remeta à um grupo de indivíduos que compartilham no mínimo um caráter derivado em comum (Wheelwe e Meier, 2000; Agapow et al., 2004). Consequentemente, este atualizado conceito, baseado em análises filogenéticas, pode separar em mais de uma espécie, quando anteriormente estavam sob um único nome específico, passando então a ser definido o conceito de espécies crípticas (Bickford et al., 2007); para os autores em uma explicação mais simplista, as espécies crípticas carecem de caracteres morfológicos suficientes para a separação destas espécies de forma eficaz. E isto mostra a fragilidade do conceito morfológico de espécies (Crespo e Pérez-Ortega, 2009), tendo em vista que os fungos apresentam caracteres morfológicos similares entre espécies (Seifert, 2009). Então, Tan et al. (2010), optou por delimitar espécies crípticas, baseando-se nas diversas ferramentas disponíveis (caracteres morfológicos, moleculares, biológicos e ecológicos) para minimizar os problemas intrínsecos a cada conceito de espécie.

Desta maneira, considerando os conceitos mais usados em fungos (conceito biológico, morfológico e filogenético), mesmo com seus tradicionais problemas (Petersen and Hughes, 1999; Taylor et al., 2000), somado aos novos conceitos baseados em ferramentas moleculares (Wheelwe and Meier, 2000; Agapow et al., 2004; Bickford et al., 2007), na presente obra nós optamos pelo conceito da “taxonomia integrativa” (Tan et al., 2010), levando-se em conta todas as ferramentas disponíveis no presente estudo, como dados morfológicos, moleculares e ecológicos, para a delimitação de espécies.

1.3 O gênero Lycoperdon Pers.

O gênero Lycoperdon Pers. é um representante dos fungos chamados de puffballs, referindo-se aos fungos sem um distinto pedicelo (stem), com um perídio flácido abrindo por uma boca definida, esporos sem pedicelos e mesclado com capilícios (Lloyd, 1905a; Cunningham, 1926).

No presente trabalho, será adotado o conceito de definição do gênero conforme propostos nas obras de Demoulin (1970, 1972b, 1973, 1979). Assim para uma geral definição do gênero temos: basidioma com subgleba bem desenvolvida, celular, embora, em alguns casos as células compactas podem ocorrer, apresentando tons esbranquiçada a

28

acinzentada; deiscência por um poro apical ou ruptura irregular do perídio; gleba composta sempre por capilícios elásticos a subelásticos (em referencias àqueles que podem ocorrer com partes quebradas, mas não por completo), podendo ou não ocorrer poros e septos; paracapilício podendo ocorrer em diferentes proporções; e esporos globosos a subelípticos, sendo punctados a fortemente verrucosos.

Tradicionalmente, o gênero pertencia a família Lycoperdaceae (Coker and Couch, 1928). Além de diversos estudos terem sidos realizados para a compreensão da diversidade de espécies e a distribuição do gênero (Johnson, 1929; Rick, 1930; Cunningham, 1944; Bottomley, 1948). Ainda que, em um contexto atual, baseando em analises de filogenia molecular, o gênero está alocado junto aos Agaricales em , sendo que o nome Lycoperdaceae não reflete sua atual classificação (Hibbett et al., 1997).

1.4 Histórico sobre os principais trabalhos do gênero Lycoperdon abordando morfologia e divergências na classificação das espécies

Linnaeus (1753), tentou nomear várias espécies de fungos, entre elas, as do gênero Lycoperdon Pers.: L. aurantium L. (= Tubiferaceae), L. carpobulus L. (= Sphaerobulus stellatus Tode), L. epidendrum J.C. Buxb. ex L. (= Lycogala epidendrum Fr.), L. pedunculatum (= Tulostoma brumale Pers.), L. stellatum L. (= Tubiferacea), embora em sua maioria tenham sido transferidas para outros gêneros.

O gênero Lycoperdon foi erguido por Tournefort (1700: pag. 563), logo depois no século XVIII, outros autores usaram este nome para reconhecer fungos com o corpo de frutificação globoso a subgloboso e com o conteúdo interno pulverulento (Scopoli, 1772; Schaeffer, 1774). Embora, muitos táxons não pertencessem ao gênero Lycoperdon, a saber: L. pedunculatum Batsch, L. carpobolus Batsch, L. epidendrum (= Lycogala epidendrum (J.C. Buxb. ex L.) Fr.), L. stellatum L. per Rehl. (= coronatum Pers.). No século XIX, Persoon (1801) foi quem validamente publicou o gênero Lycoperdon, inserindo-o em Gasteromycetes. Em seu trabalho intitulado Synopsis Methodica Fungorum”, o autor forneceu uma descrição do gênero: “peridium caulescens, apice demum ruptum, verrucis squamulosis, aut spinulosis obsitum (Pulvis seminalis viridis). O autor listou 14 espécies: Lycoperdon bovista Pers., L. candidum Pers., L. echinatum Pers., L. excipuliforme (Scop.) Pers., L. gigateum Batsch, L. gossypinum Bull.,

29

L. mammiforme Pers., L. molle Pers., L. perlatum Pers., L. pratense Pers., L. quercinum Pers., L. umbrinum Pers., L. utriforme Bull. e L. pyriforme Schaeff.

Ainda no séc. XIX, Fries (1829), contribuiu com a sistemática do gênero descrevendo nove espécies alocando elas em duas tribos: Bovistoides, composto pelas espécies de L. bovista, L. caelatum e L. pusillum; tribo Proteoides, composto pelas espécies de L. brasiliense (espécie brasileira), L. constellatum, L. gemmatum, L. gossypinum, L. pyriforme e L. saccatum. Ainda que, nenhum outro autor tenha utilizado essas tribos. O autor ainda indica L. album e L. esculentum como espécies duvidosas no gênero. Vittadini (1842), teve uma importante contribuição com a sistemática do gênero com o trabalho “Monographia Lycoperdineorum”. Logo em seguida, Bonorden (1857) em seu trabalho fornece uma lista com 31 espécies, onde muitas delas são hoje consideradas sinônimos: L. laxum Bonorden (= L. mammiforme), L. pistiliforme Bonorden (= L. excipuliforme), L rusticum Bonorden (= L. excipuliforme), etc.

Massee (1887), em sua obra “A Monograph of the genus Lycoperdon (Tournef.) Fr.”, fez uma exaustiva revisão dando descrições de 129 espécies, claro que muitos delas, hoje são sinônimos, ou pertencem a outro gênero, como exemplo: Lycoperdon sculptum Harkn. (= Calvatia sculpta Lloyd), L. serotinum Bonord. (=L. pyriforme), L. mundula Kalch. (= Bovista pusilla Batsch), etc). Ainda que, para todos os autores expostos até aqui, o conceito de caracterização das espécies dentro do gênero tenha sido de forma muito ampla, muitas dessas espécies estudas por eles continuam permanecendo em Lycoperdaceae.

No século XX, muito autores contribuíram exaustivamente para a compreensão do gênero Lycoperdon, e as descrições das espécies passaram a ser melhor caracterizadas e menos amplas (Lloyd 1905a). Lloyd revisou as exsicatas de Persoon (1801), Vittadini (1842), e Bonorden (1857), que foram reportadas para Europa. Subsequente a este trabalho, Lloyd (1905b) publicou um segundo trabalho em continuação as suas revisões de espécies de Lycoperdon, porém com espécimes norte Americanas.

Coker e Couch (1928) contribuíram com um extenso trabalho sobre Gasteromycetes para América do Norte, com descrições de 25 espécies de Lycoperdon, dando chave de identificação e boas figuras com fotos dos basidiomas, ainda que, algumas espécies tratadas por eles hoje são sinônimos em outros gêneros, por exemplo, Lycoperdon polymorphum Vittad. (= Bovista polymorpha Kreisel), L. oblongisporum

30

Berk. M.A. Curt. (= B. longispora Kreisel) e L. acuminatum Boc. (= B. acuminata Kreisel). Em seguida, Johnson (1929), seguindo os conceitos adotados por Coker e Couch (1928), reportou 25 espécies de Lycoperdon para Ohio, Canada. Como o autor seguiu Coker e Couch, os mesmos sinônimos são encontrados nesse trabalho. Na presente obra consideramos muitas das descrições de espécies como referências para aquelas registradas no Capítulo 1 e Capítulo 2, como por exemplo, L. atropurpureum Vittad., L. eximium Morgan e L. umbrinum.

Dentre muitos trabalhos sobre a diversidade de espécies de Lycoperdon em diversas partes do mundo (Cunningham, 1926, 1944; Kobayasi, 1937; Bottomley, 1948; Perdeck, 1950; Smith, 1951; Dennis, 1953; Garner, 1956; Pilát, 1958; Bowerman, 1961; Dissing e Lange, 1962; Dring, 1964; Herrera, 1964), devemos aqui pontuar os trabalhos de Cunningham, para Nova Zelândia e Austrália; o trabalho com as espécies africanas de Bottomley; e as espécies holandesas de Perdeck. Estes trabalhos oferecem um conceito de delimitação de espécies em Lycoperdon que permite o leitor a compreender a classificação adotada, ainda que não concorde com a sinonimização de uma ou outra espécie, a saber: Cunningham e Bottomley, em seus distintos trabalhos, consideram Lycoperdon excipuliforme um sinônimo de L. perlatum, fato esse, apropriadamente desconsiderado por Perdeck, o qual aqui consideramos o conceito de Perdeck. Kreisel (1973), em seu importante trabalho sobre Lycoperdaceae na Alemanha, inseriu os conceitos de tipos de exoperídio e capilício em Lycoperdaceae, além disso, Kreisel forneceu as localidades tipos de diversas espécies de Lycoperdon, ainda que por muitas vezes a localidade tipo era vagamente informada como Europa, como exemplo, em L. perlatum.

Demoulin (1968a), em seu trabalho de fungos gasteroides para Bélgica, segue os conceitos adotados por Perdeck (1950), e fornece descrições detalhadas de diversas espécies e sua distribuição. Demoulin (1968b) direciona os critérios para identificação das espécies: L. molle, L. muscorum and L. umbrinum, o qual o autor chama de grupo molle-umbrinum-muscorum. Ainda neste trabalho, o autor fornece uma tabela com todas as coleções estudadas por ele, discutindo os caracteres variáveis e os constantes nessas espécies.

Do mesmo modo, o autor seguiu aprofundando seus conhecimentos em Lycoperdon e, em sua principal obra “Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique”, Demoulin (1972), reporta 30 táxons 31 para Europa e América do Norte. Além de explanar sobre a distribuição geográfica, elaborou uma chave de identificação levando em consideração não somente os caracteres morfológicos, mas também os tipos de substratos em que as espécies ocorriam. Este trabalho foi utilizado como principal meio de definição do gênero e identificação morfológica das espécies. Posteriormente, Demoulin e Schumacker (1972), forneceram um importante trabalho para o problema do grupo de Lycoperdon molle-umbrinum- muscorum, agora baseando-se na técnica de agrupamento, enumerando os caracteres taxonômicos. Nesta obra, por exemplo, os autores relatam que Lycoperdon lambinonii, anteriormente publicado por Demoulin (1972a), é uma espécie intermediário entre L. molle e L. umbrinum.

Outro importante pesquisador que contribuiu com os conhecimentos sobre a diversidade de espécies em Lycoperdon foi o Dr. Francisco Diego Calonge, que em várias oportunidades realizou parcerias com Dr. V. Demoulin. Calonge e Demoulin (1975), reportaram 12 espécies para o gênero e mais três espécies, que no presente trabalho trataremos como pertencentes a Lycoperdon, são elas: Calvatia excipuliformis, C. utriformis Bull. per Pers. e Vascellum pratense F. Smarda. A mais recente obra e que também iremos considera-la por diversas vezes em nossos tratamentos taxonômicos é Calonge (1998), que reportou 13 espécies para a flora Ibérica, ainda que, nesta obra o autor trata L. decipiens como sinônimo de L. atropurpureum, porém, veremos no decorrer desta obra que ambas são espécies distintas. Ainda, para a Inglaterra temos o trabalho de Pegler et al. (1995), seguindo principalmente os conceitos de Demoulin (1972b), Kreisel (1973), Calonge e Demoulin (1975). Pegler e colaboradores reportaram 13 espécies para o território inglês.

Na América do Sul os registros de Lycoperdon são reportados por Fries (1829), com a espécie L. brasiliense. Na sequência, Massee, (1887) reportou L. gardneri Berk., L. pyriforme, L. velutinum Berk. & M.A. Curt., para Venezuela; L. albinum, L. astrocaryi Berk. & M.A. Cooke, L. brasiliense e L. pusillum Fr. para Brasil e Peru; Spegazzini (1898) teve grande influência no conhecimento para a Argentina, com registros e novas espécies L. argentinum, L. asperum, L. bonariense etc. No século 20 temos o registro de alguns trabalhos esporádicos: Hennings (1904) e Sydow e Sydow (1907); sobre as espécies reportadas para o Brasil, Rick (1930, 1961) teve um grande papel no avanço do conhecimento das espécies de Lycoperdon e de outros gêneros e famílias; embora,

32

diversas espécies reportadas por Rick, hoje sejam consideradas sinônimos (Cortez et al., 2013).

A partir do século 21, muitos trabalhos tem contribuído para o conhecimento de Lycoperdon para o mundo (Calonge e Palacios, 2000; Demoulin, 2000; Martín e Jeppson, 2001; Baseia, 2005; Cortez et al., 2007, 2008, 2011, 2013) Todos estes trabalhos relacionados aqui são baseados exclusivamente em caracteres morfológicos.

Como visto anteriormente, após o trabalho de Hibbett et al. (1997), baseando em análises com sequencias da região espaçadora interna transcrita (ITS) e subunidade maior espaçadora (LSU) do nrDNA, houve uma corrida para compreensão dos relacionamentos filogenéticos em Lycoperdaceae e reclassificação dos gêneros tratados como “puffballs”, entre eles Lycoperdon.

1.5 Classificação de Lycoperdon com base em análises moleculares de ITS e LSU

Inicialmente, Krüger et al. (2001) com suporte de um especialista morfológico de Lycoperdaceae, o Dr. H. Kreisel, selecionaram espécies de Bovista Pers., Morgan, Calvatia Fr., Lycoperdon, Morganella Zeller e Vascellum F. Smarda, todos os gêneros da família Lycoperdaceae. Adicionando às regiões usadas por Hibbett et al. (1997), a subunidade espaçadora menor (SSU) do nrDNA, os autores concluíram que Lycoperdon parece ser polifilético na família e que as delimitações genéricas entre ele e os demais gêneros (Bovistella, Morganella e Vascellum) eram indefinidas. Ainda, Krügger e colaboradores indicam que mesmo aliando seus dados moleculares aos morfológicos não podiam definir com precisão a delimitação desses gêneros e que, por isso mais trabalhos com mais adições de táxons e sequências eram necessários.

Krüger e Kreisel (2003), tentaram esclarecer o posicionamento de Lycoperdon pyriforme Schaeff., uma espécie morfologicamente próxima a Morganella por apresentar hábito lignícola e além de apresentar capilício na gleba, apresenta também abundante paracapilício. Para isto, os autores analizaram a região ITS e os caracteres morfológicos da espécie, concluindo que L. pyriforme não pertencia ao gênero Lycoperdon, e transferiram a espécie para Morganella erguendo o novo subgênero denominado de .

Posteriormente, Larsson e Jeppson (2008), adicionaram mais táxons ao conjunto de dados de trabalhos anteriores e realizaram análises com sequencias de ITS e LSU.

33

Estes autores chegaram aos seguintes resultados: Lycoperdon é parafilético, sendo que o tipo genérico L. perlatum formou agrupamento com Morganella, Vascellum e Bovistella. L. pyriforme não se agrupou com Morganella, mantendo-o então como espécie em Lycoperdon, sendo Apioperdon subgênero de Lycoperdon; as espécies de Calvatia excipuliforme e C. utriforme voltaram a pertencer ao gênero Lycoperdon. Seguindo esses resultados, os autores propuseram algumas mudanças quanto ao nível genérico, a saber: Lycoperdon sugb. Bovistella; L. subg. Lycoperdon; L. subg. Morganela; e L. subg. Vascellum. Embora, neste trabalho, Larsson e Jeppson (2008) tenham utilizado um número limitado de espécimes, principalmente oriundas do Hemisfério Norte.

1.6 Os subgêneros Morganella e Vascellum e seus históricos como espécies de Lycoperdon

O gênero Morganella Zeller foi estabelecido por Zeller (1948) para alocar espécies lignícolas que possuíam paracapilício em abundancia e o capilício estava sempre ausente. Posteriormente, Kreisel e Dring (1967) fizeram uma emendação no gênero e adicionaram os caracteres como: basidioma nunca excedendo os 30 mm de amplitude; subgleba reduzida, podendo ser com células compactadas ou celular; e paracapilício com incrustações da membrana glebal. Os autores transferiram para o gênero seis espécies anteriormente alocadas em Lycoperdon e uma nova espécie. Logo após, Ponce de León (1971), revisou o grupo e adicionou mais duas espécies, e em sua discussão geral excluiu Lycoperdon albidum (= Lycogalopsis solmsii E. Fisch), e L. pisiforme Henn (pode pertencer ao gênero Lycogalospis E. Fisch). Posteriormente, Morales et al. (1974) reportam a ocorrência de três espécies para Costa Rica. Em seguida, Suárez e Wright (1996), fazem um trabalho de revisão para as espécies sul-americanas, reportando espécies para Argentina, Bolívia, Brasil, Paraguai e Uruguai. Com base nos trabalhos elucidados, Cortez et al. (2007), transferiram a espécie brasileira L. benjaminii Rick para M. benjaminii (Rick) Cortez, Calonge & Baseia. Ainda para o Brasil, mais cinco novas espécies foram descritas M. albostipitata Baseia & Alfredo, M. arenicola Alfredo & Baseia M. nuda Alfredo & Baseia, M. rimosa Alfredo & Baseia e M. sulcatostoma C.R. Alves & Cortez (Alfredo et al., 2012, 2014; Alves e Cortez, 2013; Alfredo e Baseia, 2014). Em seguida, Rebriev e Bulakh (2015) descrevem para Rússia a nova espécie M. sosinii Yu. Rebriev & E. Bulakh.

34

Por outro lado, Vascellum F. Smarda foi erguido para alocar espécies de Lycoperdon que possuíam um diafragma separando a gleba da subgleba; abundante paracapilício e capilício quando presente era escasso (Pilát, 1958). O primeiro trabalho de revisão das espécies de Lycoperdon que apresentavam diafragma foi realizado por Ponce de León (1970), aqui foram transferidas seis espécies de Lycoperdon para o gênero Vascellum. Logo em seguida, Smith (1974), em seu trabalho de Vascellum para os Estados Unidos, discute a dificuldade em delimitar o gênero, tendo em vista que muitos espécimes não apresentavam um definido diafragma. Também, o autor adiciona seis espécies em seu trabalho, embora ele tenha excluído uma espécie reconhecida por Ponce de León (L. curtisii Berk.). Em seguida, L. endotephrum Pat. foi transferida para V. endotephrum (Pat.) Demoulin & Dring (Demoulin e Dring 1975). Do mesmo modo, Homrich (1975), e Homrich e Wright (1988), estudaram espécies Sul-americanas, reportando sete espécies para América do Sul, sendo quatros novas espécies e uma nova combinação, ainda, aqui os autores também consideram o diafragma como carácter de pouco valor taxonômico.

1.7 Caracteres macro e micromorfológicos em Lycoperdon, Morganella e Vascellum

Caracteres macroscópicos

Forma do basidioma – O basidioma em Lycoperdon pode ser encontrado de várias formas: depresso globoso, subgloboso, piriforme a turbinado (Fig. 1); em exsicatas malconservadas esses formatos podem ser alterados e essa característica não é relevante na determinação das espécies, é apenas utilizada de forma tradicional e para se ter uma ideia de como o corpo de frutificação foi encontrado.

Rizomorfas – O basidioma se corretamente coletado, poderá apresentar em sua base as rizomorfas, que são cordões de micélio de coloração esbranquiçada, e essa estrutura deve ser estudada com mais atenção sob microscópio.

Subgleba ou base estéril – Esta zona pode ser encontrada ocupando igual ou mais que um terço do basidioma, nesse caso foi determinado como bem desenvolvida; embora em Morganella essa estrutura seja sempre reduzida, ocupando menos de um terço do basidioma, ou até mesmo não existindo (Fig. 2). A coloração da subgleba pode variar de cor em Lycoperdon atingindo tons de marrons e cinza; em Morganella e Vascellum, pode

35 ser constante em tons de amarelo claro. Ademais, a subgleba quando observada em um corte transversal, pode ser celular, como na maioria das espécies de Lycoperdon; ou compactada, ocorrendo na maioria das espécies de Morganella. Também, ainda que pouco frequente, pode aparecer uma subgleba lanosa, como em L. ovoidisporum e L. pyriforme, ainda no primeiro, os espécimes apresentaram um transição de lanoso a celular (Cortez et al., 2011). O diafragma pode ocorrer tanto em espécies de Lycoperdon quanto em Vascellum, mas não foi observa em nenhuma das exsicatas de Morganella.

36

Figura 1. Tipos de formas dos basidiomas em Lycoperdon e Morganella. a. L. mammiforme basidioma piriforme (K s/n coletado por M.C. Cook 1885); b. L. pulcherrimum basidioma subgloboso (K 3933 – holotipo !); c. M. compacta, basidiomas depresso globosos (PDD10140 holotipo!); d. M. fuliginea basidioma globoso (UFRN-Fungos 1768); e. L. utriforme, basidioma depresso globose a obovoide (K200231); f. L. pratense, basidiomas subglobose a turbinado (VDEMOULIN 7412). Barras = 10 mm.

Figura 2. Tipos de subgleba em espécies de Lycoperdon. a. Subgleba reduzida e com células compactas, L. fuligineum (UFRN-Fungo 1768); b. Subgleba bem desenvolvida, celular e com diafragma L. marginatum (CORD756); c-d, f. Subgleba desenvolvida e celular: (c) L. perlatum (MA-Fungi 29372), (d) L. pratense (K200229), (f) L. utriforme (K200230) em basidioma parcialmente imaturo; e. subgleba bem desenvolvida e lanosa, (e) L. pyriforme (MA-Fungi 16908). Barras = 10 mm.

Ornamentação do exoperídio – De fato, o trabalho de Kreisel de 1962, citado aqui a obra re-editada (Kreisel, 1973), foi quem iniciou a caracterização em Lycoperdaceae, antes nenhum dos trabalhos tradicionais haviam empregado esforço na caracterização do perídio na família. O exoperídio pode ser composto por verrugas; espinhos com as pontas agudas; espinhos com as pontas alongadas, delgadas e curvadas; espinhos em conjuntos de três ou mais unidos por suas pontas, que dão uma aparência estelar; e espinhos

37 piramidais; essas ornamentações podem ser persistentes; ou cair com tempo, deixando amostra a superfície do endoperídio (Fig. 3). Essas ornamentações podem atingir até 6 mm de comprimento em espinhos, embora este padrão ocorra em espécimes de L. echinatum (Demoulin, 1972b; Calonge e Demoulin, 1975; Calonge, 1998), e que não foi reportado ainda na América do Sul; nas ornamentações em forma de verrugas o comprimento atinge 1 mm. O padrão de coloração pode ser em tons esbranquiçados a enegrecidos.

Superfície do endoperídio – Pode ser liso ou areolado; alguns espécimes, no qual a espécie teria endoperídio areolado, as aréolas não estavam presentes, ou estavam incompletas, mas poder ter ocorrido por duas situações: as más condições do espécime ou, o espécime em seu habitat sofreu pelas intempéries das chuvas; quando o exoperídio não é persistente, a superfície do endoperídio pode apresentar um aspecto furfuráceo; a coloração geralmente é em tons de amarelo. O aspecto enrugado, tem sido usado por exemplo, em espécies de Morganella (Alfredo e Baseia 2014), na descrição de M. nuda, embora na descrição os autores tenham considerado que a superfície do endoperídio varia de liso a enrugado; ao longo das análises morfológicas em Lycoperdon, esse carácter parecia ocasionado pelas condições dos espécimes, e não da natureza do endoperídio portanto, essa característica em Lycoperdon, Morganella e Vascellum é considerado como um carácter não informativo.

Padrão de desenvolvimento da deiscência – Em Lycoperdon, Morganella e Vascellum, a deiscência é sempre na porção apical do basidioma. Se o endoperídio apical é composto por micoesclereídeos ou células com terminações infladas, a deiscência tende a ser por um poro irregular ou por ruptura do perídio (exoperídio + endooerídio); os espécimes em Vascellum apresentam deiscência irregular ou até mesmo por ruptura do perídio; em Lycoperdon, a deiscência irregular pode ocorrer, por exemplo, em espécimes de L. marginatum; quando o endoperídio não é composto por micoesclereídeos e/ou células com terminações infladas, a deiscência sempre será por um poro apical regular; por isso, todas espécies em Morganella apresentam poro apical regular.

Textura da gleba – A gleba pulverulenta é a mais comum; ainda que também pode ser lanosa (somente encontrado em L. umbrinoides). A coloração é em tons de marrom, e algumas vezes pode ser tingida em tons de lilás e cinza.

38

Pseudocolumela – Não é comumente presente, e quando presente não foi taxonomicamente informativo para a separação das espécies; a coloração sempre acompanhava o tom da gleba.

Coloração das estruturas – Neste estudo usamos Küppers (2002), nos Capítulos 1 e 2; e Kornerup e Wanscher (1967), no Capítulo 3, que são as obras disponíveis no momento de realizar as identificações.

Caracteres microscópicos

Ornamentação do exoperídio – Os espinhos ou verrugas são compostos por: (1) hifas celulares denominadas esferocistos que apresentam formas globosas, subglobosas ou piriformes; também podem ser encontradas hifas com formas irregulares, mas que, tradicionalmente continuam sendo chamadas de esferocistos. Se estas células estão dispostas em cadeias, o termo está correto; e (2) hifas alongadas, podendo ser encontradas em grupos, com formas de clavas ou elípticas. O exoperídio é sempre analisado separando-se uma porção basal e uma porção apical, para verificar se há diferenças quanto a formas, tamanho e reação em Melzer, como por exemplo, em L atrum.

Hifas do endoperídio – O endoperídio é composto por hifas entrelaçadas, podendo ser encontrado hifas com terminações infladas e micoesclereídeos; por isso as análises do endoperídio são feitas separando a porção apical da porção basal. Na porção apical, que pode ser extraído deste o poro até metade do basidioma, podem ser encontrados micoesclereídeos e/ou hifas com terminações infladas. Os micoesclereídeos são células unitárias com formas irregulares, podendo ser sem reação ao Melzer até fortemente dextrinoide. As hifas com terminação infladas, apresentam as terminações distintas das hifas entrelaçadas normais, estas terminações irão apresentar diâmetro de 5 até 30 µm. Estes dois tipos de elementos podem auxiliar na descamação do perídio e formação do poro apical, acredita-se que em alguma fase do desenvolvimento todas as espécies podem apresentar estes elementos, até a formação completa do poro apical; em outras espécies estes elementos seguem persistentes, e isso é observado em espécies nos quais a deiscência é por poro apical irregular ou ruptura do perídio.

39

Figura 3 Tipos de ornamentação do exoperídio e superfície do endoperídio. a, d. Espinhos com as pontas alongadas, delgadas e curvadas; b, e, f. Verrugoso; c. Espinhos piramidais; a-c, e-f. Superfície do endoperídio liso; d. Superfície do endoperídio areolada. Todas as ornamentações apresentadas são caducas com o tempo. Barras = 2 mm.

Porção da gleba – Nesta região são encontrados os basidiosporos, capilícios e paracapilícios. Os basidiosporos podem ser globosos, subglobosos, ovoides a subelípticos (Fig. 5). A superfície do basidiosporos pode ser punctado, levemente verrugoso, verrugoso a fortemente verrugoso, sendo classificado de A-D seguindo Demoulin (1972a; b) e Moyersoen e Demoulin (1996): [A] ornamentação lisa a punctada; [B] ligeiramente verrucosa; [C] verrucosa e [D] fortemente verrucosa (Fig. 5-6). Os basidiosporos podem ter una reação em Melzer como fortemente dextrinoide; marrom claro a marrom em KOH 5%; e possuírem ou não pedicelos (restos de esterigmas).

As hifas encontradas na gleba são chamadas de capilício ou paracapilício. Os capilícios podem ser asseptados ou septados, possuir poros ou não; quando com poros, podem ocorrer em diferentes quantidades, proporções de tamanho e formas, estas últimas de difícil avaliação, sendo somente possível sob microscópio eletrônico de varredura. As hifas do capilício não apresentam reação ao Melzer ou fracamente dextrinoide; e são amareladas a marrons em KOH 5%. Os paracapilícios, são sempre septados; algumas vezes ramificados; sem reação em Melzer, sempre cianófilos, e sempre hialinos em KOH 5%. 40

Figura 4 Tipos de esferocistos e células alongadas do exoperídio apical; micoesclereídeos e hifas infladas do endoperídio apical. a. Células alongadas e dextrinoide de L. atrum; b. Esferocistos em cadeias de L. perlatum; c. Esferocistos com formas irregulares de L. pyriforme; d, f. Micoesclereídeos com formas irregulares de L. marginatum e Lycoperdon sp.; e. Hifas com terminações de L. umbrinum. a, c, e. Barras = 20 µm; b. Barra = 100 µm; d, f. Barras = 10 µm.

Subgleba – As hifas da subgleba, podem ser septadas, ramificadas, sem reação em Melzer a fortemente dextrinoide.

Pseudocolumela – A hifas da pseudocolumela são, facilmente confundidas com o capilício; quando presente estas estruturas são poucos septadas, pouco ramificadas e desprovidas de poros; sem reação em Melzer, acianófilas e amareladas a marrom em KOH 5%.

Rizomorfas – São compostas de dois tipos de hifas, um tipo mais interno e o outro mais externo. As hifas mais internas podem alcançar até 5–20 µm diâm., são septadas, com septos incompletos frequentes, sem reação em Melzer ou fracamente dextrinoide. As hifas externas são de calibre mais finos do que as internas 1–3 µm diâm., asseptadas, sempre fortemente dextrinoides. Aderidas as hifas externas podem haver cristais de diferentes formatos, de agulhas, bastonetes ou losangos; podem estar em aglomerações ou isolados; geralmente os cristais que estão aglomerados, possuem formatos de agulhas ou bastonetes, enquanto que, aqueles que apresentam formatos de losangos ocorrem isolados. No futuro estes cristais poderão ajudar na separação grupos de espécies ou ainda, separação de espécies. Para isso, é necessário que as coletas do basidiomas sejam

41 realizadas de modo que, estas estruturas permaneçam preservadas juntamente com o basidioma.

Figura 5 Exemplos de basidiosporos quanto a forma e classificação da ornamentação espécies de Lycoperdon. a. basidiosporos lisos [A], L. pyriforme (NY0071979); b-d. Levemente verrugoso [B], L. marginatum (NY00398533), L. eximium (NY0071978), L. umbrinum (MA-Fungi 63394); e-f. Verrugoso [C], L atrum (UFRN-Fungos 832), L. perlatum (NY00793106); g-i. Fortemente verrugoso [D], M. nuda (UFRN-Fungos 1766), M. velutina (NY00839022), L. decipiens (MAF27674); f, g. Basidioporos com o número de ornamentações contadas e diâmetro medido para o cálculo de densidade de ornamentação. Barras = 10 µm.

42

Figura 6 Exemplos de basidiosporos com as classificações de A-D em microscopia eletrônica de varredura (MEV). a, b. Punctados [A], L. pyriforme e L. compactun (= M. compacta); c, d. Levemente verrucosos [B], L. arenicola (= M. arenicola), L. marginatum; e, f. Verrucoso [C], L. perlatum, L. atrum; g-i. Fortemente verrucoso [D], L. fuligineum (= M. fuliginea), L. atropurpureum e L. mauryanum. Barras = 1 µm.

43

2 JUSTIFICATIVA, HIPÓTESES E OBJETIVOS

Em Lycoperdon e nos gêneros afins, em muitas ocasiões é difícil delimitar as espécies somente baseado em seus caracteres morfológicos, isto porque pode encontrar- se pouca variabilidade interespecífica, ou porque exista uma grande variabilidade intraespecífica (Demoulin, 1968b, 1972b; Demoulin e Schumacker, 1972; Calonge, 1998). Embora os estudos moleculares baseados em um ou mais loci permitam analisar os especímes independentemente dos dados morfológicos (Phosri et al., 2014; Rusevska et al., 2014, 2015). A partir da informação obtida pelas análises moleculares se pode realizar um segundo estudo morfológico por clados, que permite, em ocasiões, identificar caracteres com valor taxonômico que antes poderiam ter passado por alto (Crespo and Pérez-Ortega, 2009). Entretanto, ainda que seja muito importante encontrar caracteres morfológicos que permitam separar as espécies, às vezes estão tão ocultos que é difícil descobri-los. Existem numerosos exemplos de táxons em fungos gasteroides cuja problemática para delimitar possíveis espécies mediante caracteres morfológicos tem dado resultados graças aos estudos moleculares, por exêmplo, em Phosri et al.( 2014) e Rusevska et al. (2014, 2015); nestes estudos foram incluídos espécimes tanto do Hemisfério Norte como do Hemisfério Sul.

Em fungos, a região compreendida entre os espaçadores de transcrição interna ITS1 e ITS2 do DNA ribossômico nuclear (ITS nrDNA), incluída a subunidade 5.8S, se tem designado como região barcode, já que permite delimitar uma porcentagem muito alta das espécies descritas (Schoch et al., 2012). Nos trabalhos sobre o género Lycoperdon de Larsson e Jeppson (2008) e Jeppson et al. (2012), se analizaram estas regiões junto aos dominios D1-D2 da subunidade maior do DNA ribosómico nuclear (LSU nrDNA); contudo, nestes estudos não foram incluídos espécimes do Hemisfério Sul.

Neste presente trabalho, se idealizaram as seguintes hipóteses:

Hipótese 1: A região barcode de fungos (ITS nrDNA) permite delimitar as espécies de Lycoperdon.

Hipótese 2: Basendo-se nos caracteres morfológicos e moleculares (região barcode ITS nrDNA), se confirma que a maioria dos espécimes sul-americanos constituem táxons distintos daqueles do Hemisfério Sul.

44

Hipótese 3: O gênero Lycoperdon é um gênero monofilético, e os gêneros Morganella e Vascellum não são gêneros independentes de Lycoperdon.

Para avaliar as hipóteses mencionadas nos propomos analisar se a diversidade de espécies de Lycoperdon do Hemisfério Norte coincide com a diversidade de espécies do Hemisfério Sul. Com isso, propomos os seguintes objetivos específicos:

Objetivo 1. Confirmar se a região barcode (ITS nrDNA) permite identificar as especies de Lycoperdon, do Hemisfério Norte. (Capítulo 1).

Objetivo 2. Identificar as espécies de Lycoperdon do Hemisfério Sul mediante sua região barcode. (Capítulo 2).

Objetivo 3. Confirmar a posição taxonômica das espécies brasileiras do gênero Morganella (Capítulo 3).

Objetivo 4. Revisar os caracteres morfológicos que permitem delimitar as espécies (Capítulo 1, 2 e 3).

Objetivo 5. Descrever as novas espécies com base nos caracteres morfológicos e moleculares. (Capítulo 2 e 3).

Objetivo 6. Propor as mudanças taxonômicas e nomenclaturais para estabelecer uma sistemática revisada que sirva como ponto de partida para estudos futuros (Capítulo 1 ao 4).

45

3 MATERIAL E MÉTODOS 3.1 Coleções estudadas

Os espécimes estudados foram obtidos por meio de empréstimos dos herbários internacionais e nacionais: Universidad de Buenos Aires (BAFC), IMBIV-Museo Botánico (CORDC), Herbarium Harvard University (FH/HUH), Université de Liège (LG) e herbário pessoal do Dr. Vincent Demoulin (VDEMOULIN), MA-Fungi (Real Jardín Botánico de Madrid), MCF-Fungi (Macedonian Collection of fungi), The New York Botanical Garden (NY), Royal Botanical Gardens (K); Universidade Federal do Rio Grande do Sul (ICN), Instituto Anchietano de Pesquisas/UNISINOS (PACA), Universidade Federal do Rio Grande do Norte (UFRN-Fungos); com isso foi possível analisar 11 espécies tipos (tabela 1). Infelizmente, os herbários da Universidade Federal de Pernambuco (URM), Instituto de Botânica (SP) e Herbarium of U.S. National Collection (BPI), não enviaram seus espécimes com tempo hábil para serem incorporados no presente trabalho. O herbário FH/HUH, não concedeu permissão para incluir seus espécimes nas análises moleculares.

3.2 Análises morfológicas 3.2.1 Analises dos caracteres macromorfológicos

Os estudos dos espécimes foram realizados em parte no Laboratório de Biologia de Fungos do Departamento de Botânica e Zoologia – Centro de Biociências da Universidade Federal do Rio Grande do Norte; onde foram analisadas as exsicatas dos herbários: ICN, FH/HUH, NY, K, UFRN-Fungos e PACA; as exsicatas do herbário MA- Fungi, foram analisadas no laboratório do Departamento de Micología do Real Jardín Botánico de Madrid; as exsicatas do herbário (K) foram parcialmente analisadas no próprio Royal Botanical Gardens e depois foram concluídas no laboratório de Fungos (UFRN); as exsicatas do herbário LG e VDEMOULIN, foram analisadas no laboratório de micologia da Universidade de Liege (Université de Liège – Bélgica).

As análises das estruturas macroscópicas foram realizadas seguindo a proposta de Silva et al. (2014); assim, os basidiomas foram analisados quanto a sua forma, coloração, e o tamanho foi medido com paquímetro (altura × comprimento) considerando seus extremos; foram observadas as ornamentações do exoperídio, superfície do endoperídio,

46

a olho nu ou com ajuda do esteromicroscópio; as cores das macroestruturas foram codificadas de acordo com Kornerup e Wanscher (1967) e Küppers (2002).

A subgleba foi observada considerando os seguintes aspectos: (1) celular ou células compactadas – para isso o basidioma foi cortado transversalmente com ajuda de um estile ou lamina de barbear; então foi observada se a textura era de células globosas ou isodiamétricas que possibilitavam a medição de seu diâmetro, caracterizando uma subgleba celular; se as células eram horizontalmente elípticas impossibilitando de se medir seu diâmetro, foi considerada como células compactadas. (2) bem desenvolvida ou reduzida – para isso foram consideradas as literaturas tradicionais que usavam os termos, por exemplo, igual ou maior que um terço ou uma metade para subgleba bem desenvolvida; menor que um terço ou um quarto para subgleba reduzida (Massee, 1887; Cunningham, 1926; Coker and Couch, 1928); assim, fizemos os seguintes cálculos: altura total do basidioma dividido por 3; se o resultado for menor que um terço (< ⅓) do basidioma = reduzida; se o resultado for maior igual a um terço (≥ ⅓) do basidioma = bem desenvolvida (Fig. 2).

3.2.2 Análise dos caracteres micromorfológicos

As microestruturas foram montadas em lâminas e cobertas com lamínulas contendo uma pequena porção do basidioma misturado a uma solução, que pode ser azul de algodão em lactofenol, reagente de Melzer ou hidróxido de potássio (KOH) a 5% de acordo com Cunningham (1944) e Bottomley (1948); seguindo Cunningham (1944), as laminas contendo a solução mais a porção do basidioma foram aquecidas até começar a aparecer bolhas; em seguida esperou-se que esfriasse, para então serem observadas em microscópio óptico; essa ação permite que as estruturas retornem o seu tamanho original, e os capilícios quando apresentarem lúmen, os mesmo ficarem livres de bolhas.

Para analisar as ornamentações do exoperídio(Fig. 3a), e verificar se ocorrem esferocistos, células alongadas ou clavadas (Fig. 4); bem como verificar as hifas do endoperídio, e como elas estão dispostas; o perídio foi seccionado transversalmente com ajuda de laminas de barbear, e logo em seguida, foram montadas lâminas contendo reagente Melzer e partículas do perídio seccionado, novamente aqueceu-se a lamina, sem pressionar para não romper as camadas exo- + endoperídio, e após alguns segundos depois de esfriada, foi observado em microscópio ótico (Fig. 3b); posteriormente a

47 primeira observação a lâmina contendo solução mais o perídio foi pressionada até rompimento das camadas do perídio (Fig. 3 a, c-f) para realizar as medições; tanto o exoperídio quanto o endoperídio foram analisados levando-se em consideração porção apical (do poro apical até os limites da subgleba) separado da porção basal (dos limites da gleba até a base).

Os basidiosporos foram analisados seguindo Demoulin (1972a; b), Moyersoen e Demoulin (1996); foram medidos 10 basidiosporos por espécime; nas descrições das espécies, as ornamentações dos basidiosporos foram incluídas, e quando necessário nós discutiremos o tamanho dos basidiosporos sem ornamentação; também, os basidiosporos foram classificados como: lisos a punctados [A], levemente verrucoso [B], verrucoso [C] e fortemente verrucoso [D] (Fig. 5-6); com o propósito de chegar a uma dessas classificações, primeiramente nós analisamos as lâminas em microscópio sob objetiva de 40x, para checar o padrão de ornamentação; se a ornamentação não foi visualizada os basidiosporos são lisos a punctados [A] (Fig. 5a), se a ornamentação foi facilmente observa em objetiva de 40x, os basidiosporos são fortemente verrucosos [D] (Fig. 5 g-i); as outras duas classificações são mais complicadas, porque o limite entres B-C é mais sensível; se o observador consegue visualizar as ornamentações dos basidiosporos em objetiva de 40x, mas não conta-las, é necessário que mude a objetiva para 100x; já neste objetiva, se o observador pode contar as ornamentações, a classificação é [C] (Fig. 5 e-f); se as ornamentações continuam sem se poder contá-las, a classificação é [B] (Figs. 5 b- d); para checar a densidade de ornamentação dos basidiospores foi usado o seguinte cálculo: número de ornamentação dividido pelo diâmetro do basidiósporo multiplicado por 3,14, assim, nós encontraremos o número de verrugas por uma circunferência reduzida de 10 µm; as fotos das microestruturas foram confeccionadas no MO Nikon “Eclipse Ni” com câmera fotográfica “DSRi” acoplado ao microcomputador, usando o programa de suporte para a captura das imagens – “Software de Imagem de Microscopia NIS-Elements”; a ornamentação dos basidiosporos também foi analisada sob microscopia eletrônica de varredura (Fig. 6) seguindo a metodologia adotada por Cortez et al. (2008) e Silva et al. (2011).

48

3.3 Análises moleculares 3.3.1 Isolamento do DNA, amplificação e sequenciamento

As extrações de DNA e amplificações das reações em cadeias da polimerase (PCR) foram realizadas em dois laboratórios distintos: (a) Laboratório de Biologia Celular e Genética de Plantas no Departamento de Biologia Celular e Genética – UFRN; (b) Laboratório de Biologia Molecular do Real Jardín Botánico de Madrid – RJB/CSIC; as extrações de DNA foram realizadas com basidiomas herborizados de tecidos extraídos das partes internas do basidioma e colocando-as em tubos eppendorf 1,5 ou 2 ml (Fig. 7 a), usando o kit de extração DNeasy Plant Kit (Qiagen 69106), seguindo as instruções do fabricante; excerto em três modificações: para agregar o tampão AP1 e o RNase A, em vez de incubar 10 min a 65ºC, se incubou toda a noite a 60ºC, para favorecer a ruptura das paredes quitinosas dos fungos; para adicionar por uma segunda vez 500 μl do tampão de limpeza AW, seguido, de realizar a centrifugação de 1 min a 8000 rpm e descartar-se a fração líquida, se realizou uma segunda centrifugação a 14.000 rpm durante 2 min, para assegurar que a coluna ficava completamente seca de álcool, já que este poderia interferir nas posteriores reações de amplificação; e para aumentar a concentração de DNA eluído, o tampão AE foi pré-aquecido a 60ºC. Uma vez finalizado o isolamento se quantificou o DNA utilizando o espectrofotómetro ARN/ADN calculator GeneQuant II (Pharmacia Biotech). As amplificações se realizaram em reações individuais mediante IllustraTM PuReTaqTM Ready-To-GoTM PCR beads (GE Healthcare, UK). Cada tubo contendo em seu interior uma esfera desidratada com todos os reativos para uma amplificação por PCR (Taq polimerasa, dNTPs, cloreto de magnésio e tampão Tris-HCl) (Fig. 7 b), para que se possa adicionar os iniciadores (1 μl a 10 μM), o DNA genômico (1.0-10.0 μl, dependendo da concentração) e água ultrapura estéril (Water 95284 Biochemica, SIGMA), até um volume de 25 μl. Para o marcador ITS, o fragmento que se tentou amplificar compreende os espaçadores internos ITS1 e ITS2, incluindo a subunidade 5.8S do DNA ribossômico nuclear. Para o marcador LSU, o fragmento selecionado compreende os domínios D1-D2 da subunidade maior do DNA ribossômico nuclear (LSU nrDNA). Os iniciadores utilizados para a amplificação destas regiões se indicam na figura 8, e na Tabela 1 se inclui a sequência dos mesmos.

Se realizaram diferentes estratégias de amplificação, já que em geral se realizaram

49 isolamentos de DNA de material de herbário, para conseguir os amplímeros desenhados. Em primeiro lugar, se realizaram amplificações diretas com os iniciadores ITS5 e ITS4 (Fig. 8) (White et al., 1990), no caso de ITS, e com os iniciadores LROR (Rehner e Samuels, 1994) e LR7r (Vilgalys e Hester, 1990), para o de LSU. Para cada série de amplificação foi corrido gel de comprovação para determinar a qualidade e quantidade do produto amplificado. Para isto, se realizou uma electroforese em gel de agarose a 2% (Agarose D-1 low EEO, Conda S.A., Pronadisa) com tampão TAE 1x (tampão TAE 50x: EDTA 0.05M, Tris Acetato 2M). Como agente intercalante de DNA se adicionou 1 μl de SYBR SafeTM por cada 10 ml de agarose. Em cada poço foi preenchido com 5 μl de produto amplificado mesclados com 1 μl de tampão de carga LB diluído 1:10 (LB 6x: azul de bromofenol 0.25 %, xilencianol 0.25 %, glicerol 30 %). Para conhecer a longitude dos possíveis amplímeros foi realizado como padrão de peso molecular o marcador 1 Kb Plus DNA Ladder, diluído 1:19. A eletroforeses foi percorrida a 100V durante 30 min, tendo em vista que os moldes dos géis utilizados são de 10 × 15 cm. A visualização do DNA foi por meio do sistema de documentação de géis G:BOX EF (SynGene) ou Cleaver. Em cada série de amplificações se incluiu sempre um controle negativo. Uma vez preparados os tubos de PCR beads (Fig. 7 b) se procedeu à amplificação utilizando o termociclador MJ Research-PTC-200 (Fig. 7 c). Os programas empregados nas amplificações para cada região correspondem a Martín e Winka (2000) para ITS, e Telleria et al. (2013), para LSU.

Naqueles casos em que não foram visualizadas banda depois da amplificação direta (Fig. 7d), se procedeu a realizar una amplificação por partes. Para o marcador ITS se utilizou os pares de iniciadores ITS1F/ITS2 e ITS3/ITS4 (White et al., 1990), e para o marcador LSU, LROR/LR5 (White et al., 1990) e LR3R /LR7r (Vilgalys e Hester, 1990) (Fig. 8).

50

Tabela 1 Iniciadores empregados na amplificação dos fragmentos ITS e LSU nrDNA. Indicação de suas sequências e temperatura de hibridização.

Região Primer Sequências (5’...3’) T hibridização

ITS1F CTT GGT CAT TTA GAG GAA GTA A 67ºC

ITS2 GCT GCG TTC TTC ATC GAT GC 57ºC

ITS3 GTC TTG AAA CAC GGA CC 57ºC ITS ITS4 TCC TCC GCT TAT TGA TAT GC 53ºC

ITS4-B CAG GAG ACT TGT ACA CGG TCC AG 67ºC

ITS5 GGA AGT AAA AGT CGT AAC AAG G 69ºC

LROR ACC CGC TGA ACT TAA GC 57.9ºC

LR3 CCG TGT TTC AAG ACG GG 56ºC LSU LR5 TCC TGA GGG AAA CTT CG 58.8ºC

LR7r TAC TAC CAC CAA GAT CT 46.2ºC

Quando tão pouco foi possível visualizar produto das amplificações (Fig. 7 e), se realizaram nested PCR para ITS e seminested PCR para LSU. No caso do ITS se realizou uma primera amplificação com 1 μl de DNA genômico e o par de iniciadores ITS1F/ITS4B (Gardes e Bruns, 1993), e uma segunda amplificação (PCR nested) com os pares de iniciadores ITS5/ITS4, naquela que se incluiu com DNA de 1 μl da primeira amplificação. No caso do LSU, se realizou uma primeira amplificação com os pares de iniciadores LROR/LR7r e 1 μl de DNA genômico, depois se conduziu uma segunda amplificação com 1 μl da amplificação anterior e os pares de iniciadores LROR/LR5 e LR3R/LR7r por separado.

Aquelas amplificações em que se observaram bandas no gel de comprovação se procedeu a purificação. Dependendo da qualidade e concentração do produto amplificado, se utilizou um dos seguintes protocolos:

(1) nas amplificações que se obtiveram bandas duplas ou uma banda muito grossa (Fig. 7 f), se utilizou o kit QIAquick Gel Extraction (QiaGen®). Para esta purificação, em primeiro lugar se realizou uma segunda eletroforese em gel de agarose a 2 %; nos géis adicionou-se os 20 μl restantes de amplificação aos que se adicionou 1 μl de LB. No gel se deixou um poço vazio entre as amostras para evitar arrastrar amostras vizinhas ao cortar. Para assegurar que as bandas se separaram corretamente se deixou correr o gel a 120 V durante 45 min, já que os moldes eram de 10 × 15 cm. Depois se visualizaram as

51 bandas com o transluminador de luz azul SafeImagerTM 2.0 Blue-Light Transilluminator ou Clear View UV Transilluminator Cleaver, e se cortaram utilizando palitos de madeira estéreis. Cada porção de agarosa com sua banda correspondente se introduziu em um tubo eppendorf de microcentrífuga de 1.5 ml, e despois se seguiu o protocolo indicado pelo fabricante.

Figura 7. Materiais e equipamentos usados durante a extração e amplificação do DNA. a. Colunas (lilás e brancas) do kit de extração; b. Tubos eppendorfs contendo em seu interior uma esfera desidratada com todos os reativos para a amplificação por PCR; c. Termociclador; d. Transluminador acoplado com câmera fotográfica para a visualização e confecção de fotografias dos géis em agarose; e-f. Fotografias dos géis em agarose; e. Gel sem as bandas de amplificação da PCR; f. Gel contendo as bandas dos produtos amplificados da PCR.

52

Figura 8. Esquema do nrDNA no qual se pode observar as regiões dos marcadores e a posição dos iniciadores. Baseado em http://sites.biology.duke.edu/fungi/mycolab/.

(2) o segundo protocolo de purificação que foi empregado para aquelas amplificações em que os géis de comprovação se visualizou uma única banda bem definida e intensa (mais de 20 ng/μl). A purificação foi realizada com a enzima Exosap, IllustraTM ExoStar-1-Step (GE Healthcare, UK) segundo as instruções do fabricante, com a enzima diluída a 1:10. Depois de adicionar 8 μl de Exosap 1:10 aos tubos que continham as amplificações; estes foram introduzidos no termociclador MJ Research- PTC-200 para a eliminação dos restos de dNTPs, dímeros, etc. Se utilizou o seguinte programa: um ciclo à 37ºC durante 30 min (ativação e atuação da enzima), um ciclo a 80ºC durante 15 min (desativação da enzima) e um ciclo de conservação à 4ºC até que as purificações fossem armazenadas ao freezer (4ºC).

Para cada série de purificação se realizou também um gel de comprovação para assegurar que, sobre tudo nos casos em que haviam cortado as bandas, não se havia perdido o DNA. Estas eletroforeses foram realizadas sob as mesmas condições que as dos géis de comprovação das amplificações.

As purificações foram enviadas para serem sequenciadas a serviço de sequenciamento de DNA da Macrogen (Coreia), com os iniciadores (10 μM) que se haviam utilizado nas amplificações, para obter tanto a sequência direta (forward) quanto a reversa (reverse).

53

Figure 9. Formação das sequências consensos e busca no megablast para verificar se há contaminação das mesmas. a. Visualização das sequências direto e reverso e formação da sequencias consenso; b-g. Submissão da sequencias consenso no megablast disponível na web site NCBI.

54

Para obter as sequências consenso das regiões analisadas de cada uma das amostras, editaram-se as sequências direta e reversa utilizando o programa Sequencher 4.1.4 ou no programa Genious Pro v4.8.5 (Fig. 9 a). Uma vez obtidos os consensos, para comprovar que estas sequências correspondiam ao gênero de espécie de estudo e que não provinham de uma contaminação, se analisaram uma por uma com a opção de busca megablast (BLAST®) (Fig. 9 b-g) disponível no NCBI (National Center of Biotechnology Information (Altschul et al., 1997).

3.3.2 Identificação molecular das espécies de Lycoperdon

As sequencias de ITS obtidas (Capítulo 1-3) e a de LSU (Capítulo 3) foram alinhadas usando o programa Seaview versão 4.6 (Galtier et al., 1996; Gouy et al., 2010) para múltiplas sequencias. As sequencias foram comparadas como homólogos de Lycoperdaceae do GenBank principalmente as sequencias publicadas por Larsson e Jeppson (2008), Jeppson et al. (2012), Kumla et al. (2013) e Kim et al. (2016). Foram usadas como grupo externo as sequencias de Bovista (Capítulo 1-2), Mycenastrum e Tulostoma (Capítulo 3). Onde ocorreram ambiguidades no alinhamento caracteres informativos foram escolhidos. Onde haviam gaps foram marcados com “–“, nucleotídeos não resolvidos e desconhecidos na sequencia foram indicados com “N”. Para analisar se a sequência ITS é uma boa região “barcode” para identificar as espécies de Lycoperdon, se realizou um agrupamento das sequências, mediante uma análise de distância com o algoritmo de Kimura-2-Parametros (K2P) sob Neighbor- Joining (NJ) (Meier et al., 2006; Chen et al., 2010; Ramadan and Baeshen, 2012). Se obtiveram os valores de PCI (porcentagem de identificação correta) e a variação intraespecífica e interespecífica utilizando o programa TaxonDNA disponível em http://taxondna.sf.net/. Para avaliar se os agrupamentos obtidos por NJ eram apoiados, se realizaram análises de Máxima Parcimônia (MP) e de inferência bayesiana. A análise de Máxima Parcimônia (MP) foi conduzida no programa PAUP versão 4.0a152 (Swofford, 2002). Como medida de apoio para a análises MP, utilizou-se o método de bootstrap (bs) (Felsenstein, 1985), com a opção fast-step, retendo 10000 réplicas por árvore, e se calcularam também os índices de consistência (CI; Kluge e Farris, 1969), de retenção (RI; Farris, 1989) e o índice de consistência reescalado (RC; Farris, 1989).

Para a análise Bayesiana (Larget e Simon, 1999; Huelsenbeck e Ronquist, 2001), 55 foi utilizado o programa MrBayes v. 3.1. A análise se realizou baseada no modelo de tempo reversível (Rodríguez et al., 1990), incluindo a estimação de sítios invariáveis e assumindo uma distribuição gama com seis categorias (GTR+I+G), modelo selecionado com o programa MrModeltest v. 2.3 (Nylander, 2004). Mediante o MrBayes se realizaram as análises independentes e simultâneas, a partir de distintas árvores aleatórias, ao longo de 2.000.000 de gerações correndo quatro cadeias paralelas e guardando-se as árvores e os valores dos modelos de cada 100 gerações. De cada 1.000 árvores geradas em cada uma das duas análises se tomou uma como amostra para mediar a similaridade entre elas e determinar o nível de convergência entre as duas análises. O MrBayes obteve a árvore consenso pela regra da maioria a 50% e os valores de probabilidade dos nós.

No Capítulo 3, para as análises preliminares se realizou um alinhamento combinado das sequências de ITS e LSU, excluindo as sequências de EMBL/GenBank/DDBJ das que não estavam disponíveis as sequências das duas regiões.

A visualização dos dendogramas foi realizado com auxílio do TreeView (Page, 1996) e foram editados com auxílio do programa InkScape Wink, versão 0.92.0 r15299 (http://wiki.inkscape.org/wiki/index.php?title=Release_notes/0.91&oldid=98966).

3.4 Nomenclatura

A nomenclatura micológica e de plantas está de acordo com o Código Internacional de Nomenclatura para Algas, Fungos e Plantas (McNeill et al., 2012). Tendo em vista, que a presente obra de tese de doutorado não possui ISSN e ISBN, e tem como o seu propósito a aquisição de título de doutorado em Sistemática e Evolução, o qual é submetida a Universidade Federal do Rio Grande do Norte, cabe ressaltar que nenhuma das novidades nomenclaturais mencionadas pode-se considerar validamente publicada na própria obra de tese de acordo com o Art. 30.8. De fato, nenhuma destas tais novidades nomenclaturais pretende-se ser publicadas de forma efetiva aqui, a não ser aquelas que foram (no caso dos Capítulos 2 e 3) ou serão publicadas de forma efetiva por meio de aceitação e publicação dos diferentes capítulos em revistas científicas correspondentes. Se incluem, todavia, as diagnoses, citações de material tipo e números de MycoBank tal qual como se deveriam aparecer na efetiva publicação. Por esses motivos, pedimos aos possíveis leitores desta obra que não citem as novidades

56

nomenclaturais que aqui aparecem em seus respectivos capítulos, excepcionalmente se estas forem citadas a partir de suas efetivas publicações, uma vez que tenha sido realizada.

57

4 RESULTADOS

A partir dos empréstimos realizados dos herbários nacionais e internacionais supracitados, foi possível revisar 334 exsicatas, totalizando 888 espécimes; houve uma média de 2,7 espécimes (ou basidiomas) por exsicata; com isso, obteve-se um sucesso de amplificação da região ITS em 220 exsicatas (65,9 %), em 96 amostras (28%) não se obteve sucesso de amplificação (Fig. 10); sendo que os resultados de sucesso de amplificação obtidos neste estudo são equivalentes aos encontrados por Schoch et al.

1000 888 900

800

700

600

500

400 334 300 220 200 96 100

0 Número total de Quantidade de exsicatas Números de amostras com Números de amostras sem basidiomas analizados revisadas ITS amplificado amplificação (2012).

Figura 10. Número de basidiomas analisados, considerando o número de exsicatas, as amostras com sucesso de amplificação da região ITS, e as amostras sem sucesso de amplificação da região ITS.

Os resultados se apresentam nos seguintes capítulos: Capítulo/Chapter 1: Is the ITS barcode useful to discriminate Lycoperdon species?

Capítulo/Chapter 2: Integrative taxonomy for the identification of species of Lycoperdon (Basidiomycota) from Central and South America.

Capítulo/Chapter 3: Revision of species previously reported from Brazil under Morganella.

Capítulo/Chapter 4: Updated check-list to Lycoperdon from South America.

58

5 DISCUSSÃO GERAL

A ideia de usar sequências de DNA igual a um código de barras usado em lojas e supermercados tem se mostrado promissor e de muita ajuda em trabalhos voltados a identificação de espécies em amostras ambientais (solo, pedaços de madeira em decomposição, folhagem, etc.) (Hogg and Hebert, 2004; Blaxter et al., 2005). Assim também, o uso do DNA barcode tem auxiliado os taxonomistas em identificar espécies quando os caracteres morfológicos não são suficientes para segregá-las morfologicamente (Page et al., 2005); e a possibilidade de identificar espécies não é restrita somente aos animais como proposto inicialmente (Hebert et al., 2003), mas também para descriminar espécies em algas (Robba et al., 2006), plantas (Taberlet et al., 2007) ou fungos (Smith et al., 2007). A sequência de DNA para ser usada como barcoding deve possuir um comprimento curto de pares de bases (600 – 700 bp), de fácil amplificação (Hebert et al., 2003). A região ITS como barcoding de fungos passou a ser amplamente aceita pela comunidade científica após o trabalho de Schoch et al. (2012). No presente trabalho, a região ITS mostrou-se ser promissora na identificação de espécies de Lycoperdon. Nesse sentido, nossos resultados mostram 65,9 % de sucesso na amplificação contabilizando todos os capitulos, embora esses valores sobem quando observados somente para o capítulo, onde trabalhou-se com espécimes de somente dois herbários (87%), em contraste aos 28% de falha na amplificação somando-se os espécimes analisados em todos os capítulos, enquanto que somente para o capítulo 1 esse porcentagem cai para 13%; assim como aqueles obtidos por Schoch et al. (2012), onde o sucesso de amplificação da região ITS foi de 90%. Ainda que, a falha na amplificação do ITS em Lycoperdaceae dever ser pelo fato da gleba ser pulverulenta, no qual os esporos são transportados facilmente pelo ar e então sendo depositado em outras espécies, criando um problema durante o processo de extração e amplificação. Usando a identificação baseado na distância entre sequencias, foi obtido um sucesso de 80% na identificação de espécies, embora, em Hebert et al., (2003) que obtiveram 100% de sucesso de identificação de espécies, os resultados aqui são satisfatórios; em Meier et al. (2006) o sucesso de identificação de espécies foi de apenas 67%, porém os autores chamam atenção pelo fato de terem usados sequencias de diferentes tamanhos, onde a maioria eram menores que 500 pares de bases.

59

Consequentemente, as falhas na identificação de espécies ocorreram justamente no grupo de Lycoperdon molle/L. umbrinum como é tratado por Demoulin (1968b), Demoulin e Schumacker (1972), onde os caracteres morfológicos não são muito eficientes para separá-las. Neste caso, a região ITS não foi suficientemente variável para separar as espécies, assim como esperado para alguns grupos de fungos (Geiser et al., 2004), portanto, (Stielow et al., 2015), propõe a adição de mais marcadores à região ITS como barcoding, com isso, os autores indicam a região TEF1 α como uma região potencialmente promissora. A integração da sequência ITS como barcoding com a taxonomia morfológica demonstrou ser suficiente na discriminação de 19 espécies para a América do Sul; da mesma forma Goldstein e DeSalle (2011) citam que o conhecimento de especialistas morfológicos integrados aos trabalhos de DNA “barcoding” são eficientes na discriminação de espécies. Ainda, três espécies permaneceram como não identificadas; anteriormente essas espécies estavam erroneamente identificadas como espécies europeias ou norte americanas, mas em nossas análises, mostram-se táxons sul- americanos distintos, sendo necessária a adição de mais espécimes e marcadores para esclarecer esse fato. Também outros grupos como L. atropurpureum e L. excipuliforme devem ser estudados em um trabalho direcionado, levando em consideração os problemas históricos taxonômicos empregados a eles (Coker e Couch, 1928; Perdeck, 1950; Demoulin, 1968b; Jeppson e Demoulin, 1989; Calonge, 1998), e que possam ser abordados espécimes de diversas localidades de todos os continentes para onde foram reportados; assim uma comparação mais abrangente dos dados moleculares e morfológicos possam esclarecer esses problemas; como indicado por Osmundson et al. (2013), e mesmo que a região ITS não é eficiente para a separação de alguns grupos de espécies, ela pode indicar quais grupos de espécies ou coleções, necessitam de mais revisão taxonômica e a inserção de análises moleculares com vários marcadores. Com a revisão morfológicas das espécies, revisão de literatura e identificação, a América do Sul apresenta uma diversidade de espécies similar à América do Norte e Europa (Demoulin, 1972b); ou mesmo quando comparada com a estimativa de espécies para o mundo (Kirk et al., 2008). Ainda, o número de espécies registradas para Argentina foi superior em 12 espécies em relação aos números reportados anteriormente por Domínguez de Toledo (1989) e Hernádez- Caffot et al. (2013). Além do mais, Argentina e Brasil registraram juntos o maior número de espécies de Lycoperdon para o continente sul-americano. Embora, em países como

60

Bolívia, Paraguai ou Uruguai, etc., necessitam de mais trabalhos voltados a inventários de espécies de Lycoperdon; com base em nossos resultados, a América do Sul demonstra possuir uma grande diversidade de espécies em Lycoperdon quando comparado com outros continentes que tiveram mais esforços em trabalhos para inventariar as espécies de Lycoperdon. As novas ferramentas de identificação molecular, tais como ITS “barcoding” tem sido de grande ajuda para taxonomistas acessarem a diversidade de para vários organismos, como demonstrado por Janzen et al. (2005), que obtiveram sucesso no uso do DNA “barcoding” na identificação de espécies em inventários Lepidoptera. Com base nas regiões de ITS e LSU, o gênero Lycoperdon mostrou-se parafilético, e mesmo adicionando as espécies sul-americanas de Morganella, o gênero mostrou-se não independente de Lycoperdon; estes resultados corroboram os resultados obtidos por (Larsson e Jeppson, 2008), no qual os autores confirmam que Lycoperdon é parafilético, e propuseram Apioperdon, Morganella e Vascellum como gêneros não independentes de Lycoperdon; igualmente, aqui foi proposto o novo subgênero Arenicola, com base nas regiões ITS e LSU de espécies exclusivamente sul-americanas.

61

6 CONCLUSÕES GERAIS

1. A região ITS como “barcoding” na identificação de espécies de Lycoperdon é promissora, embora, seja necessário melhorar alguns protocolos para se obter a sequência “barcoding” para importantes espécimes (e.g. tipos), no qual a sequência “barcoding” ainda não foi obtida; 2. Embora, as análises de “barcoding” tenham ajudado na discriminação entre espécies e a detectar espécies crípticas, a taxonomia morfológica continua sendo essencial na separação de espécies, especialmente quando as sequências são idênticas ou nos casos em que não foi possível obtê-las; 3. A utilização de caracteres de diferentes fontes de informação taxonômica (morfológicos, moleculares e ecológicos) permitiu estabelecer uma sistemática mais robusta do que aquele que é estabelecido sob apenas um tipo de evidência; 4. Em conformidade com os dados moleculares, Lycoperdon é um gênero parafilético, no qual Morganella e Vascellum continuam como táxons não independentes de Lycoperdon; 5. Alguns táxons mostraram-se com a máxima variabilidade intraespecífica maior do que a mínima variabilidade interespecífica, assim o uso apenas de uma região ITS como DNA “barcoding” necessita ser combinada com um ou mais marcadores para resolver problemas nos limites entre alguns grupos de espécies, como no grupo de Lycoperdon molle/L. umbrinum. 6. Como em outros grupos de organismos, o número de espécies de Lycoperdon nos dois Hemisférios é similar; embora, nem todos estão em todas partes, já que o número de espécies com distribuição ampla é baixo. 7. Como em outros grupos de organismos, Argentina e Brasil se confirmam como “hotspots” de diversidade para as espécies de Lycoperdon.

62

REFERENCES

AGAPOW, P.M., O.R.P.B.E. EMONDS, K.A. CRANDALL, J.C. GITTLEMAN, G.M. MACE,

J.C. MARSHALL, and A. PURVIS. 2004. The Impact of Species Concept on Biodiversity Studies. The Quarterly Review of Biology 79: 161–179.

ALBERCH, P. 1993. Museums, collections and biodiversity inventories. Trends in Ecology and Evolution 8: 372–375.

ALFREDO, D.S., T. ACCIOLY, and I.G. BASEIA. 2014. Morganella arenicola, a new species record from North and Northeast Brazil. Turkish Journal of Botany 38: 595–599.

ALFREDO, D.S., and I.G. BASEIA. 2014. Morganella nuda, a new (Agaricaceae, Basidiomycota) in the upland forests of the Brazilian semi-arid region. Nova Hedwigia 98: 459–466.

ALFREDO, D.S., A.G. LEITE, R. BRAGA-NETO, and I.G. BASEIA. 2012. Two new Morganella species from the Brazilian Amazon rainforest. Mycosphere 3: 66–71.

ALTSCHUL, S.F., T.L. MADDEN, A.A. SCHÄFFER, J. ZHANG, Z. ZHANG, W. MILLER, and

D.J. LIPMAN. 1997. Gapped BLAST and PSI-BLAST a new generation of database search programs. Nucleic Acids Research 25: 3389–3402.

ALVES, C.R., and V.G. CORTEZ. 2014. Gasteroid Agaricomycetidae (Basidiomycota) from Parque Estadual São Camilo, Paraná, Brazil. Revista Brasileira de Biociências 12: 27–41.

ALVES, C.R., and V.G. CORTEZ. 2013. Morganella sulcatostoma sp. nov. (Agaricales, Basidiomycota) from Paraná State, Brazil. Nova Hedwigia 96: 409–417.

BASEIA, I.G. 2005. Some notes on the genera Bovista and Lycoperdon (Lycoperdaceae) in Brazil. Mycotaxon 91: 81–86.

BERKELEY, M.J. 1873. Notices of North American fungi. Grevillea 2: 49–53.

BICKFORD, D., D.J. LOHMAN, N.S. SODHI, P.K.L. NG, R. MEIER, K. WINKER, K.K.

INGRAM, and I. DAS. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.

BLACKWELL, M. 2011. The fungi: 1, 2, 3 ... 5.1 million species? American Journal of

63

Botany 98: 426–438.

BLAXTER, M., J. MANN, T. CHAPMAN, F. THOMAS, C. WHITTON, R. FLOYD, and E.

ABEBE. 2005. Defining operational taxonomic units using DNA barcode data. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 1935–1943.

BONORDEN, H.F. 1857. Die Gattungen Lycoperdon, Bovista und ihr Bau.

BOTTOMLEY, A.M. 1948. Gasteromycetes of South Africa. Bothalia 4: 473–810.

BOWERMAN, C. 1961. Lycoperdon in Eastern Canada With Special Reference To The Ottawa District. Canadian Journal of Botanyof Botany 39: 353–383.

BRUNS, T.D., R. FOGEL, T. WHITE, and J.D. PALMER. 1989. Accelerated evolution of a fulse-truffe from a ancestor. Nature 339: 140–142.

BRUNS, T.D., T.J. WHITE, and J.W. TAYLOR. 1991. Molecular Evolution of Fungi. Annual Review of Ecology and Systematics 22: 525–264.

CAIN, A.J. 1958a. Logic and memory in Linnaeus's systems of taxonomy. Proceedings of the Linnean Society of London 169: 144–163.

CAIN, A.J. 1958b. Deductive andinductive methods in post-Linnaean taxonomy. Proceedings of the Linnean Society of London 170: 185–217.

CALONGE, F.D. 1990. Algunos Gasteromycetes interesantes de Extremadura. Boletín Sociedad Micológica de Madrid 14: 191–195.

CALONGE, F.D. 1998. Gasteromycetes, I. , Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica.

CALONGE, F.D. 1975. Ornamentación de las esporas de algunos Gasteromycetes españoles. Anales del Instituto Botanico de Cavanilles 32: 103–115.

CALONGE, F.D., and V. DEMOULIN. 1975. Les Gastéromycètes D’Espagne. Bulletin de la Sociéé Mycologique de France 91: 247–292.

CALONGE, F.D., and D. PALACIOS. 2000. Novedades de Gasteromycetes para Navarra. Boletín Sociedad Micológica de Madrid 25: 307–308.

CHEN, S., H. YAO, J. HAN, C. LIU, J. SONG, L. SHI, Y. ZHU, ET AL. 2010. Validation of

64

the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5: 1–8.

COKER, W.C., and J.N. COUCH. 1928. The Gasteromycetes of the Eastern United States and Canada. The University of North Carolina Press, Chapel Hill.

CORTEZ, V.C., I.G. BASEIA, and R.M.B. SILVEIRA. 2008. Gasteromicetos (Basidiomycota) no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6: 291–299.

CORTEZ, V.G., I.G. BASEIA, R.T. GUERRERI, and R.M.B. SILVEIRA. 2008. Two sequestrate cortinaroid fungi from Rio Grande do Sul, Brazil. Hoehnea 35: 513– 518.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2013. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Lycoperdon and Vascellum. Mycosphere 4: 745–758.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2011. Lycoperdon ovoidisporum sp. nov. from Brazil. Sydowia 63: 1–7.

CORTEZ, V.G., F.D. CALONGE, and I.G. BASEIA. 2007. Rick´s species revision 2: Lycoperdon benjaminii recombined in Morganella. Mycotaxon 102: 425–429.

CRESPO, A., and S. PÉREZ-ORTEGA. 2009. Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 71–81.

CUNNINGHAM, G.H. 1926. Lycoperdaceae of New Zealand. Transactions of the New Zealand Institute 57: 187–217.

CUNNINGHAM, G.H. 1944. The Gasteromycetes of Australia and new Zealand. John McIndoe, Dunedin, N.Z.

DEMOULIN, V. 1968a. Gasteromycetes de Belgique Sclerodermatales, Tulostomatales, Lycoperdales. Bulletin du Jardin botanique national de Belgique 38: 1–101.

DEMOULIN, V. 1968b. Taxonomical criteria in the european Lycoperdon and the problem of L. umbrinum and related species. In Das Art und Rassenproblem bei Pilzen, Internationales Symposium der Biologischen Gesellschaft in der D.D.R., 111–116.

65

DEMOULIN, V. 1970. La typification des Lycoperdon décrits par Persoon. Lejeunia 55: 1–20.

DEMOULIN, V. 1972a. Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique.

DEMOULIN, V. 1972b. Espèces nouvelles ou méconnues du genre Lycoperdon (Gastéromycètes). Lejeunia 62: 1–27.

DEMOULIN, V. 1973. Definition and typification of genus Lycoperdon Tourn. per Pers. (Gasteromycdetes). Persoonia 7: 151–154.

DEMOULIN, V. 1983. Clé de Détermination des espèces du genre Lycoperdon présentes dans le Sud de l’Europe. Revista fr Biologia 12: 65–70.

DEMOULIN, V. 2000. Lycoperdon umbrinoides Dissing & Lange (Gasteromycetes), a tropical fungus present in Europe. Boletín Sociedad Micológica de Madrid 25: 55– 58.

DEMOULIN, V. 1979. The Typification of Lycoperdon described by Peck and Morgan. Sydowia 66: 139–151.

DEMOULIN, V., and D.M. DRING. 1975. Gasteromycetes of Kivu (Zaire), and Burundi. Bulletin du Jardin botanique national de Belgique 45: 339–372.

DEMOULIN, V., and R. SCHUMACKER. 1972. Utilisation du traitement de Linformation par ordinateur dans la taxonomie du groupe de - L. molle (Gasteromycetes, Fungi). Bulletin de la Société royale de Botanique de Belgique, Tome 105: 265–287.

DENNIS, R.W. 1953. Some West Indian Gasteromycetes. Kew Bulletin 8: 307–328.

DISSING, H., and M. LANGE. 1962. Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’État a Bruxelles 32: 325–416.

DOMÍNGUEZ DE TOLEDO, L.D. 1993. Gasteromycetes (Eumycota) del centro y oeste de la Argentina. I analisis critico de los caracteres taxonomicos clave de los generos y orden podaxales. Darwiniana 32: 195–235.

DOMÍNGUEZ DE TOLEDO, L.S. 1989. Contribucion al conocimiento de Gasteromycetes del centro de argentina. Universidad Nacional de Córdoba.

66

DRING, D.M. 1964. Gasteromycetes of West Tropical Africa. Mycological Papers 98: 1–60.

ECKBLAD, F.-E. 1971. od Gasteromycetes studed in the Scanning Electron Microscope (SEM) I. Norw. J. Bot. 18: 145–151.

FARRIS, J.S. 1989. The Retention Index and the Rescaled Consistency Index. Cladistics 5: 417–419.

FELSENSTEIN, J. 1985. Use of Bootstrap in phylogenetic calculations. Evolution 39: 783–791.

FRIES, E. 1829. Systematic Mycologicum, III, sec I.

GALTIER, N., M. GOUY, and C. GAUTIER. 1996. SEA VIEW and PHYLO_ WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences: CABIOS 12: 543–548.

GARDES, M., and T.D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.

GARNER, J.H.B. 1956. Gasteromycetes from Panama and Costa Rica. Mycologia 48: 757–764.

GEISER, D.M., M.D.-M. JIMÉNEZ-GASCO, S. KANG, I. MAKALOWSKA, N.

VEERARAGHAVAN, T.J. WARD, N. ZHANG, ET AL. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology 110: 473–479.

GHISELIN, M.T. 1974. A Radical Solution to the Species Problem. Systematic Zoology 23: 536–544.

GOLDSTEIN, P.Z., and R. DESALLE. 2011. Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. BioEssays 33: 135–147.

GOUY, M., S. GUINDON, and O. GASCUEL. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular biology and evolution 27: 221–224.

GRASSO, V., H. SIEROTZKI, A. GARIBALDI, and U. GISI. 2006. Relatedness among

67

agronomically important rusts based on mitochondrial cytochrome b gene and ribosomal ITS sequences. Journal of Phytopathology 154: 110–118.

HEBERT, P.D.N., A. CYWINSKA, S.L. BALL, and J.R. DEWAARD. 2003. Biological identifications through DNA barcode. Proceedings. Biological sciences / The Royal Society 270: 313–21.

HEBERT, P.D.N., and T.R. GREGORY. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54: 852–859.

HENNINGS, V.P. 1904a. Fungi amazonici I. a. cl. Ernesto Ule collecti. Hedwigia 43: 154–186.

HENNINGS, V.P. 1904b. Fungi paulenses III. a cl. Puttemans collecti. Hedwigia 43: 197– 209.

HERNÁDEZ-CAFFOT, M.L., G. ROBLEDO, and L.S. DOMÍNGUEZ. 2013. Gasteroid mycobiota (Basidiomycota) from Polylepis australis woodlands of central Argentica. Mycotaxon 123: 491.

HERRERA, T. 1964. Especies de Lycoperdon del Valle de Mexico. Anales del Instituto de Biologia 34: 43–68.

HIBBETT, D.S., E.M. , E. LANGER, G. LANGER, and M.J. DONOGHUE. 1997. Evolution of gilled and puffballs inferred from ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 94: 12002–12006.

HITCHCOCK, A.S. 1926. The Type Concept in Systematic Botany. American Journal 8: 251–255.

HOGG, I.D., and P.D.N. HEBERT. 2004. Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcode. Canadian Journal of Zoology 82: 749–754.

HOMRICH, M.H. 1975. O gênero Vascellum Smarda na America do Sul Meridional. Universidade Federal do Rio Grande do Sul.

HOMRICH, M.H., and J.E. WRIGHT. 1988. South American Gasteromycetes. II. The Genus Vascellum Šmarda. Canadian Journal of Botany 66: 1285–1307.

68

HUELSENBECK, J.P., and F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17: 754–5.

JANZEN, D.H., M. HAJIBABAEI, J.M. BURNS, W. HALLWACHS, E. REMIGIO, and P.D.N.

HEBERT. 2005. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1835–1845.

JEPPSON, M., and V. DEMOULIN. 1989. Lycoperdon atropurpureum found in Sweden. Opera Botanica 100: 131–134.

JEPPSON, M., E. LARSSON, and M.P. MARTÍN. 2012. Lycoperdon rupicola and L. subumbrinum: Two new puffballs from Europe. Mycological Progress 11: 887– 897.

JOHNSON, M.M. 1929. The Gasteromycetae of Ohio: Puffballs, Bird’s-Nest Fungi and Stinkhorns. M. M. Johnson [ed.],. Ohio State University Press, Ohio.

KIM, C.S.U.N., J.W.O.N. JO, Y. KWAG, G. SUNG, J. HAN, B. SHRESTHA, S. OH, ET AL. 2016. Two new Lycoperdon species collected from Korea: L. albiperidium and L. subperlatum spp. nov. Phytotaxa 260: 101–115.

KIRK, P.M., P.F. CANNON, D.W. MINTER, and J.A. STALPERS. 2008. Dictionary of The Fungi. 10th editi. P. M. Kirk, P. F. Cannon, D. W. Minter, and J. A. Stalpers [eds.],. CABI Europe, Wallingford.

KLUGE, A.G., and J.S. FARRIS. 1969. Quantitative phyletics and theevolution of anurans. Systematic Zoology 18: 1–32.

KOBAYASI, Y. 1937. Fungi Austro-Japonie et Micronesiae. II. The Botanical Magazine 51: 797–804.

KORNERUP, A., and J.H. WANSCHER. 1967. Methuen handbook of colour. 3 rd. Eyre Methuen, London.

KREISEL, H. 1973. Die Lycoperdaceae der DDR. Bibliotheca Mycologica 36: 1–197.

KREISEL, H., and D.M. DRING. 1967. An emendation of the genus Morganella Zeller (Lycoperdaceae). Feddes Repertorium 74: 109–122.

KRÜGER, D., M. BINDER, M. FISCHER, and H. KREISEL. 2001. The Lycoperdales. A

69

molecular approach to the systematics of some gasteroid mushrooms. Mycologia 93: 947–957.

KRÜGER, D., and H. KREISEL. 2003. Proposing Morganella subgen Apioperdon subgen nov for the puffball Lycoperdon pyriforme. Mycotaxon 86: 169–177.

KUMLA, J., N. SUWANNARACH, B. BUSSABAN, and S. LUMYONG. 2013. New report of Morganella purpurascens in Thailand. Mycoscience1–4.

KÜPPERS, H. 2002. Atlas de los colores. 1 st. C. R. Fischer [ed.],. Blume, Barcelona.

KURTZMAN, C.P., and C.J. ROBNETT. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 73: 331–371.

LARGET, B., and L. SIMON. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees Markov chain Monte Carlo. Mol. Biol./ Evol. 16: 750–759.

LARSSON, E., and M. JEPPSON. 2008. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycological Research 112: 4–22.

LINNAEUS, C. 1753. Species Plantarum. Salvius, Stockholm.

LLOYD, C.G. 1905a. The genus Lycoperdon in Europe. Mycological Notes205–217.

LLOYD, C.G. 1905b. The Lycoperdon of the United States. Mycological Notes221–237.

MARGULIS, L., and D. SAGAN. 2002. Acquiring genomes: A theory of the origins of species. 1st ed. L. Margulis, and D. Sagan [eds.],. Basic Books, New York.

MARTÍN, M.P., E. HIDALGO, A. ALTÉS, and G. MORENO. 2000. Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. Cryptogamie, Mycologie 21: 323–355.

MARTÍN, M.P., and M. JEPPSON. 2001. An interesting Lycoperdon affin to L. ericaeum. Revista Catalana de Micologia 23: 47–50.

MARTIN, M.P., and K. WINKA. 2000. Alternatice methods of extracting and amplifyngo DNA from Lichens. Lichenologist 32: 189–196.

70

MASSEE, G. 1887. A Monography of the genus Lycoperdon (Tournef.) Fr. Transactions of the Society 7: 701–727.

MAYDEN, R.L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. Species. The units of biodiversity.381–423.

MAYR, E. 1969. The biological meaning of species. Biological Journal of the Linnean Society 1: 311–320.

MCNEILL, J., F.R. BARRIE, W.R. BUCK, V. DEMOULIN, E. GREUTER, D.L. HAWKSORTH,

P.S. HERENDEEN, ET AL. 2012. International Code of Nomenclature fo Algae, Fungi and Plants. Renum Vegetabile 154, Königstein.

MEIER, R., K. SHIYANG, G. VAIDYA, and P.K.L. NG. 2006. DNA Barcoding and Taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Systematic Bio 55: 715–728.

MISHLER, B.D., and M.J. DONOGHUE. 1982. Species Concepts: A Case for Pluralism. Systematic Zoology 31: 491–503.

MORALES, M.I., M. NASSAR, and J.A. SAÉNZ. 1974. Lycoperdaceae of Costa Rica. I. The genus Morganella. Revista de Biología Tropical 21: 221–227.

MOYERSOEN, B., and V. DEMOULIN. 1996. Les Gastéromyètes de Corse: Taxonomie, écologie, chorologie. Lejeunia 152: 1–128.

NGUYEN, H.D.T., and K.A. SEIFERT. 2008. Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia: Molecular Phylogeny and Evolution of Fungi 21: 57–69.

NILSSON, R.H., M. RYBERG, K. ABARENKOV, E. SJÖKVIST, and E. KRISTIANSSON. 2009. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters 296: 97–101.

NYLANDER, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Uppsala University.

OSMUNDSON, T.W., V.A. ROBERT, C.L. SCHOCH, L.J. BAKER, A. SMITH, G. ROBICH, L.

MIZZAN, and M.M. GARBELOTTO. 2013. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA

71

Barcode Sequencing Project. PLoS ONE 8: .

PAGE, R.D.M. 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer applications in the biosciences : CABIOS 12: 357–358.

PAGE, T.J., S.C. CHOY, and J.M. HUGHES. 2005. The taxonomic feedback loop: symbiosis of morphology and molecules. Biology letters 1: 139–42.

PEGLER, D.N., T. LAESSOE, and B.M. SPOONER. 1995. British puffballs, earthstars and stinkhorns. An account of the British gasteroid fungi. 1 st. Royal Botanic Gardens, Kew.

PERDECK, A.C. 1950. Revision of the Lycoperdaceae of the Netherlands. Blumae 6: 480–516.

PERREAU, J. 1971. L’ornamentation sporale chez les Lycoperdon. Ann. Sci. Nat. Bot. Biol. Veg. 12: 127–145.

PERSOON, C.H. 1801. Synopsis Methodica Fungorum. Gottingae.

PETERSEN, R.H., and K.W. HUGHES. 1999. Species and speciation in mushrooms: Development of a species concept poses difficulties. BioScience 49: 440–452.

PHOSRI, C., R. WATLING, N. SUWANNASAI, A. WILSON, and M.P. MARTÍN. 2014. A new representative of star-shaped fungi: Astraeus sirindhorniae sp. nov. from Thailand. PLoS ONE 9: 1–10.

PILÁT, A. 1958. Gasteromycetes. Praha.

PONCE DE LEÓN, P. 1971. Revision of the genus Morganella (Lycoperdaceae). Fieldiana: Botany 31: 27–44.

PONCE DE LEÓN, P. 1970. Revision of the genus Vascellum. Fieldiana: Botany 32: 109– 125.

DE QUEIROZ, K. 2005. A unified concept of species and its consequences for the future of taxonomy. Proceedings of the Academy of Sciences 56: 196–215.

DE QUEIROZ, K. 2006. Species concepts and Species delimitation. Systematic Biology 56: 879–886.

RAMADAN, H.A.I., and N. BAESHEN. 2012. Biological identifications through DNA

72

barcode. In G. GA [ed.], Biodiversity Conservation and Utilization in a Diverse World, 109–128. In Tech.

REBRIEV, Y.A., and E.M. BULAKH. 2015. Morganella sosinii sp. nov. (Agaricales) from the Russian far East. Micology and Plant Pathology 49: 293–296.

REHNER, S.A., and E. BUCKLEY. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98.

REHNER, S.A., and G.J. SAMUELS. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634.

RICK, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasilia. Iheringia, Sér. Bot. 9: 451–480.

RICK, J. 1930. Lycoperdineas riograndenses. Egateae 15: 19–30.

RIDLEY, M. 1989. The cladistic solution tot he species problem. Biology and Philosophy 4: 1–16.

ROBBA, L., S.J. RUSSELL, G.L. BARKER, and J. BRODIE. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of Botany 93: 1101–1108.

RODRÍGUEZ, F., J.L. OLIVER, A. MARÍN, and J.R. MEDINA. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

RUSEVSKA, K., M. KARADELEV, C. PHOSRI, M. DUEÑAS, R. WATLING, and M.P.

MARTÍN. 2014. Rechecking of the genus Scleroderma (Gasteromycetes) from Macedonia using barcoding approach. Turkish Journal of Botany 38: 375–385.

RUSEVSKA, K., M. KARADELEV, C. PHOSRI, M. DUÑAS, M.T. TELLERIA, and M.P.

MARTÍN. 2015. DNA barcoding is an effective tool for differentiating Pisolithus species from Macedonia. Mycotaxon 130: 1007–1016.

SCHAEFFER, J.C. 1774. No TitleFungorum Bavaria et Palatinatu. Ratisbonae.

SCHEFFERS, B.R., L.N. JOPPA, S.L. PIMM, and W.F. LAURANCE. 2012. What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology and

73

Evolution 27: 501–510.

SCHOCH, C.L., K.A. SEIFERT, S. HUHNDORF, V. ROBERT, J.L. SPOUGE, C.A. LEVESQUE,

W. CHEN, ET AL. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109: 6241–6246.

SCHUBERT, K., J.Z. GROENEWALD, U. BRAUN, J. DIJKSTERHUIS, M. STARINK, C.F. HILL,

P. ZALAR, ET AL. 2007. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in 58: 105–156.

SCOPOLI, I.A. 1772. Flora Carniolica. 2 edn. Austria [ed.],. Aucta et Reformata, Viane.

SEIFERT, K.A. 2009. Progress towards DNA barcoding of fungi. Molecular Ecology Resources 9: 83–89.

SEIFERT, K.A., R.A. SAMSON, J.R. DEWAARD, J. HOUBRAKEN, C.A. LÉVESQUE, J.-M.

MONCALVO, G. LOUIS-SEIZE, and P.D.N. HEBERT. 2007. Prospects for fungus identification using CO1 DNA barcode, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America 104: 3901–3906.

SILVA, B.D.B., J.O. SOUSA, and I.G. BASEIA. 2011. Discovery of Geastrum xerophilum from the Neotropic. Sciences-New York 118: 355–359.

SILVA, B.D.B., M.A. SULZBACHER, and I.G. BASEIA. 2014. Metodologia. In I. G. Baseia, B. D. B. Silva, and R. H. S. F. Cruz [eds.], Fungos Gasteroides no Semiárido do Nordeste Brasileiro, 132. Print Mídia, Feira de Santana.

SMITH, A. 1974. The genus Vascellum (Lycoperdaceae) in the United States. Bulletin de la Société Linnéenne de Lyon 43: 63–133.

SMITH, A.H. 1951. Puffballs and their allies in Michigan. Univ. of Michigan Press.47– 68.

SPEGAZZINI, C. 1898. Fungi Argentini novi v. critici. Anales Museum Nacional de Histaria Naturales de Buenos Aires 6: 81–3667.

STIELOW, J.B., C.A. LEVESQUE, K.A. SEIFERT, W. MEYER, L. IRINYI, D. SMITS, R.

74

RENFURM, ET AL. 2015. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcode. Persoonia 35: 242–263.

STORK, N.E. 1993. How Many Species Are There. Biodiversity and Conservation 2: 215–232.

SUÁREZ, V.L., and J.E. WRIGHT. 1996. South American Gasteromycetes V : The genus Morganella. Mycologia 88: 655–661.

SUMMERBELL, R.C., C.A. LÉVESQUE, K.A. SEIFERT, M. BOVERS, J.W. FELL, M.R. DIAZ,

T. BOEKHOUT, ET AL. 2005. Microcoding: the second step in DNA barcoding. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 1897–1903.

SWOFFORD, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other methods). Sinauer Associates, Massachsetts.

SYDOW, V.H., and P. SYDOW. 1907. Verzeichnis der von Herrn F. Noack in Brasilien gesammelten Pilze. Annales Mycologici 5: 348–363.

TABERLET, P., E. COISSAC, F. POMPANON, L. GIELLY, C. MIQUEL, A. VALENTINI, T.

VERMAT, ET AL. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research 35: .

TAN, D.S.H., Y. ANG, G.S. LIM, M.R.B. ISMAIL, and R. MEIER. 2010. From “cryptic species” to integrative taxonomy: An iterative process involving DNA sequences, morphology, and behaviour to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta 39: 51–61.

TAYLOR, J.W., D.J. JACOBSON, S. KROKEN, T. KASUGA, D.M. GEISER, D.S. HIBBETT,

and M.C. FISHER. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31: 21–32.

TELLERIA, M.T., I. MELO, M. DUEÑAS, K.-H. LARSSON, and M.P. MARTÍN. 2013. Molecular analyses confirm Brevicellicium in Trechisporales. IMA Fungus 4: 21– 28.

TOURNEFORT, J.P. 1700. Institutiones rei herbariae. Editio Altera.

75

VILGALYS, R., and M. HESTER. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptoccocus species. Journal of Bacteriology 172: 4238–4246.

VITTADINI, C. 1842. Monographia Lycoperdinerum. Mem. Accad. Torino 5: 145–238.

WHEELWE, Q.D., and R. MEIER. 2000. Species concepts and Phylogenetic theory: A debate. Columbia University Press, New York.

WHITE, T.J., S. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for . PCR Protocols: A Guide to Methods and Applications315–322.

WILSON, E.O. 2003. The encyclopedia of life. Trends in Ecology and Evolution 18: 77– 80. ZELLER, S.M. 1948. Notes on certain Gasteromycetes, including two new Orders. Mycologia 40: 639–668.

76

7. CAPÍTULOS / CHAPTERS

77

CAPÍTULO 1/ CHAPTER 1

Is the ITS barcode useful to discriminate Lycoperdon Pers. species?

78

Abstract

The estimate of unknown species of fungi is about 5.1 million and taxonomists would take almost 1000 years to describe them. The Consortium for the Barcode of Life developed the DNA barcode, a method that uses a short DNA sequence (about 800 bp) for species identification. Used in many groups of organisms (animals, plants, oomycetes and fungi), the DNA barcode plus morphological and ecological characters can improve the identification of new species. Moreover, the barcode can help researchers in the identification of herbarium and environmental samples (soil, decaying wood etc.). Many studies with animals, plants and oomycetes have shown high efficiency in species identification. The COI region is a very efficient barcode, with high success of amplification, in the identification of animals; however, in diverse groups, such as plants or fungi, the COI does not discriminate among closely related species. Researchers started to use the ITS nrDNA (ITS) region, initially used for phylogenetic analyses, as the barcode for plants and, afterward, for fungi, with success of amplification and identification from different sources, such as soil samples, plant debris, and cultures. Additionally, in 2012, with the work of Schoch and colleagues, the scientific community accepted the ITS region as a general DNA barcode for fungi. Moreover, the ITS region was used in the automatic identification of fungi in the UNITE web, where a two-tier clustering process is done: the first to the genus level and the second to the species level (the taxa arising are Species Hypothesis, SH). In the genus Lycoperdon some species are easy to identify, such as L. perlatum or L. echinatum; however, others are quite difficult to separate, such as those in the Lycoperdon molle group. The main aims of this work are to: a) test whether the ITS region is useful in the identification of species of Lycoperdon; and b) test whether the UNITE database provides a good tool for automatic identification in this genus. To achieve our aims, specimens were previously identified using macro- and micro-morphological characters. Afterward, genomic DNA was isolated, and the ITS region was amplified and sequenced. Different analyses were performed: a) to evaluate whether specimens of the same species group together, trees were obtained using parsimony and Bayesian inferences; b) to evaluate the percentage of correct identifications (PCI), the intra and interspecific variability based on a distance matrix (K2P) were calculated (a tree was also obtained using a Neighbor-Joining approach); c) to evaluate the automatic identification search in the UNITE database. We obtained 80% successful amplification, with very high quality. The identification based on K2P-NJ and

79

PCIs were similar with more than 80% correctly identified. Based on morphological analyses, ITS analyses, and automatic identification based on SHs, we have identified eighteen species of Lycoperdon; however, Lycoperdon sp. 1 and Lycoperdon sp. 2 have no match with any SHs. The ITS region showed itself promising as the DNA barcode of Lycoperdon, although another marker is needed to stabilize the terminal branches of L. altimontanum, L. excipuliforme, L. lambinonii, L. molle and L. umbrinum.

Key-words: Agaricales, DNA sequences, Identification, Lycoperdaceae, Taxonomy

80

1 INTRODUCTION

The Earth is home to an estimated 10 million species of fungi, animals and plants (Wilson, 2003; Mora et al., 2011; Scheffers et al., 2012), and the human brain can learn to identify a few thousand species, a small fraction of life’s diversity. It will take at least 1000 years to discover the world’s unknown fungi to discover 3.5 to 5.1 million unknown fungi (Blackwell, 2011). The names of the species are the framework for organizing the knowledge of all life forms on Earth. The Consortium for the Barcode of Life (CBOL, http:/www.barcoding.si.edu) is an international initiative devoted to developing DNA barcoding as a global standard for identification of species. The DNA barcodes are short DNA sequences (500–800 base-pairs, bp) from standardized and well-known portions of the genome, used as an aid to identify the species to which a specimen of fungus, animal or plant belongs. The idea for DNA barcoding was introduced by Hebert et al. (2003) to develop species identification of animals, in the same way that the barcode black/white lines are useful to discriminate products in a market. The effectiveness of this approach clearly depends on the availability of extensive databases of barcodesequence standards.

Prendini (2005), criticizes barcodes: “DNA is not a panacea for the woes of taxonomy” but he agrees that DNA barcodes should be used as a supplement to species description and diagnosis. Yet, according to the author, this method of identification is not demonstrably more objective, accurate, or useful than morphology or other sources of phenotypic data for species identification or other taxonomic purposes. More, the DNA barcoding as presented, or DNA taxonomy more generally, is just another technique for species identification and can not be utilized as a global identification system. On other hand, Hebert and Barrett (2005) disagree with Prendini, and agree that the barcode approach challenges usual concepts in morphological taxonomy, for example, shape or color, breaking these subjective characters. Moreover, the authors affirm that the addition of morphological and ecological characters with the information on the DNA barcode improves the identification of new species. Finally, collaboration between barcoders and taxonomists is of utmost importance to the advance in understanding of species diversity.

81

1.1 Animal, algae, plant and oomycota barcodes

In animals, there is an agreement that the 600 bp fragment of the COI1 gene is a good barcode standard. Hebert et al. (2003) obtained 100% success in delimitation of lepidopteran species, one of the most taxonomically diverse orders that also has low sequence divergence. Later, Hebert et al. (2004) showed that the COI1 was of great help to discriminate birds species where the identification of young specimens is difficult; Ben-David et al. (2007), identified tetranychid species of spiders, where morphological characters are not helping to discriminate the species; Hubert et al. (2008), analyzed 1360 specimens of freshwater fishes from Canada and delimited 190 species (about 95% of Canadian freshwater species); Chen et al. (2011), studied species of heterodont bivalve mollusks where not only the morphological characters are insufficient to identify the species, but also taxonomic experts disagree on which morphological characters are valid to delimitate species, Chen et al. (2011) and Morinière et al. (2014), used a DNA barcode approach for fauna inventories. However, in some groups, such as Diptera, it was a very low rate of success (<70%) for delimiting species based on COI1 (Meier et al., 2006): COI1 was unsuccessful because 21% of all species used have identical sequences, and their results showed that the COI1 sequences were variable among individuals of the same species.

In algae, Phaeophyceae (brown algae) and Rhodophyta (red algae), Robba et al. (2006) and McDevit and Saunders (2009), were successful in delimitation of species with the use of DNA barcode (COI1); and the most important was the alliance between the variability observed in COI1 sequences and alpha taxonomy, allowing identification of 29 species from 20 genera in nine families from five orders of Phaeophyceae (there are an estimated 6000 species of red algae worldwide). Le Gall and Saunders (2010), studied 380 specimens of red algae (Phyllophoraceae) from North America, Australia and Europe; they identified 29 species from approximately 100 worldwide species already known. Also, COI1 allowed study of biogeography (McDevit and Saunders, 2009), and helped in discovering new species (Milstein and Saunders, 2012; Dixon and Saunders, 2013).

In plants, the mitochondrial genes (COI1) does not work as a DNA barcode (Stoeckle, 2003). Baldwin (1992, 1993), used the internal transcribed spacer (ITS) region from nuclear ribosomal DNA for species identification and phylogenetic analyses; Álvarez and Wendel (2003) call attention to many concerns in the use of ITS as a locus 82

for phylogenetic analysis: as ITS is not protein-encoding the natural alignment guides are unavailable and the researcher cannot check the changes every three nucleotides as in the sequence alignment protein code, or assess how high GC content and indel accumulation impact the alignment. However, ITS can be used as a barcode because the region can be amplified in two smaller fragments ITS1 and ITS2, with adjoining 5.8S locus that is useful for degraded samples (Kress et al., 2005); and ITS as a barcode of plants can be more effective than the mitochondrial DNA, in fact it evolves more slowly in plants than in animals (Chase et al., 2005; Pennisi, 2007). ITS does not work very well in some groups of plants because of problems of paralogy and other factors associated with the complex evolution of this highly repeated part of the nuclear genome (Chase et al., 2005; Kress et al., 2005). Moreover, in the herbarium specimens the ITS failed in 12% of the samples tested (Kress et al., 2005); that fact is very important because the amplification of dried samples for barcoding is important to confirm many identifications of rare or perhaps extinct taxa. In many studies, it is necessary to combine ITS with another region such as trnh-psbA to improve the results of identification by DNA barcoding (Rubinoff et al., 2006). Despite these problems, Edwards et al. (2008), show that ITS and trnT-trnL are the most effective regions to discriminate among Aspalathus species; and their results were confirmed by Roy et al. (2010), using ITS in the delimitation of Berberis, Ficus and Gossypium species. Also, (Yao et al., 2010), used ITS to discriminate plant taxa and as a complementary locus of COI1: 97% discrimination to the genus and 74% to species levels.

Moreover, the ITS region was proposed by Chen et al. (2010), as a standard DNA barcode for medicinal plants and they justify the use of ITS: (1) it is short, relatively easy to amplify; (2) it possesses high interspecific divergence; (3) the identification accuracy of the ITS region was 92.7% at the species level and 99.8% at the genus level.

In the case of Straminipila, Göker et al. (2009) used ITS to discriminate species of Peronospora Corda and Pseudoperonospora Rostovzev, obligate plant pathogens with very few morphological characters to identify the species. Robideau et al. (2011) compared the ITS region with COI1 as barcode of oomycete species; they concluded that both ITS and COI are efficient as barcodes, although ITS has more interspecific variation than COI1. Sandoval-Sierra et al. (2014), confirmed the use of ITS as a potential region for barcoding of species of Saprolegnia Nees.

83

1.2 Fungi barcode and automatic identification tools

According to Iwen et al. (2002), in Ascomycota, the ITS region was a good target for the identification of human fungal pathogens to the species level. Druzhinina et al. (2005), used ITS to identify Trichoderma Pers. and Hypocrea Fr. species, since morphological characters were difficult even for taxonomists experts. Also, ITS was very helpful to discriminate fungal species in sample soils (O’Brien et al., 2005). Grasso et al. (2006), compared ITS with COI1 in phylogenetic studies, and showed that ITS evolves faster than COI1, and therefore, the ITS region was more efficient in distinguishing among species, such as in Puccinia P. Michieli where the COI1 sequences were identical in all the species tested. However, the ITS region was not successful in delimiting species in some groups (Geiser et al., 2004), such as in Penicillium Link Seifert et al. (2007), whereas COI1 was useful to discriminate the species of these molds. In some cases, such as Leohumicola N.L. Nick, the ITS and COI1 had similar results to delimit species and both markers could be suitable DNA barcodes (Nguyen and Seifert, 2008): the mean sequence divergence between species was 10 times larger than the mean divergence within species, demonstrating a barcode gap.

In Usnea Dill. ex. Adans (lichenized fungi), the ITS region had a 92% success rate in discriminating among species (Kelly et al., 2011): the success of discrimination is present if the minimum of uncorrected interspecific p distance exceeded the maximum uncorrected intraspecific p distance (a barcode gap exists). Also, Suwannasai et al. (2013), tested the ITS sequences as barcoding for Annulohypoxylon and Hypoxylon (Xylariaceae), suggesting that ITS can be useful as a barcode.

For the Basidiomycota, the ITS has been used with success to delimit species from ecological samples such as soil and plant debris, that are devoid of fruit bodies of the fungi (Nilsson et al., 2008, 2009). Thus, the macroscopic and microscopic interpretation of characters, the morphologically similar species and the speciose nature of the kingdom Fungi make the DNA barcode an essential approach to delimit species of fungi (Seifert, 2009). Bellemain et al. (2010), used the ITS region to identify species of fungi from environmental samples, and they found more basidiomycete amplicons than ascomycetes, mostly in the Agaricales (269 distinct sequences). Dentinger et al. (2011), comparing COI1 and ITS in Agaricomycotina, demonstrated that ITS has a disadvantage as a barcode

84

due to the inability to produce a reliable alignment of ITS sequences across a divergent set of taxa. However, the ITS regions do work well for identifying mushrooms species.

Although the ITS region is not very successful in discriminating species in all groups of fungi, Schoch et al. (2012), proposed ITS as the first barcode of fungi. They compared ITS with others markers: SSU nrDNA, LSU nrDNA, RPB1, RPB2 and MCM7. The ITS was proposed mainly due to the higher success of PCR amplifications (90%) and the most resolving power of species discrimination, for example, in Basidiomycota with 77% resolution. In Suwannasai et al. (2013), authors assessed the efficacy of automated species identification using the fungal barcode marker (ITS) and the model system of Annulohypoxylon and Hypoxylon (Xylariaceae); they showed that automated species identification is sensitive to a specific choice of evolutionary distance, and statistical methods are available to address the possibility of expert misidentification of species.

In general, for automatic identification of fungi, authors can use the popular BLAST sequence alignment tool provided by NCBI, as well as tools provided in other websites, such as in UNITE (http://unite.ut.ee).

UNITE started in 2003, including several tools, to aid in the identification of unknown sequences of ectomycorrhizal fungi in Northern Europe (Kõljalg et al., 2005). However, as noted in Nilsson et al. (2006), more than 27% of all fungal sequences available in public repositories were insufficiently identified, and the approach adopted by the UNITE database was to generate good sequences obtained from voucher specimens and with good metadata, such as voucher specimens, country, ecology and host (Abarenkov et al., 2010). Another step toward automatic identification was taken by Kõljalg et al. (2013), who address the idea of species hypotheses (SH). To generate a concise set of reference sequences, UNITE applies two clustering levels, one to the subgenus/genus level and the other to the species level; the term “species hypotheses” (SH) is applied to the taxa arising from the second round of clustering. A representative sequence for each SH is chosen automatically, but taxonomic experts may override the choice by designating a reference sequence based on type status, source of isolation and sequence quality.

85

1.3 The genus Lycoperdon Pers.

The species of Lycoperdon (Agaricales) are mainly distinguished by their subglobose to pyriform and closed basidiomata (Bottomley, 1948), with a cellular subgleba, and a single opening in the apex through which basidiospores are discharged (Demoulin, 1972a; Calonge, 1998). In the taxonomic databases IndexFungorum (http://www.indexfungorum.org/) and Mycobank (http://www.mycobank.org) approximately 786 names (including synonyms) are listed. Demoulin (1972a), in his work of Lycoperdon Pers. from Europe and North America, did an exhaustive review of the genus, with complete taxonomic studies, including a list of more than 550 names validly published under Lycoperdon; although many taxa have been transferred to the other genera, such as Lycoperdon sessile Sowerby (current name Geastrum fimbriatum Fr.), L. tropicale Speg. (current name Calvatia tropicalis (Speg.) Speg.), L. ulmi Bell. (a Myxomycete), etc. In Kirk et al. (2008), 50 Lycoperdon species are recorded, many of these species have been described only from the Northern Hemisphere (Bowerman, 1961; Demoulin, 1971, 1972b; Kreisel, 1976), with very few works describing new species from the Southern Hemisphere (Spegazzini, 1898; Hennings, 1904a, b; Rick, 1961; Cortez et al., 2011). Demoulin (1972a), recognized 30 species of Lycoperdon in Europe and North America, based only on morphological taxonomy. Larsson and Jeppson (2008), based on ITS-LSU nrDNA and morphological data, considered that in Europe the genus comprises about 31 species, including some species that were under other genera (e.g. Calvatia excipuliformis (Scop.) Perdeck, Morganella subincarnata (Peck) Kreisel & Dring. and Vascellum pratense (Pers.) Kreisel). From the Southern Hemisphere, 44 species (including Morganella and Vascellum) have been recorded, although some are considered synonymous e. g. L. gemmatum Batsch (current name L. perlatum Pers.), or transferred to another genus such as L. acuminatum Bosc (current name Bovista acuminata (Bosc) Kreisel). In the UNITE database, 32 species hypotheses (SHs) are under Lycoperdon; again, based mainly on sequenced specimens from Europe and North America.

In Lycoperdon some species are easy to identify even when the basidiomata are immature (e.g. L. perlatum Pers. or L. echinatum Pers), but other species are difficult to distinguish one from another, such as L. atropurpureum Vittad., L. decipiens Durieu & Mont., and L. umbrinum Pers., often misidentified as L. molle Pers. or L. atropurpureum Vittad. (Demoulin, 1972a).

86

This work combines classical taxonomic methods with sequence analyses and statistics to evaluate the suitability of ITS as a barcode in Lycoperdon. The ITS region is tested as a barcode for Lycoperdon specimens previously identified by morphological data in collaboration with Lycoperdon specialists from Europe (F.D. Calonge, V. Demoulin and M. Jeppson), and, possible biases introduced by incorrect morphological identification is evaluated. Moreover, we tested whether the UNITE database provides a good proxy for automatic identification in this genus. For this, we have expanded the ITS database from Larsson and Jeppson (2008), with sequences from specimens mainly located in MA-Fungi (Real Jardín Botánico de Madrid) and MC-Fungi (Republic of Macedonia).

87

2 MATERIAL AND METHODS 2.1 Collections studied

Specimens were obtained from MA-Fungi (Real Jardín Botánico, Madrid, Spain) and MCF-Fungi (Macedonian Collection of fungi, Macedonia) herbaria. Also, collections from the ICN (Rio Grande do Sul/Brazil) herbarium were analyzed. Data of collections studied are included in Table 2.

2.2 Morphological analysis

The specimens were analyzed and identified following the specific literature of the genus Lycoperdon (Demoulin, 1972b, 1976). Microstructures were mounted in Melzer’s reagent to examine a dextrinoid reaction. Gleba was examined in a lactophenol cotton blue stain. All slides were boiled following Cunningham (1944), to return specimens to the normal size. measurements were based on ten basidiospores per fruitbody using the classification A to D (punctate to strongly verrucose) (Demoulin, 1972b). The ornamentation density of the spores was calculated using scanning electron microscopy (SEM) spores, following Cortez et al. (2008): number of ornamentation divided by the diameter of the spore multiplied by 3.14, to give a number of warty by a reduced area of 10 µm.

2.3 Molecular analyses 2.3.1 DNA isolation, amplification and sequencing

Total genomic DNA was extracted using DNeasy Plant Kit (Qiagen 69106) following the instructions of the manufacturers; lysis buffer incubation was done overnight at 55º C. The PCR was done in a 25 μl reaction mix using illustraTM PureTaqTM Ready-To-Go-TM PCR Beads (GE Healthcare, Buckinghamishire, UK) as described in Winka et al. (2000). The internal transcribed spacer of ribosomal nrDNA (ITS) was amplified with the primer ITS5/ITS4, the thermal cycling conditions in accordance with Martin and Winka (2000). Negative controls lacking fungal DNA were run for each experiment to check for contamination. The extracted DNA was tested by electrophoresis in a 1.5% agarose gel. From each DNA sample 5 µl were deposited mixed with 2 µl of run buffer plus 1 µl of GelRed buffer to visualize the PCR products (Fig. 11). The PCR products were subsequently purified using the QIAquick Gel PCR Purification (Qiagen) according to the manufacturer's instructions or with 8 μl of 1:10 ExoSAP-IT®

88

(USB Corporation, OH, USA). The purified PCR products were sequenced using the same amplification primers in Macrogen Inc. (Amsterdam, Netherlands). Sequencher 4.1.1 (Gene Codes Corporation, Ann Arbor, Michigan, USA) was used to edit the resulting electropherograms and to assemble contiguous sequences. To test if the sequences belong to the genus Lycoperdon and not to contaminations with other fungi, BLAST searches with the megablast option were used to compare the sequences obtained against the sequence in the National Center for Biotechnology Information (NCBI) nucleotide databases (Altschul et al., 1997).

Figure 11 Agarose gel to verify the PCR products. a. Amplification of ITS5 – ITS4 region: eleven positive PCR products; the eighth sample failed; b. Amplification of ITS3 – ITS4b region: all samples have been successful; c. Amplification of ITS5 – ITS4 have been unsuccessful in all samples; d. Amplification of ITS3 – ITS4b have been unsuccessful in all samples and the control sample is contaminated. M - is the run marker, and N - is the control sample.

2.3.2 Molecular identification of Lycoperdon species

The ITS nrDNA sequences obtained (Table 2) were aligned using Se-Al v2.0a11 Carbon (Rambaut, 2002) for multiple sequences. The sequences were compared with homologous Lycoperdaceae from GenBank mainly published in Larsson and Jeppson

89

(2008) and Jeppson et al., (2012). Three sequences of Bovista Pers. were included as outgroup. Where ambiguities in the alignment occurred, the alignment generating the fewest potentially informative characters was chosen. Alignment gaps were marked “–“, unresolved nucleotides and unknown sequences were indicated with “N“.

A maximum parsimony analysis (MP) was carried out, minimum length Fitch trees were constructed using heuristic searches with tree-bisection-reconnection (TBR) branch swapping, collapsing branches if maximum length was zero and with the MulTrees option on in the PAUP*4.0b10 (Swofford, 2002); and a default setting to stop the analysis at 100 trees. Gaps were treated as missing data. Nonparametric bootstrap support (bs) (Felsenstein, 1985) for each , based on 10,000 replicates using the fast- step option, was tested. The consistency index CI (Kluge and Farris, 1969), retention index RI, and rescaled consistency RC (Farris, 1989), were obtained.

A second analysis was done by the Bayesian approach (Larget and Simon, 1999; Huelsenbeck and Ronquist, 2001) using MrBayes 3.1 (Ronquist and Huelsenbeck, 2003). The analysis was performed assuming the general time reversible model (Rodríguez et al., 1990) including estimation of invariant sites and assuming a discrete gamma distribution with six categories (GTR+I+G) as selected by MrModelTest v.2.3 (Nylander, 2004). Two independent and simultaneous analyses starting from different random trees were run for 10,000,000 generations with four parallel chains and tree and model scores saved every 100th generation. The default priors in MrBayes were used in the analysis. Every 1,000th generation tree from the two runs was sampled to measure the similarities between them and to determine the level of convergence of the two runs. The potential scale reduction factor (PSRF) was used as a convergence diagnostic and the first 25% of the trees were discarded as burn-in before stationary was reached. Both the 50% majority- rule consensus tree and the posterior probability (pp) of the nodes were calculated from the remaining trees with MrBayes. The phylogenetic tree was viewed with FigTree v1.42 (http://tree.bio.ed.ac.uk/ sofware/figtree/) and edited with free software InkScape Wink, version 0.92.0 r15299 (http://wiki.inkscape.org/wiki/index.php?title=Release_notes/0.91&oldid=98966).

To characterize the intraspecific and interspecific variation (Meyer and Paulay, 2005; Chen et al., 2010; Ramadan and Baeshen, 2012), and to check whether a barcode gap exists, pairwise K2P distances were calculated; a tree based on a Neighboun-Joining

90

algorithm was obtained. Moreover, the probability of correct identification (PCI) based on distance (CBOL, 2009; Suwannasai et al., 2013), was calculated using the Taxon/DNA following Meier et al. (2006); the probability of correct identification is given for at least two samples from any species showing the barcode gap: if the maximum intraspecific sequence distance is less than its minimum interspecific sequence distance, this is considered “correct identification”.

2.3.3 Performance of automatic identification through the unite database

The ITS nrDNA newly-generated sequences were analyzed through the UNITE database (https://unite.ut.ee) version 7.1, to search for the best matching sequence of the species hypothesis (SHs) in accordance with Kõljalg et al. (2013). The SHs can be viewed and edited in a Web browser using the PlutoF workbench. Our search for SHs was done with minimum distance of 1.5% (Fig. 12).

Figure 12 Example of search in the UNITE database. a. Set up of run analysis where the query sequences from the user are pasted and blasted; b. Results including the list of homolog sequences to; c. UNITE sequences linked to the SHs with threshold of at least 3% similarity; d. Selected SHs sequence with threshold of 1.5%, name and number access, and statistics on distribution distance.

91

3 RESULTS 3.1 Molecular analyses 3.1.1 DNA, amplification and sequencing

DNA was isolated from one hundred and forty-two specimens, and one hundred and twenty-tree sequences with high quality (Fig. 11a-b) with length of 500–700 bp were generated with a success of amplification of 83%, one sequence is from ICN, 36 from MA-Fungi and 54 from MC-Fungi herbaria. From nineteen samples, amplification was unsuccessful (Fig. 11c-d), representing 13%; even when we retried the amplification by parts with primer pairs ITS1F/ITS2 and ITS3/ITS4B, the failure of amplification was persistent. A blast search showed seven sequences belong to the genus Bovista, four to the genus Calvatia and four sequences were identified as belonging to Trichoderma rosicum, a contamination. From sixteen samples, sequences obtained were contaminated by other Lycoperdon spp. Two samples have been amplified with less than 550 bp and these sequences were not used in barcoding analyses since the length of sequence influences the length of the terminal branches of the Neighbor-Joining tree, leading to a misinterpretation. Also, sequences that belong to other genera, such as Bovista and Calvatia, another phylum, or contaminated by other Lycoperdon species were not used in the molecular analysis. All the sequences were deposited in the EMBL/GenBank/DDBJ databases (Table 2).

3.1.2 Molecular identification of Lycoperdon species

The new ITS sequences were aligned with eighty-five sequences downloaded from GenBank under Bovista Pers., Morganella Zeller, and Lycoperdon species to produce a matrix of 735 unambiguously aligned nucleotide positions. No characters (nucleotide positions) were excluded from the analyses. All characters are of type 'unord' and have equal weight, 69 characters are parsimony-uninformative, 151 parsimony- informative. The 100 most parsimonious trees gave a length of 502 steps, CI = 0.586, HI = 0.890, and RI = 0.414. The trees obtained from the MP (strict consensus tree), Neighbor-Joining K2P and Bayesian analysis show similar topologies (Fig. 13, Figs. Supp. 1–2).

92

Figure 13 Neighbor-Joining tree using Kimura 2 Parameter based on sequences of ITS sequences of Lycoperdon species. The support values obtained from parsimony (bs) and Bayesian (pp) analyses are on the branches.

93

Using the tree-based identification of Neighbor-Joining (K2P) (Fig. 13), a success of 80% was obtained (72 sequences identified at species level), in contrast, the 20% considered misidentification,18 sequences, had incorrect identification. Twenty-one species of Lycoperdon were identified and the groups correspond to morphological species: Lycoperdon altimontanum, L. atropurpureum, L. decipiens, L. cf. delicatum, L. echinatum, L. ericaeum, L. excipuliforme, L. lambinonii, L. lividum, L. mammiforme, L. marginatum, L. molle, L. nigrescens, L. niveum, L. perlatum, L. pratense, Lycoperdon sp. 01, L. subumbrinum, L. umbrinoides, L. umbrinum and L. pyriforme. The terminal branches with L. lambinonii and L. lividum are unresolved.

The other 12 terminal branches are formed by sequences found only from GenBank: Morganella fuliginea, M. subincarnata, Lycoperdon caudatum, L. cretaceum, L. dermoxanthum, L. frigidum, L. muscorum, L. norvegicum, L. radicatum, L. rupicola, Lycoperdon sp. 03 and L. utriforme. These species are not discussed in this paper, since we have no access to the study the specimens.

The analyses of Neighbor-Joining tree (K2P) showed the genera Bovista is separated from Lycoperdon, and this result is supported in the Bayesian analyses (pp = 1). Morganella genus is maintained as a subgenus of Lycoperdon with moderate to well support (bs = 83%, pp = 1.0).

The Lycoperdon perlatum terminal branch is well supported (bs = 97%, bpp = 1.0, and included samples from GenBank (1), MCF-fungi (15) and MA-Fungi (4). The terminal branch (bs = 100%, pp = 1.0), is a sister group from L. perlatum, and includes samples from GenBank (1) and MA-Fungi (2).

The Lycoperdon sp. 01 terminal branch is well supported (<50%, pp = 1.0). This terminal branch is formed only by samples from the neotropical region (Brazil). The Lycoperdon pratense terminal branch is well supported (bs = 100%, pp = 1.0), and includes samples from GenBank (3) and MC-Fungi (2). Lycoperdon pratense is a sister terminal branch from Lycoperdon sp. 1.

The Lycoperdon ericaeum terminal branch is moderately to well supported (bs = 83%, pp = 1.0), including samples from GenBank (2) and MA-Fungi (1). The Lycoperdon subumbrinum terminal branch (pp = 97%, pp = 1.0) includes samples from GenBank (3), MA-Fungi (4) and MC-Fungi (1); and it is the sister group of L. ericaeum.

94

The terminal branch is well supported (bs = 97%, pp = 0.98) and includes samples from GenBank (1), MA-Fungi (2) and MC-Fungi (1). The Lycoperdon umbrinum and Lycoperdon atropurpureum groups are closest to L. mammiforme. Lycoperdon umbrinum terminal branch is moderate to well supported (bs = 59%, pp = 0.99%), including samples form GenBank (2) and MC-Fungi (2). The Lycoperdon atropurpureum terminal branch is moderately supported (bs = 50%, pp = 0.84%), and includes samples from GenBank (1), MA-Fungi (2) and MC-Fungi (8);

The Lycoperdon niveum terminal branch with moderate support (bs = 62%, pp = 0.71), includes samples from GenBank (5), MA-Fungi (2) and MC-Fungi (2); the L. decipiens and L. molle are sister groups to L. niveum. Lycoperdon decipiens terminal branch (bs = 82%, pp = 1.0), includes samples from GenBank (1) and MA-Fungi (3). The Lycoperdon molle terminal branch (bs = 100%, pp = 1.0), includes samples from MA- Fungi collected in Spain (3), Portugal (1) and Greece (1). The Lycoperdon lividum terminal branch (bs = 51, pp = 0.78), is closest to L. decipiens, L. molle and L. niveum; and includes samples from GenBank (2), MA-Fungi (3) and MC-Fungi (4).

The Lycoperdon altimontanum terminal branch is weakly supported (bs = < 50%, pp = 0.92), and includes samples from GenBank (2), MA-Fungi (1) and MC-Fungi (1); the Lycoperdon excipuliforme (bs = <50%, pp = 0), terminal branch is the sister group of L. altimontanum, and includes samples from GenBank (1) and MC-Fungi (6).

The Lycoperdon lambinonii terminal branch is weakly supported (bs = 52%, pp = 0.96) and includes eight samples from GenBank: DQ112575, DQ112576 (L. lambinonii); DQ11259, DQ112594 and DQ112595 (L. turneri); DQ112591, DQ112592 and DQ112593 (L. umbrinum); and one MC-Fungi05:10226 (L. lambinonii); this terminal branch is closest to L. altimontanum and L. excipuliforme.

The terminal branch is well supported (pp = 96%, bs = 1.0), and includes samples from GenBank (1), MA-Fungi (2) and MC-Fungi (6); the Lycoperdon nigrescens terminal branch (bs = 100%, pp = 1.0) is closest to L. echinatum group, and includes samples from GenBank (1) and MA-Fungi (3); the Lycoperdon radicatum and L. utriforme (GenBank sample) terminal branches are sister groups to L. nigrescens.

95

The Lycoperdon umbrinoides terminal branch (bs <50%, pp = 1.0) includes a sample from MA-Fungi (1); the Lycoperdon pyriforme terminal branch is closest to L. umbrinoides terminal branch (bs = 100%, pp = 1.0), and includes samples from GenBank (1), MA-Fungi (1) and MC-Fungi (5).

3.1.3 Probability correct identification (PCI) of Lycoperdon species

Our results showed a barcode gap of 50% between species (Fig. 14): Lycoperdon decipiens obtained 0.43 ± 0.06; L. echinatum 1.14 ± 0.12; L. mammiforme 0.89 ± 0.05; L. marginatum 2.95 ± 0.15; 2.02 ± 0.28; L. perlatum 1.62 ± 0.12; L. pratense 3.93 ± 0.19; L. pyriforme 5.19 ± 0.25; L. rupicola 1.73 ± 0.10. Additionally, identification based on sequence distance, gave an 87.58% success of identification based on “best match and best close match”, and the incorrect identification was 11.03%, and 9.45% (“Best Match and Best Close Match”) (Table 3, 4), from our complete dataset (non-GenBank plus Genbank samples).

In the PCI analysis, with the search by the Best Match/Best Close Match using a threshold of 3%, in the terminal branch, that includes the subgenus Lycoperdon (23 sequences, 20 belong to Lycoperdon perlatum and three to L. marginatum), at least one matching sequence was found, and the correct identifications according to “Best Match” was 100%, the ambiguous and incorrect identification was 0%. The average intraspecific distance in L. perlatum and L. marginatum was 0.11% and 0.40%, respectively, while the average interspecific distance between the two species was 3.35%; however, this latter value is smaller than when all species are compared: L. perlatum 4.76% and L. marginatum 5.40% (Fig. 14).

The terminal branch that includes the subgenus Vascellum, in the analysis of the Best Match/Best Close Match using threshold of 3.0% (six sequences: five belonging to L. pratense and one sequence to Lycoperdon sp.1), has at least one matching sequence and the correct identifications according to “Best Match” was of 83.33%, the ambiguous 0%, the incorrect identification was one (16.66%). The correct identifications according to “Best Close Match” was of five (83.33%), the ambiguous and the incorrect identifications were 0%; however, one sequence (16.66%) had no match closer than 3.0%. The average intraspecific distance in L. pratense and Lycoperdon sp. 1 were of 0.27% and N/A, while the average interspecific distance between these species was 4.21%;

96

however, this last value is smaller than when we compare with all species here L. pratense 5.14% and Lycoperdon sp.1 4.81% (Fig. 15).

The terminal branches that include subgenus Utraria, in the analysis of the Best Match/Best Close Match using a threshold of 3.0% (13 sequences: five belong to L. ericaeum and eight to L. subumbrinum), have at least one matching sequence and the correct identifications according to “Best Match” was 100%, the ambiguous and incorrect identification was 0%. The average intraspecific distance in L. ericaeum and L. subumbrinum were 1.50% and 0.58%, while the average interspecific distance between them was 2.55%, however, this value is smaller than when we compare with all species here: L. ericaeum 2.80% and L. subumbrinum 3.25% (Fig. 15).

In the terminal branches of Lycoperdon mammiforme, L. umbrinum and L. atropurpureum, the analysis of the Best Match/Best Close Match using a threshold of 3.0% (24 sequences: four belong to L. mammiforme, ten to L. umbrinum and L. atropurpureum), they have at least one matching sequence and the correct identifications according to “Best Match” was 95.83%, the ambiguous 0% and the incorrect identification was 4.16%. The correct identifications according to “Best Close Match” were 95.83%, incorrect identifications were 4.16%. The average intraspecific distance in L. mammiforme, L. umbrinum and L. atropurpureum was 0.02%, 0.08% and 1.86%, while the average interspecific distance between these species was 1.50%, 1.63% and 1.79%; however, these last values are smaller than when we compare with all species here: L. mammiforme 2.89%, L. umbrinum 4.47% and L. atropurpureum 2.76% (Fig. 15).

In the terminal branches of Lycoperdon decipiens, L. molle and L. niveum, the analysis of the Best Match/Best Close Match using a threshold of 3.0% (23 sequences: seven belong to L. niveum, four belong to L. decipiens and six belong to L. molle), they have at least one matching sequence and the correct identifications according to “Best Match” was 100%, ambiguous and incorrect identifications were 0%. The correct identifications according to “Best Close Match” were 100%, ambiguous and incorrect identifications 0%. The average intraspecific distance of L. niveum, L. decipiens and L. molle was 0.60%, 0% and 1.38%, while the average interspecific distance between these species was 1.48%, 1.26% and 1.75%, however, these latter values are smaller than when we compare with all species here: L. niveum 2.58%, L. decipiens 2.57% and L. molle 3.09% (Fig. 15).

97

For the nine sequences identified as belonging to L. lividum, the analysis of the Best Match/Best Close Match using a threshold of 3.0%, have at least one matching sequence and the correct identifications according to “Best Match” was 100%, ambiguous and incorrect identifications was 0%. The correct identifications according to “Best Close Match” were 100%, ambiguous and incorrect identifications were 0%. The average interspecific distance was 2.72% (Fig. 15).

For the four sequences identified as belonging to L. altimontanum and seven as belonging to L. excipuliforme, the analysis of the Best Match/Best Close Match using a threshold of 3.0%, have at least one matching sequence and the correct identifications according to “Best Match” was 90.9%, ambiguous 0% and incorrect identification 9.09%. The correct identifications according to “Best Close Match” were of 90.9%, ambiguous 0%, incorrect identification 9.09%. The average intraspecific distance of L. altimontanum and L. excipuliforme was 0.68% and 0.28%, while the average interspecific distance between these species was 0.815%% and 0.815%, however, these latter values are smaller than when all species here are compared: L. altimontanum 2.76% and L. excipuliforme 2.62% (Fig. 15).

For the nine sequences that are included in the Lycoperdon lambinonii terminal branch the Best Match/Best Close Match using a threshold of 3.0% (three belong to L. turneri and three belong to L. umbrinum), have at least one matching sequence and the correct identifications according to “Best Match” was 77%, the ambiguous 0% and the incorrect identifications was of 22.22%. The correct identifications according to “Best Close Match” were of 77.77%, the ambiguous was 0%, incorrect identification was 22.22%. The average intraspecific distance of L. lambinonii, L. turneri and L. umbrinum was 1.68%, 0.34% and 0.14%, while the average interspecific distance between these species was 1.36%, 0.95% and 0.87%, however, these latter values are smaller than when we compare with all species here: L. lambinonii 3.18%, L. turneri 2.82% and L. umbrinum 2.86% (Fig. 15).

In terminal branch of Lycoperdon echinatum, L. nigrescens, L. radicatum and L. utriforme the analysis of the Best Match/Best Close Match using a threshold of 3.0% (15 sequences: nine sequences belong to L. echinatum, four belong to L. nigrescens and one belongs to L. radicatum and L. utriforme), have at least one matching sequence and the correct identifications according to “Best Match” was 85.71%, the ambiguous sequences

98

was 0% and incorrect identifications was two sequences (14.28% - GenBank samples). The correct identifications according to “Best Close Match” were 85.71%, the ambiguous sequences were of 0%, and incorrect identifications was two sequences (14.28% - GenBank samples). The average intraspecific distance of L. echinatum and L. nigrescens was 0.07% and 0.11%, while the average interspecific distance between these species was 2.74% and 2.94%, however, these latter values are smaller than when compared with all species here: L. echinatum 3.01% and L. nigrescens 3.68% (Fig. 15).

In the terminal branch of Lycoperdon pyriforme, L. caudatum and L. umbrinoides the analysis of the Best Match/Best Close Match using a threshold of 3.0% (13 sequences: eight belong to L. pyriforme, one belongs to L. caudatum and L. umbrinoides), have at least one matching sequence and the correct identifications according to “Best Match” was 70%, ambiguous sequences were of 0% and incorrect identifications was of three sequences (30% - two GenBank samples and one MA-Fungi 35530). The correct identifications according to “Best Close Match” were 70%, the ambiguous sequences were 0%, the incorrect identifications were 0%. The average intraspecific distance of L. pyriforme 2.27%, while the L. umbrinoides had no valid comparisons. The average interspecific distance between these species was 5.82% and 5.76%, however, these latter values are smaller than when we compare with all species here: L. pyriforme 6.36% and L. umbrinoides 4.47% (Fig. 15).

99

6,00

5,00

4,00

3,00

2,00

1,00

0,00

Largest intraspecific distance Mininum interspecific distance Standard deviation Intraspecific distance Standard deviation Interspecific Distance

Figure 14 PCI for each sample from each Lycoperdon species of dataset non-GenBank plus GenBank samples.

8,00%

7,00%

6,00%

5,00%

4,00%

3,00%

2,00%

1,00%

0,00%

-1,00%

Lycoperdon species Average intraspecific distance Average interspecific distance

Figure 15 Average intraspecific and interspecific genetic variability for conspecifics and congeneric of all sequences of dataset excluding Bovista and Morganella.

100

3.1.4 Automatic Identification through UNITE

The sequences obtained in this study, after a UNITE search, match with the following eighteen SHs (Fig. 16): SH078551.07FU–Lycoperdon altimontanum with mean of 98.5% of identity; SH310925.07FU–L. atropurpureum with mean of 99.5 % of identity; SH226422.07FU–L. decipiens (99.5%); SH175905.07FU–L. echinatum (98.5%); SH175895.07FU–L. ericaeum (98.5%), SH078579.07–L. excipuliforme (99.0%); SH078579.07FU–L. lambinonii (99.0%); SH078533.07FU–L. lividum (99.0%); SH175887.07FU–L. mammiforme (98.5%), SH175899.07FU–L. marginatum (98,5%); SH175919.07FU–L. molle (98.5%), SH175893.07FU–L. nigrescens (98.5%); SH078531.07FU–L. L.niveum (99%), SH175885.07FU–L. perlatum (99.0%); SH175883.07FU–L. pratense (99%), SH078515.07FU–L. pyriforme (98.5%); SH175888.07FU–L. subumbrinum (98.5%) and SH311013.07FU–L. umbrinum (99.5%). The sequence of Lycoperdon sp. 1 and Lycoperdon sp. 2 booth with only one sample have not match in UNITE.

99,80% 99,60% Percent Identity - UNITE 99,40% 99,20% 99,00% 98,80% 98,60% 98,40% 98,20% 98,00% 97,80%

Figure 16 Percent identity of sequences compared with UNITE Species Hypothesis (SHs).

101

3.2 Taxonomy

The revision of morphological characters allows us to discriminate the twenty-one Lycoperdon species. However, two species remain unidentified (Lycoperdon sp. 1 and Lycoerdon sp. 2); these species morphologically look like L. umbrinum, however based on molecular analyses, they do not form a group together with GenBank samples of L. umbrinum.

Lycoperdon altimontanum Kreisel, Feddes Repert. Spec. Nov., Beih. 87 (1-2): 97 (1976) – MycoBank: MB 317026. Fig. 17a.

Basidiomata pyriform, 32 mm length × 35 mm width; subgleba cellular, well developed (≤ ⅓ of basidioma) and olive-brown. Exoperidium with whitish to light brown spines 0.1– 0.3 mm long., falling off with the age, leaving a smooth and light brown endoperidium surface. Gleba dark olive to brown. Apical endoperidium without inflated hyphae and mycosclereids. Capillitium with scattered pores. Basidiospores 6.0–8.0 µm, strongly verrucose [D] in LM, ornamentation number 7.3–11.2 for a circumference reduced to 10 µm.

For a complete description: see Kreisel (1976).

Specimens examined – REPUBLIC OF MACEDONIA, Mavrovo National Park, in forest, 20 Oct 2005, leg. K. Rusevska and M. Karadelev (MC-Fungi 05-787).

Lycoperdon atropurpureum Vittad., Monogr. Lycoperd.: 42 (1842) – MycoBank: MB 118735. Figs. 17b, 19a.

Basidioma pyriform to turbinate, 26–42 mm length × 15–35 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma) and brown. Exoperidium with spines and granular ornamentations, the spines are falling off at maturity. Endoperidium surface smooth and buff colored. Gleba powdery and deep purple. Apical endoperidium without inflated hyphae and mycosclereids. Capillitium elastic with abundant pores. Basidiospores 6.5– 8.0 µm, strongly verrucose [D] in LM and columnar warts becoming flattened at the tips in SEM, 5.7–10.0 for a circumference reduced to 10 µm, surrounded by remains of sterigma and a short pedicel (up to 2.0 µm).

For a complete description: see Demoulin (1972a) and Jeppson and Demoulin (1989).

102

Specimens examined – FRANCE, Pyrénées-Orientales, between Corsavy and Batere, habitat near Pinus sylvestris in high herbs, 1200 m, 6 Nov1968, leg. V. Demoulin (MA-

Fungi 63392). REPUBLIC OF MACEDONIA, deciduous forest, 10 Sep 2008, leg. K. Rusevska (MC-Fungi 08-10194); ibidem, Querco-Carpinetum orientalis with Castanea sativa plantings, 05 Oct 2008, leg. K. Rusevska (MC-Fungi 08-10227); ibidem, forest (Quercus frainetto), 10 Nov 2008, leg. K. Rusevska (MC-Fungi 08-10122); ibidem, in Quercus frainetto, 20 Oct 2005, leg. K. Rusevska and M. Karadelev (MC-Fungi 05- 2233); ibidem, 11 Jul 1999, leg. BSRS (MC-Fungi 99-10248); ibidem, oak forest mixed of Quercus frainetto and Corylus avellana, 15 Nov 2010, leg. K. Rusevska and M. Karadelev (MC-Fungi 06-10067); ibidem, black locust plantings, 20 Oct 1989, leg. M. Karadelev (MC-Fungi 89-9572); ibidem, Querco-Carpinetum orientalis, 30 Oct 1987, leg. M. Karadelev (MC-Fungi 87-7733).

Lycoperdon decipiens Dur. & Mont., Expl. Sci. Algérie, Bot. 1 Crypt.: 380 (1848) – MycoBank: MB232329. Fig. 17c.

Basidiomata subglobose to turbinate, 12–26 mm length × 24–32 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), grayish pink. Exoperidium with fragile spines, convergent at the apex, at the base becoming brown, and cream at the apical portion, both are falling off with age leaving a furfuraceous aspect. Surface endoperidium is smooth and grayish yellow. Gleba olive brown. Apical endoperidium with inflated hyphae 6.0–19.0 µm, septate and weakly dextrinoid, mycosclereids absent; apical sphaerocysts 13.0–22.0 × 9.5–19.0 µm. Capillitium with abundant pores. Basidiospores 6.0–7.0 µm, strongly verrucose [D] in LM, ornamentation as aculeate form, number of ornamentation 7.0–10.0 for a circumference reduced to 10 µm.

For a complete description: see Demoulin (1972a, 1983).

Specimens examined – FRANCE, Pyrénées-Orientales, between Corsavy and Batere, in naked soil or lawn of beach, 1200 m, 06 Nov 1968, leg. V. Demoulin (MA-Fungi

63390). SPAIN, Monarca, Santa Barbara, 17 Nov 1990, leg. F.D. Calonge (MA-Fungi 27674); Barcelona, Torrelletes, 18 Mar 1971, leg. V. Demoulin (45055).

103

Lycoperdon echinatum Pers., Ann. Bot. (Usteri) 1: 147 (1794) – MycoBank: MB414453. Fig. 17d.

Basidiomata turbinate, 32–43 mm length × 32–54 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma) and grayish brown. Exoperidium with dense curved black spines 1.0–4.0 (5.0) mm long., falling off with the age, leaving a reticulate and greyish brown endoperidium surface. Gleba brown. apical endoperidium not observed. Capillitium with pores. Basidiospores 5.5–6.5 µm, verrucose [C] in LM, ornamentation number of 8.8–10.7 for a circumference reduced to 10 µm;

For a complete description: see Demoulin (1972a) and Pegler et al. (1995).

Specimens examined – REPUBLIC OF MACEDONIA, beech forest, 23 Oct 2005, leg. M. Karadelev (MC-Fungi 05-782); ibidem, beech forest, 11 Sep 2005, leg. K. Rusevska (MC-Fungi 05-5160); ibidem, beech forest, 19 Aug 2006, leg. K. Rusevska (MC-Fungi 06-5916); ibidem, beech forest, 18 Sep 2006, leg. K. Rusevska (MC-Fungi 06-9676); ibidem, beech forest, 10 Oct 2005, leg. K. Rusevska (MC-Fungi 05-5376); ibidem,16 Aug

2006, leg. K. Rusevska (MC-Fungi 06-5900). SPAIN, Salamanca, Miranda del Costañar, 30TTK4786, humus of madroñal, 620 m, 27 Nov 2002, leg. S.P. Gorjón and P.G. Jimenez SPG 0197 (MA-Fungi 84507); Soria, Vinuesa, under Pinus and Fagus, 15 Oct 1997, leg. F.D. Calonge (MA-Fungi 39586).

Lycoperdon ericaeum Bonord., Bot. Ztg. 15: 628 (1857) – MycoBank: MB 223495. Figs. 17e, 19b.

Basidiomata turbinate, 46 mm length × 35 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma) and grayish pink. Exoperidium ornamentation mixed with granules and stellate spines that falling off, leaving a furfuraceous aspect covering the smooth surfaced endoperidium; gleba brown. Apical endoperidium not observed. Capillitium with abundant pores. Basidiospores 4.5–5.0 µm, slightly verrucose in LM, columnar warty, flattened top and sometimes the ornamentation base connected by lines in SEM.

For a complete description: see Calonge and Demoulin, (1975).

Specimens examined – USA, Ohio, Forken Run State Park, Neigs Co., on soil, 21 Oct 1979, leg. W.B. and V.G. Cooke 57994 (MA-Fungi 63393, ex Herb. V. Demoulin 1358). 104

Lycoperdon excipuliforme (Scop.) Pers., Syn. Meth. Fung. (Göttingen) 1: 143 (1801) – MycoBank: MB 223280. Fig. 17f.

Basidiomata pyriform 150 mm length × 30–45 wide. Subgleba well developed (≤ ⅓ of basidioma) and brown. Exoperidium with minute warts or spines grouped in pyramids, exoperidium and endoperidium falling off with the age. Gleba yellowish brown. Apical endoperidium no observed. Capillitium with pores. Basidiospores 4–7 µm, verrucose [C] in LM.

For a complete description: see Calonge and Demoulin, (1975) and Perdeck (1950).

Specimens examined – REPUBLIC OF MACEDONIA, on soil of beech forest, 25 Sep 1998, leg. M. Karadelev (MC-Fungi 98-10138); ibidem, found in Salicetum, 10 Nov 2008, leg. M. Karadelev (MC-Fungi 08-10217); ibidem, Querco-Carpinetum orientalis, 22 Oct 2006, leg. K. Rusevska (MC-Fungi 06-6224); ibidem, Carpinus and Castanea forest, 01 Jan 2003, leg. Daov (MC-Fungi 03-2892); ibidem, found in Corylus association, 20 Sep 2005, leg. K. Rusevska and M. Karadelev (MC-Fungi 06-9715); ibidem, in pine plantings, 12 Oct 2008, leg. P. Atanasovski (MC-Fungi 08-10049).

Lycoperdon lambinonii Demoulin, Lejeunia, n.s. 62: 13 (1972) – MycoBank: MB 317033.

Basidiomata subglobose, pyriform to turbinate, 10 – 45 mm length × 20 – 50 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), olive-brown to grayish pink. Exoperidium with granules or spines (up to 0.8 mm long.), falling off with the age. Endoperidium surface smooth, without scars as in L. perlatum, yellowish brown. Gleba brown. Apical endoperidium not observed. Capillitium with rare pores and paracapillitium occasional. Basidiospores 5.4–5.8 µm, slightly verrucose to verrucose [B- C], in LM.

For a complete description: see (Demoulin, 1972b).

Specimens examined – REPUBLIC OF MACEDONIA, on soil of Beech and Molika pine forest, 20 Oct 2005, leg. K. Rusevska and M. Karadelev (MC-Fungi 05-10226). SPAIN, Tenerife, El Realejo Bajo, on soil of pine forest, 1 Dec 1972, leg. W. Wildpret and E. Beltrán (MA-Fungi 6902).

105

Lycoperdon lividum Pers. J. Bot. (Desvaux) 2: 18 (1809) – MycoBank: MB 414454. Figs. 17g, 19c.

Basidiomata pyriform, 28 mm length × 18 mm wide. Subgleba cellular well developed (≤ ⅓ of basidioma), grayish pink, subgleba supported by a pseudorhiza 20 mm length, encrusted with particles of soil and/or sand. Exoperidium granulose, falling off with the age, leaving a smooth and grayish brown endoperidium surface. Gleba olive-brown. Apical endoperidium not observed. Capillitium with pores. Basidiospores 4.5–5.0 µm, slightly verrucose [A-B] in LM, with a shortly pedicel 0.5–1.0 µm long.

For a complete description: see Calonge and Demoulin, (1975).

Specimens examined – REPUBLIC OF MACEDONIA, on soil of oak forest, 22 Oct 2005, leg. M. Karadelev (MC-Fungi 05-10007); ibidem, on soil of meadow, 10 Nov 2005, leg. K. Rusevska (MC-Fungi 05-5323); ibidem, on soil of Digitalis viridiflorae and Pinetum peuces, 30 Sep 2002, leg. K. Rusevska and M. Karadelev (MC-Fungi 02-3594); ibidem, on soil of Quercus coccifera, 21 Oct 2008, leg. M. Karadelev (MC-Fungi 08- 10040). Spain, Almería, Tijola, under Pinus halepensis, 01 Feb 1987, leg. J.A.O. Rueda (MA-Fungi 19219); Guadalajara, Tamajón, 30SVH4859, in humus of Pinus pinea, 850 m, 09 Dec 2004, leg. F. Esteve, A. González, G. Moreno, et al., no. GP477 (MA-Fungi 68346); Ciudad Real, Viso del Marqués, in humus of Pinus pinea, 850 m, 03 Dec 2005, F.D. Calonge et al., no. GP639 (MA-Fungi 68348); Madrid, El Berrueco, in , on slate soil, 28 Mar 2002, leg. A. González and G. Sastre (MA-Fungi 74402).

Lycoperdon mammiforme Pers., Syn. Meth. Fung. (Göttingen) 1: 146 (1801) – MycoBank: MB 220868. Figs. 17h, 19d.

Basidioma subglobose, 42 mm length × 32 mm wide. Subgleba cellular and well developed (≤ ⅓ of basidioma), grayish. Exoperidium ornamentation with deciduous withe spines, convergent at the tips, recovering by withe veil, falling off in plates. Endoperidium surface smooth, grayish brown. Gleba powdery brown. Apical endoperidium without inflated hyphae and mycosclereids. Capillitium elastic, pores rare. Basidiospores globose 4.0–5.0 µm, verrucose [C] in LM and with columnar warts becoming flattened at the tips in SEM, number of ornamentation of 8.5–11.0 for a circumference reduced to 10 µm.

For a complete description: see Calonge (1998).

106

Specimens examined – REPUBLIC OF MACEDONIA, on soil of pine plantings, 23 Oct

2005, leg. K. Rusevska and M. Karadelev (MC-Fungi 05-773). SPAIN, Huesca, Parque Nacional da Ordesa, Circo de Pineta next to the wall of Monte Perdido, 17 Oct 1989, leg. F.D. Calonge (MA-Fungi 24103); Navarra, Zarranz, on hayedo, 10 Dec 1990, leg. F.D. Calonge (MA-Fungi 31251).

Lycoperdon marginatum Vittad. ex Moris & De Not., Monogr. Lycoperd. 185 (1842) – MycoBank: MB 220937. Figs. 17i, 19e.

Basidiomata globose to subglobose, 10 mm length × 35 mm wide. Subgleba compact to cellular, well developed (≤ ⅓ of basidioma), grayish brown. Exoperidium ornamentation with deciduous white pyramidal spines, falling off in plates; surface of endoperidium smooth. Apical endoperidium with dextrinoid inflated hyphae 6.0–13.0 µm, septate hyphae, mycosclereids 34.0–61.0 × 14.0–39.0 µm, weakly dextrinoid. Capillitium elastic with abundant pores. Basidiospores globose 4.0–4.8 µm, punctate to slightly verrucose [A-B] in LM and verrucose in SEM.

For a complete description: see Demoulin (1972a).

Specimens examined – SPAIN, Gerona, Vilobi d’ Onyar, 19 Oct 1987, leg. J.M.Vidal (MA-Fungi 31252); Teruel, Linares de Mora, in pine forest of Pinus sylvestris, 25 Oct 1995, leg. F.D. Calonge (MA-Fungi 34063).

107

Figure 17 Dry basidiomata of Lycoperdon species. a. Lycoperdon altimontanum (MA-Fungi 63392); b. L. atropurpureum (MA-Fungi 63389); c. L. decipiens (MA-Fungi 27674); d. L. echinatum (MA-Fungi 39586); e. L. ericaeum (MA-Fungi 63393); f. L. excipuliforme (MC-Fungi 06:6224); g. L. lividum (MA- Fungi 68348); h. L. mammiforme (MA-Fungi 31251); i. L. marginatum (MA-Fungi 31232); all bars = 10 mm.

108

Lycoperdon molle Pers., Syn. Meth. Fung. (Göttingen) 1: 150 (1801) – MycoBank: MB 271483. Fig. 18a. Basidiomata pyriform to turbinate, 32–53 mm length × 27–39 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), white becoming grayish pink. Exoperidium with spines (no more 1 mm long) falling off at maturity; endoperidium surface smooth and grayish brown. Gleba olive to brown. Apical endoperidium with weakly dextrinoid inflated hyphae 5.5–10.0 µm, without mycosclereids. Capillitium with scattered pores. Basidiospores 5.0–6.0 µm strongly verrucose [C] in LM, number 8.2–11.0 for a circumference reduced to 10 µm.

For a complete description: see Calonge and Demoulin, (1975).

Specimens examined – Greece, Stratoniki, Stratoni, in Pinus forest, 26 Apr 2007, leg. F.D. Calonge (MA-Fungi 73601). Portugal, Minho, Gerês, Parque Nacional Peneda- Gerês, 19 Nov 1988, leg. J. Cardoso, E. Descals, C. Lado, I. Melo and M.T. Telleria (MA-

Fungi 31618). SPAIN, Madrid, Guadarrama, La Jarosa, 10 Mar 1991, Leg. A. Garcia (MA- Fungi 31259); Vizcaya, Altube, en hayedo, 23 Sep 1976, leg. E.P. Moral (MA-Fungi 21623); Pontevedra, Villagarcia de Arosa, 18 Nov 1983, leg. E. Valdez (MA-Fungi 21737). Republic of Macedonia, on soil (acid) of beech forest, 19 Oct 2006, leg. K. Rusevska (MC-Fungi 06-5918); ibidem, on soil (acid) of beech forest, 10 Oct 2005, leg. K. Rusevska (MC-Fungi 05-5380).

Lycoperdon nigrescens Pers., Neues Mag. Bot. 1: 87 (1794) – MycoBank: MB 218442. Fig. 18b, 19f. Basidiomata subpyriform to turbinate, 23–50 mm length × 24–46 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), yellow brown becoming pinkish gray. Subgleba supported by a pseudorhiza up to 4.0 mm length. Exoperidium ornamentation mixed with granules and dark spines (up to 1.0 mm long.), spines falling off with age leaving an areolate endoperidium surface. Gleba olive brown. Apical endoperidium with septate and inflated hyphae 8.0–16.0 µm and mycosclereids 35.0–68.0 × 14.0–30.0 µm, both strongly dextrinoid. Capillitium with occasional pores; paracapillitium rare. Basidiospores 4.5–6.5 µm, slightly verrucose [B], short pedicel 0.5–1.0 µm long. in LM, warty with flattened tips in SEM.

For a complete description: see Calonge (1998).

109

Specimens examined – LUXEMBURGO, Grand-Duché de Luxemburgo, Oeslebf Espeldange, 10 Oct 1986, leg. J. Lambon (MA-Fungi 63396); Spain, Ávila, Navaluenga, Venero Claro, 12 Nov 1987, leg. F.D. Calonge (MA-Fungi 22012); Burgos, Quintanar de la Sierra, 14 Oct1997, leg. F.D. Calonge (MA-Fungi 39587); Madrid, Montejo de la Sierra, under Quercus pirenaica, 19 Jun 1988, leg. A. Guerra (MA-Fungi 31296).

Lycoperdon niveum Kreisel, Khumbu Himal 6(1): 30 (1969) – MycoBank: MB 317036. Fig. 18c.

Basidiomata subglobose to subpyriform, 14–35 mm length × 34–35 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), grayish. Exoperidium with spiny ornamentation, the spines are falling off at maturity; surface endoperidium smooth and light brown. Gleba powdery, brown. Apical endoperidium not observed. Capillitium elastic with abundant pores. Basidiospores 4.5–5.0 µm, verrucose [D], warts up to 0.3 µm long. in LM, number of 7–9.5 for a circumference reduced to 10 µm.

For a complete description: see Demoulin (1972a).

Specimens examined – NORWAY, Hordaland Virk Furise, Samddalsnuten, in Salix reticulate and Silene actual, 13 Ago 1985, leg. V. Demoulin (MA-Fungi 63397).

REPUBLIC OF MACEDONIA, on soil of meadow, 19 Ago 2006, K. Rusevska (MC-Fungi 06- 5915); ibidem, on soil of deciduous forest of Castanea sativa, 29 Sep 2002, leg. unknown

(MC-Fungi 02-10008). SPAIN, Huesca, San Juan de La Penta, under Pinus sylvestris, 13 Sep 1974, leg. A. Tomas (MA-Fungi 21618).

Lycoperdon perlatum Pers.: Pers., Synops. Meth. Fung. 1: 145 (1801) – MycoBank: MB 220647. Figs. 18d, 19g.

Basidiomata obovate, subpyriform to turbinate, 30–59 mm length × 20–36 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), cream becoming pela orange, grayish to brownish. Apical exoperidium ornamentation with deciduous spines leaving areolate scars on endoperidium surface. Apical endoperidium with inflated hyphae 7.0– 14.0 µm, mycosclereids 26.0–89.0 × 12.0–25.0 µm. Capillitium elastic with occasional pores. Basidiospores globose, 4.0–5.0 µm, verrucose [B-C] in LM and aculeate in SEM, number of ornamentation 7.0–11.5 for a circumference reduced to 10 µm.

For a complete description: see Calonge and Demoulin, (1975).

110

Specimens examined – REPUBLIC OF MACEDONIA, on soil of open grassland, 01 Jan 2003, leg. S. Daov (MC-Fungi 03-10225); ibidem, on soil of beech forest, 19 Aug 2006, leg. K. Rusevska (MC-Fungi 06-5917); ibidem, on soil of deciduous forest, 09 Apr 2007, leg. S. Spasikova (MC-Fungi 07-6663); ibidem, on soil of Quercus coccifera, 30 Oct 1987, leg. M. Karadelev (MC-Fungi 87-7735); ibidem, on soil of meadow, 01 Oct 2002, leg. K. Rusevska and M. Karadelev (MC-Fungi 02-2389); ibidem, on soil at roadsides, 29 Sep 1990, leg. M. Karadelev (MC-Fungi 90-10234); ibidem, on soil of Querco- Caarpinetum orientalis, 11 Oct 2002, leg. S. Dimkov (MC-Fungi 02-2995); ibidem, on soil deciduous forest, 11 Oct 2008, leg. K. Rusevska (MC-Fungi 08-10055); ibidem, on soil of edge of oak forest, 14 Nov 2008, leg. K. Rusevska (MC-Fungi 08-10119); ibidem, on soil of Quercus coccifera and Carpinetum orientalis, 21 Oct 2008, leg. M. Karadelev (MC-Fungi 08-10035); ibidem, on soil of meadow in oak forest with Castanea sativa plantings, 01 Jan 2007, leg. M. Karadelev (MC-Fungi 07-10144); ibidem, on soil of planting of pine, 10 Oct 2005, leg. K. Rusevska (MC-Fungi 05-5316); ibidem, 12 Sep 2008, leg. K. Rusevska (MC-Fungi 08-10209); ibidem, on soil of meadow, 16 Jun 2007, leg. M. Karadelev and K. Rusevska (MC-Fungi 07-7207); ibidem, 09 Apr 2008, leg. K. Rusevska (MC-Fungi 05-9247). Spain, Mallorca, Monnaber, in Quercus ilex and Pinus halepensis, 13 Nov 1992, F.D. Calonge (MA-Fungi 29732); Teruel, 05 Jun 1988, leg. F.D. Calonge (MA-Fungi 31233); León, Puebla de Lillo, in Fagus sylvatica, 21 Oct 1992, leg. F.D. Calonge (MA-Fungi 31253); Navarra, Sra. Aralar, in mixed forest of Picea and Fagus, 03 Sep 1977, leg. L.M.G. Bona, no. 965 (MA-Fungi 64953).

Lycoperdon pratense Pers., Neues Mag. Bot.1: 87 (1794): Pers., Syn. meth. fung.: 142 (1801) – MycoBank: MB 174409. Fig. 18e.

Basidiomata pyriform, 30–50 mm length × 30 mm wide. Subgleba cellular, well developed subgleba (≤ ⅓ of basidioma). Exoperidium ornamentation with deciduous small spines or granules; surface endoperidium smooth. Apical endoperidium without inflated hyphae and mycosclereids. Paracapillitium abundant. Capillitium when present without pores. Basidiospores globose 3.0–4.0 µm, slightly verrucose [A-B] in LM.

For a complete description: see Calonge and Demoulin (1975), Moyerson and Demoulin (1996), Calonge (1998).

111

Specimens examined – REPUBLIC OF MACEDONIA, on soil of pine plantings, 14 Nov 2008, leg. K. Rusevska (MC-Fungi 08-10114); ibidem, on soil of Querco-Carpinetum orientalis, 12 Mar 2009, leg. S. Stojanov (MC-Fungi 03-3040).

Lycoperdon pyriforme Schaeff., Fung. Bavar. Palat. nasc. 4: 128 (1774): Pers., Syn. Meth. Fung.: 148 (1801) – MycoBank: MB 499404. Fig. 18f.

Basidiomata 27–41 mm length × 36–41 mm wide, subgleba cellular, well developed (≤ ⅓ of basidioma), whitish. Exoperidium with persistent brown warts. Endoperidium yellowish brown; gleba olive brown. Endoperidium apical without inflated hyphae and mycosclereids; exoperidium is composed of spiny cells arranged in regular chains, strongly dextrinoid. Capillitium and paracapillitium abundant. Basidiospores 3.0–4.0 µm, smooth to punctate [A] in LM.

For a complete description: see Demoulin (1970).

Specimens examined – AUSTRALIA, rotten wood of deciduous and coniferous tree,

10 Sep 2008, leg. K. Rusevska (MC-Fungi 08-10196). REPUBLIC OF MACEDONIA, decaying wood in beech forest mixed forest (Fagus, Pinus, Acer, Fraxinus and Quercus), 11 Oct 2001, leg. K. Zimbacova (MC-Fungi 01-745); ibidem, decaying wood of beech forest, 04 Sep 2005, leg. K. Rusevska (MC-Fungi 05-5074); ibidem, growing in decaying wood of beech and Salicetum albae-fragilis, 13 Nov 2008, leg. M. Karadelev (MC-Fungi 08-10128); ibidem, growing in decaying wood of beech forest, 07 Nov 1998, leg. M.

Karadelev (MC-Fungi 98-3045). SPAIN, Austurias, Covadonga, subida a los lagos, growing in decaying wood, 10 Jan 1986, leg. M. Dueñas (MA-Fungi 16908).

Lycoperdon subumbrinum Jeppson & E. Larss., Mycol. Progr. 11: 891 (2012) – MycoBank: MB 563802. Fig. 18g, 19h.

Basidiomata subpyriform to pyriform, 30–38 mm length × 32–35 mm wide, cellular, well developed (≤ ⅓ of basidioma), grayish brown. Exoperidium with tiny spines (0.5–0.8 mm long.) falling off with age exposing a shining surface endoperidium. Gleba yellowish brown. Apical endoperidium with inflated hyphae 11.0–25.0 µm, septate and strongly dextrinoid, without mycosclereids. Capillitium with pores. Paracapillitium occasional. Basidiospores 4.5–5.0 µm, slightly verrucose [B-C], short pedicel 0.5–1.0 µm long., in LM, columnar warty bonded to each other in SEM.

112

For a complete description: see Jeppson et al. (2012).

Specimens examined – UK, England, Straud, Cranham, in forest of Fagus sylvatica,

13 Sep 1992, leg. F.D. Calonge (28449). FRANCE, Pyrénées-Orientales, surround Borg- Argental by a road crossing a pine forest, 01 Sep 1972, leg. J. Delangue (MA-Fungi 63391). Spain, Gerona, Bañolas, in soil of holm and jars, 17 Nov 1985 (MA-Fungi 31234); Villaviciosa, Monte Trigo, 26 Dec 1991, leg. A. Castro (MA-Fungi 30564). Republic of Macedonia, on soil of beech forest, 30 Oct 1987, leg. M. Karadelev (MC- Fungi 87-10137).

Lycoperdon umbrinoides Dissing & Lange, Bull. Jard. bot. État Brux. 32: 344 (1962) – MycoBank: MB 333492. Fig. 18h.

Basidiomata subpyriform, 59 mm length × 54 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), reddish brown. Exoperidium ornamentation with dark spines, spines falling off with age, leaving a smooth, brownish endoperidium surface. Gleba olive. Apical endoperidium not observed. Capillitium without pores and septate. Basidiospores 4–5 µm, smooth to punctate [A-B] in LM, pedicel 1.0–1.5 µm long.

For a complete description: see Dissing and Lange (1962).

Specimens examined – SPAIN, Gerona, Sant Sadurní de L’Huera, in riverside forest, under Alnus glutinosa, 08 Nov 1995, leg. J.M. Vidal (MA-Fungi 35530).

Lycoperdon umbrinum Pers., Ann. Bot. (Usteri) 11: 28 (1797): Syn. meth. fung.: 147 (1801) – MycoBank: MB 232824. Figs. 18i, 19i.

Basidiomata pyriform to turbinate, 18–35 mm length × 15–39 mm wide. Subgleba cellular, well developed (≤ ⅓ of basidioma), brown to pinkish grey. Exoperidium ornamentation with persistent spines (up to 1 mm length). Endoperidium surface smooth, orange umber to light brown. Gleba powdery, brown. Apical endoperidium not observed. Capillitium elastic, with pores. Basidiospores globose 3.0–5.0 µm, slightly verrucose [A- B] in LM, pedicelate 0.5–1.5 µm length.

For a complete description: see Demoulin (1972a).

Specimens examined – BELGIUM, Luxemburg, húmus el arguilles d’épigeas en pessieie sur ochiste de Famenne, 23 Feb 1972, leg. V. Demoulin, no. 4342 (MA-Fungi

113

63394). GREECE, Stratonik, Stratoni, under Pinus sp., 26 Apr 2007, leg. F.D. Calonge (MA-Fungi 73600).

114

Species not determined

Here are the species that need more analysis, or have only one basidioma and require a greater sampling effort.

Lycoperdon sp. 1

Basidioma immature 9 mm length × 23 mm wide, subglobose, yellow. Subgleba white, cellular. Gleba yellowish. Basidioma mature in bad condition, 14–28 mm length × 29–34 mm wide, pyriform to subpyriform. Exoperidium warty, with warts falling off, yellow. Endoperidium papery, smooth, cream. Subgleba well-developed 17 mm length, cellular, gray. Diaphragm concolorous with gleba. Gleba powdery, greyish brown. Apical endoperidium without hyphae with inflated terminations, mycosclereids 35.7–85.7 µm long × 13.0–32.8 µm wide, weakly dextrinoid. Capillitium 3–4.5 µm diam., smooth, branched, aseptate, without pores, yellowish brown, non-dextrinoid. Paracapillitium 2.6– 6.9 µm diam. Basidiospores 3.8–5.3 × 3.7–4.7 µm, slightly verrucose [A-B], pedicel 0.5– 2.5 µm long, or remains of sterigma 1–5 µm long.

Specimens Examined – BRAZIL, Rio Grande do Sul, Santa Maria, Campus Universidade Federal de Santa Maria, on soil of Atlantic forest, 06 Mar 2009, leg. V.G. Cortez (ICN154484).

Lycoperdon sp. 2

Basidiomata 27–45 mm long × 25–28 mm wide, subglobose to turbinate. Exoperidium warty, warts persistent, brown; endoperidium papery, cream. Subgleba well developed, 20 mm length, cellular, yellowish becoming gray. Gleba powdery, brown. Apical endoperidium without hyphae with inflated terminations and mycosclereids. Capillitium 4–6 µm diam., smooth, branched, aseptate, without pores, yellowish brown, non- dextrinoid. Paracapillitium absent. Basidiospores 5.5–6.0 µm, globose, strongly verrucose [D], pedicel occasional 0.5–1.5 µm long.

Specimens examined – INDIA, Uttaranchal, Pauri, 27 Jun 2006, leg. D. Bisht (MA- Fungi 73250).

115

Figure 18 Dry basidiomata of Lycoperdon species. a. Lycoperdon molle (MA-Fungi 31259); b. L. nigrescens (MA-Fungi 22012); c. L. niveum (MA-Fungi 21618); d. L. perlatum (MA-Fungi 64953); e. L. pratense (MC-Fungi 08: 10114); f. L. pyriforme (MA-Fungi 16908); g. L. subumbrinum (MA-Fungi 63391); h. L. umbrinoides (MA-Fungi 53530); i. L. umbrinum MA-Fungi 63394 – unsuccessful amplification); all bars = 10 mm.

116

Figure 19 Scanning microscope electronic of some Lycoperdon species. a. Lycoperdon atropurpureum (MA-Fungi 63389); b. L. ericaeum (MA-Fungi 63393); c. L. lividum (MA-Fungi 74402 – unsuccessful

amplification); d. L. mammiforme (MA-Fungi 24103); e. L. marginatum (MA-Fungi 31252); f. L. nigrescens (MA-Fungi 63396 – unsuccessful amplification); g. L. perlatum (MA-Fungi 64953); h. L. subumbrinum (MA-Fungi 63391); i. L. umbrinum (MA-Fungi 73600 – unsuccessful amplification); all bars = 5 µm.

117

4 DISCUSSION

To use DNA sequences as a barcode of life is a great idea, since it could be very useful, for example, to identify biodiversity from environmental samples (Floyd et al., 2002; Hogg and Hebert, 2004; Blaxter et al., 2005); in cases when the morphological characters are not enough to discriminate species (Druzhinina et al., 2005; Page et al., 2005); in dry specimens which can have degraded DNA (Hajibabaei et al., 2006); or even to use in forensic techniques (Nelson et al., 2007). The web site of Barcode of Life (www.barcoding.si.edu) defines barcoding as “a diagnostic technique for species identification, that uses a short, standardized sequence region”. The use of the DNA barcode to help in species discrimination has been an important approach for expert taxonomists in different groups of organisms such as: algae (Robba et al., 2006), animals (Ben-David et al., 2007), plants (Yao et al., 2010), oomycota (Robideau et al., 2011) and fungi (Bellemain et al., 2010). As proposed by Hebert et al. (2004), the sequences to be selected as a DNA barcode should be short (500–800 bp), and easy to amplify to be used to species identification. The ITS is shown to be promising as DNA barcode for the genus Lycoperdon; the success of amplification was 87% in contrast to the 13% of unsuccessful, a similar result was found by Schoch et al. (2012); they obtained 90% success in amplification of ITS region with high-quality PCR product and a high power for species discrimination in Basidiomycota. Unsuccessful amplification in Lycoperdaceae is due to the powdery gleba, so the spores are easily carried by air and can be deposited in other species. This creates a problem during the process of extraction and amplification.

The success of identification using ITS as barcode obtained here was above 80% in the two techniques used; Hebert et al., (2003) obtained 100% success in the identification at the species level. The incorrect identifications are found in terminal branches such as Lycoperdon excipuliforme, L. altimontanum, L. molle, L. umbrinum, L. subumbrinum or L. lambinonii. Within these terminal branches there are sequences that belong to specimens that we expected to be difficult to determine morphologically, e.g. immature specimens of L. excipuliforme that can be mistaken for L. molle (Perdeck, 1950) or specimens of L. molle that are difficult to separate from L. umbrinum (Demoulin, 1968).

Using the identification based on distance between sequences, 87.58% success of identification was obtained, based on “best match and best close match”, and the incorrect identification was 11.03% and 9.45% (best match and best close match); these results are 118

in contrast to those found by Meier et al. (2006), who obtained low success of identification (67.7%) based on “best match” and 66.3% based on “best close match”, although the authors considered the low success of identification was due to the relatively small number of sequences with more than 500bp of overlap; in the dataset used here all species/sequences are 550 to 700 bp. Another interesting fact is that the TaxonDNA used by Meier et al. (2006) was developed to refute the works that have used the distance methods and Neighbor-Joining tree (for example Hebert et al., 2003, 2004). However, our results with both techniques are similar. Some authors argued against the use of tree- based identifications on Neighbor-Joining trees because (i) the forming of a cluster on a tree is insufficient to identify species, (ii) the large size of the dataset results in ambiguities that are difficult to detect, because most Neighbor-Joining algorithms generate a single tree, in which there is the possibility to have internal attachment points that are ambiguous in any rooted tree (Will and Rubinoff, 2004; Meier et al., 2006).

The results obtained by techniques of tree-based identification of Neighbor- Joining, identification based on distance sequence, and the search performed on UNITE are most similar when treating species morphologically identified as L. altimontanum, L. excipuliforme (if immature species are used), L. molle and L. umbrinum. ITS as barcoding of Lycoperdon genus is promising; however, some groups of Lycoperdon species are not yet well delimited. Geiser et al. (2004), observing that ITSs tend to evolve at a high rate at the species level, tested the translation elongation factor 1-α (TEF) gene as an alternative in the identification of Fusarium species.

The morphological analysis showed that exoperidium ornamentation patterns (macromorphology and microstructures), endoperidium surface, the size and pattern of basidiospore ornamentation, and the capillitium with pores or not, are the most important characters in Lycoperdon taxonomy. This fact has been observed by Demoulin (1972a, 1976), and Homrich and Wright (1988). Demoulin (1972a), observed that those features such as strongly ornamented spores and big size are more ancestral than less ornamented spores and smaller size.

The terminal branch of L. perlatum clusters with L. novergicum and L. marginatum in the major clade of Lycoperdon subg, Lycoperdon. The ITS barcode results are similar to those obtained by Larsson and Jeppson (2008), using phylogenetic analyses of ITS-LSU sequences. In the morphological analysis, Lycoperdon perlatum and L. norvegicum share exoperidium ornamentation with deciduous spines leaving an areolate 119 endoperidium surface; however, the former has verrucose basidiospores [B-C] whereas, L. norvegicum has smooth basidiospores [A] (Demoulin, 1972a; Calonge and Demoulin, 1975). On the other hand, L. marginatum differs by its exoperidium ornamentation with pyramidal spines, also, falling off, but in this case the spines fall in plates leaving a smooth endoperidium surface, and it has basidiospores punctate to slightly verrucose [A-B] (Calonge and Demoulin, 1975; Calonge, 1998).

The terminal branch of Lycoperdon pratense remained with Lycoperdon subg. Vascellum, similar to the results of Larsson and Jeppson (2008) and Bates et al. 2009). The only sample from Brazil (Lycoperdon sp.1) clusters with L. pratense; however, we need more samples and analysis to clarify this branch. As described by Calonge and Demoulin (1975), Moyersoen and Demoulin, (1996), and Calonge (1998), L. pratense showed exoperidium ornamentation with groups of white spines or granules, falling off with age, capillitium absent, and abundant paracapillitium, these characters are distinct from those found in Lycoperdon sp. 1.

Inside the clade Lycoperdon subg. Utraria fifteen species were grouped, in accordance with Larsson and Jeppson (2008) and Bates et al. (2009): L. altimontanum, L. atropurpureum, L. decipiens, L. echinatum, L. ericaeum, L. excipuliforme, L. lambinonii, L. lividum, L. mammiforme, L. molle, L. nigrescens, L. niveum, L. subumbrinum, L. umbrinum and Lycoperdon sp. 2.

With the Utraria clade expert taxonomists disagree about some morphological concepts, mostly when delimiting the species of Lycoperdon atropurpureum, L. decipiens, L. molle, L. umbrinum (Perdeck, 1950; Demoulin 1972a; Calonge and Demoulin 1975). According to Demoulin (1968), due to the morphological variability of L. molle, taxonomists have many problems delimiting the species of L. atropupureum, L. molle and L. umbrinum, and sometimes these species were assembled into the Lycoperdon Molle-group. Calonge and Demoulin (1975) mention that L. atropurpureum specimens can be found under the names of L. molle and L. umbrinum. Calonge (1998) studied L. atropurpureum and L. decipiens and considered that there were not enough morphological features to distinguish both species, and he synonymized them. In the present study, the terminal branch of Lycoperdon atropurpureum (weakly supported) clusters with the terminal branch of L. umbrinum; L. atropurpureum has a deep purple gleba, and basidiospores strongly verrucose [D] while, L. umbrinum showed a brown gleba, and basidiospores mostly slightly verrucose [B]; Perdeck (1950) considered L. 120

atropurpureum Vittad. and L. umbrinum Hollós synonymous with L. molle; on the other hand, L. umbrinum Pers. is considered as a distinct species. He has observed, also, that L. umbrinum subgleba is dark or purplish brown and the gleba is olive or umber brown; Moyersoen and Demoulin (1996), separated L. molle from L. atropurpureum because the first one has distinct characters as well as persistent spines, capillitium with abundant pores, and basidiospores with smaller ornamentation. In our opinion, L. atropurpureum, L. decipiens and L. umbrinum are distinct species; even though weakly supported in the molecular analysis; the ITS sequences together with the morphological analysis helped us to separate these species. According to Hebert and Barrett (2005), the DNA barcode, in addition to the morphological and ecological characters, can improve the identification of species. Perhaps, by adding other markers to the molecular analyses, the support value can improve. Following Stielow et al. (2015), one gene can improve the species discrimination by ITS region; the TEF1α, is considered by Stielow et al. (2015) as likely to be one candidate as a second secondary barcode for fungi.

The terminal branch of Lycoperdon frigidum is close to L. atropurpureum and L. umbrinum. This terminal branch also is weakly supported (bs = 57%, pp = 0.71), however, we have not analyzed these specimens morphologically. The characters distinctive of L. frigidum according Demoulin (1972a) are: exoperidium ornamentation with persistent white spines in cone format, subgleba well developed, brown-purple, gleba brown, basidiospores verrucose [B-C], capillitium septate and abundant pores: these characters differ from those shown by L. atropurpureum and L. umbrinum.

Lycoperdon mammiforme is a well supported branch and is close to L. atropurpureum, L. frigidum and L. umbrinum; however, the characters shown by L. mammiforme are quite different from them: exoperidium ornamentation with deciduous white spines, convergent at the tips, covered by a white veil, falling off in plates, basidiospores verrucose [C] and capillitium with pores; these characters were also found by Pegler et al. (1995) and Calonge (1998). When the specimens of L. mammiforme lose the veil before maturity they can be mistaken for L. molle because the latter also has white spines and verrucose basidiospores [C]. The terminal branch of Lycoperdon sp. 2 is close to L. mammiforme yet with a less derived position, it does not have characters of L. mammiforme.

In our molecular analysis Lycoperdon decipiens, L. molle and L. niveum are close. L. niveum is weakly supported, L. decipiens is moderately to well supported and L. molle 121 is well supported; L. decipiens differs by its exoperidium with fragile spines, falling off with age leaving a furfuraceous aspect, gleba olive brown, basidiospores strongly verrucose [D] and capillitium with abundant pores; while L. molle has spines (no more 1 mm long) falling off, subgleba colored grayish pink, gleba olive brown and basidiospores verrucose [C], in contrast, L. niveum has basidiospores strongly verrucose [D] and capillitium with abundant pores. Following the criteria adopted by Demoulin (1972a, 1983) and Calonge (1998), L. decipiens is synonymous with L. atropurpureum and the morphological features are insufficient to separate them. As discussed above, we believe they are distinct species. Lycoperdon atropurpureum lacks the furfuraceous endoperidium surface when the spines from exoperidium fall off with age, in contrast to the furfuraceous endoperidium surface in L. decipiens.

The terminal branch of Lycoperdon lividum is separated into two weakly supported terminal branches. All morphological features us to believe these specimens belong to L. lividum; this species is easily recognizable by its subgleba supported by a pseudorhiza, exoperidium granulose and falling off, endoperidium surface smooth, basidiospores punctate [A-B] and capillitium with abundant pores; these characters follow those found by Pegler et al. (1995) and Calonge (1998).

The terminal branch of Lycoperdon altimontanum and L. excipuliforme are close, but not well supported. Lycoperdon altimontanum was described the first time from alpine species of the Himalaya mountains (Nepal) (Kreisel, 1976); and Calvatia excipuliformis was described by Perdeck (1950) as a comb. nov. to accommodate L. excipuliforme. Later, (Kreisel, 1989) rearranged the species with slit-like pitted capillitium and placed C. excipuliformis into the genus . However, after work of Larsson and Jeppson (2008), based on molecular data, C. excipuliformis belongs in the Lycoperdon genus. The features that separate these species are: exoperidium ornamentation with whitish spines, falling off, basidiospores 6.0–8.0 µm, strongly verrucose [D], and capillitium with scarred pores in L. altimontanum; whereas, L. excipuliforme has exoperidium ornamentation with minute warts or spines grouped in pyramids, exoperidium and endoperidium falling off with the age, basidiospores 4–7 µm, verrucose [C], capillitium with irregular pores. The bigger basidiospores in L. altimontanum, and the exoperidium and endoperidium falling off in L. excipuliforme make clear the distinction between these species. Yet, L. excipuliforme can be mistaken with L. molle when the specimens are small and the subgleba is poorly developed (Calonge and Demoulin, 1975); moreover, we observed

122

when the specimens of L. excipuliforme, L. molle or both species are immature and the basidiospores are not completely formed, they are most difficult to determinate and can be confused; consequently the use of immature specimens to delimitate or to describe species is not advisable because this fact can bring several problems in the identification.

The terminal branch of Lycoperdon lambinonii is separated into two weakly supported terminal branches; one includes the specimen of L. lambinonii (Demoulin4622) and L. turneri (MJ5251), the other branch has L. lambinonii (MJ5245), one specimen from Macedonia (MC-Fungi05-10226), two species of L. turneri (MJ 4265 and Lange 0895), and three specimens of L. umbrinum (MJ4556, MJ4556a and MJ 4559). Lycoperdon lambinonii was described by Demoulin (1972b); the author considers that the species occupies an intermediary position between L. molle and L. umbrinum; In this terminal branch the specimens Demoulin4622 and MC-Fungi05-10226 have been checked by V.D., L. lambinonii has basidiospores [B-C] and capillitium with rare pores, while L. umbrinum has basidiospores [A-B] and capillitium with abundant pores; L. turneri was a surprise here, because the morphological features described by Demoulin and Lange (1990): exoperidium ornamentation with small spines (0.2–0.3 mm length), endoperidium falling off, capillitium septate, distinguish these species; although, the basidiospores are similar (slightly to verrucose [B-C]) in both species, the number of ornamentations for a circumference of 10 µm in L. lambinonii is bigger than L. turneri, 8–11 versus 6–9 (Demoulin 1972a).

The terminal branch of Lycoperdon echinatum is well supported; morphologically this species is characterized by its exoperidium ornamentation with long and dark spines (up to 5.0 mm), falling off, leaving an areolate endoperidium surface, basidiospores verrucose [C] and capillitium with pores. Demoulin (1972a) considered that, depending on the stage of maturation, many specimens can be found with the compact subgleba and can be mistakenly identified. To Pegler et al. (1995), L. nigrescens can be confused with L. echinatum, although the characters analyzed here and in L. nigrescens (see below) are easily distinguished in both species.

The terminal branch of Lycoperdon nigrescens is well supported and close to L. utriforme and L. radicatum. Larsson and Jeppson (2008) found different results: L. utriforme and L. radicatum are sister clades in Lycoperdon subgenus Bovistella; in our analysis, with only ITS as barcode, these two species are grouped into subgenus Utraria. Probably, adding more markers, this terminal branch can be better resolved. According 123 to Pegler et al. (1995) immature specimens of L. echinatum can be mistaken for L. nigrescens; maybe this is because in young specimens the exoperidium ornamentation is not yet fallen off, and the other features, such as basidiospores and capillitium, are not completely formed; in mature specimens, Lycoperdon echinatum has verrucose basidiospores [C], in contrast to the slightly verrucose [B] in L. nigrescens.

Another terminal branch well supported is Lycoperdon pyriforme; our results corroborate the phylogenetic results found by Larsson and Jeppson (2008) and Bates et al. (2009), in which L. pyriforme belongs to Lycoperdon subg. Apioperdon. and Lycoperdon umbrinoides is a sister group of L. pyriforme; however, these species differ in the exoperidium ornamentation that shows persistent warts, basidiospores punctate [A] and sphaerocysts with irregular forms in L. pyriforme as described by (Pelger et al., 1995), and exoperidium ornamentation with deciduous spines, basidiospores verrucose [C] and sphaerocysts with regular forms (perlatum-type) likely described by Dissing and Lange, (1962).

124

5 CONCLUSION

In the present work, the use of ITS region as DNA barcode of Lycoperdon genus is promising; although, some terminal branches such as Lycoperdon altimontanum, L. excipuliforme, L. lambinonii, L. molle, L. subumbrinum and L. umbrinum need more attention and the use of other markers is necessary to obtain more resolution. In fact, other empirical results are that the integration of morphological taxonomy and molecular analysis is the best methodology in work about DNA barcoding (Barrett and Hebert, 2005; Hebert and Gregory, 2005).

The method of search by matching on UNITE website can help the researchers around the world who want to use the DNA barcode to identify species, and need a first and faster identification to delimit their samples. The use of several tools can aid in the identification of unknown sequences (Kõljalg et al., 2005). And the idea of Species Hypothesis, adopted by Kõljalg et al. (2013), is a useful concept and provided good data along with fully annotated ITS sequences, ecology, and taxonomic information. The BLASTn tool is the other technique to aid the taxonomist who needs a preliminary identification, and the resolution of the approximation of species identity is interesting and satisfactory, although, more analysis are necessary to confirm any results that you have with this technique.

The neighbor-joining tree discriminating species in barcodestudies have been conventionally used by Herbert et al. (2003); however, Meier et al. (2006) disagreed with the conclusion of Herbert and colleagues. In the present study, the neighbor-joining tree allied with morphological notes proved successful in species discrimination, although some terminal branches are unclear. We believe that adding molecular and morphological data in studies of the DNA barcodecan improve success in delimitation of species, but adding other markers will bring more understanding to the questions left by using the ITS region alone.

125

REFERENCES

ABARENKOV, K., R.H. NILSSON, K.-H. LARSSON, I.J. ALEXANDER, U. EBERHARDT, S.

ERLAND, K. H??ILAND, ET AL. 2010. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytologist 186: 281–285.

ALTSCHUL, S.F., T.L. MADDEN, A.A. SCHÄFFER, J. ZHANG, Z. ZHANG, W. MILLER, and

D.J. LIPMAN. 1997. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

ÁLVAREZ, I., and J.F. WENDEL. 2003. Ribosomal ITS sequences and plant phylogenetic inference. and Evolution 29: 417–434.

BALDWIN, B.G. 1993. Molecular phylogenetics of Calycadenia Compositae based on ITS sequences of nuclear ribosomal DNA. American Journal of Botany 80: 222– 238.

BALDWIN, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the compositae. Molecular Phylogenetics and Evolution 1: 3–16.

BARRETT, R.D.H., and P.D.N. HEBERT. 2005. Identifiying spiders through DNA barcode s. Canadian Journal of Zoology 83: 481–491.

BATES, S.T., R.W. ROBERSON, and D.E. DESJARDIN. 2009. Arizona gasteroid fungi I: Lycoperdaceae (Agaricales, Basidiomycota). Fungal Diversity 37: 153–207.

BELLEMAIN, E., T. CARLSEN, C. BROCHMANN, E. COISSAC, P. TABERLET, and H.

KAUSERUD. 2010. ITS as an environmental DNA barcodefor fungi: an in silico approach reveals potential PCR biases. BMC microbiology 10: 189.

BEN-DAVID, T., S. MELAMED, U. GERSON, and S. MORIN. 2007. ITS2 sequences as barcode s for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental and Applied Acarology 41: 169–181.

BLACKWELL, M. 2011. The fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany 98: 426–438.

BLAXTER, M., J. MANN, T. CHAPMAN, F. THOMAS, C. WHITTON, R. FLOYD, and E.

ABEBE. 2005. Defining operational taxonomic units using DNA barcodedata. 126

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 1935–1943.

BOTTOMLEY, A.M. 1948. Gasteromycetes of South Africa. Bothalia 4: 473–810.

BOWERMAN, C. 1961. Lycoperdon in Eastern Canada With Special Reference To The Ottawa District. Canadian Journal of Botanyof Botany 39: 353–383.

CALONGE, F.D. 1998. Gasteromycetes, I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica.

CALONGE, F.D., and V. DEMOULIN. 1975. Les Gastéromycètes D’Espagne. Bulletin de la Sociéé Mycologique de France 91: 247–292.

CBOL, P.W.G. 2009. A DNA barcodefor land plants. PNAS academy 106: 12794– 12797.

CHASE, M., N. SALAMIN, M.M. WILKINSON, J.J.M. DUNWELL, R.P. KESANAKURTHI, N.

HAIDAR, and V. SAVOLAINEN. 2005. Land plants and DNA barcode s: short-term and long-term goals. Philosophical Transactions of the Royal Society of London, Ser. B 360: 1889–95.

CHEN, J., Q. LI, L. KONG, and H. YU. 2011. How DNA barcode s complement taxonomy and explore species diversity: The case study of a poorly understood marine fauna. PLoS ONE 6: .

CHEN, S., H. YAO, J. HAN, C. LIU, J. SONG, L. SHI, Y. ZHU, ET AL. 2010. Validation of the ITS2 region as a novel DNA barcodefor identifying medicinal plant species. PLoS ONE 5: 1–8.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2013. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Lycoperdon and Vascellum. Mycosphere 4: 745–758.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2011. Lycoperdon ovoidisporum sp. nov. from Brazil. Sydowia 63: 1–7.

CUNNINGHAM, G.H. 1944. The Gasteromycetes of Australia and new Zealand. John McIndoe, Dunedin, N.Z.

DEMOULIN, V. 1968. Taxonomical criteria in the european Lycoperdon and the problem of L. umbrinum and related species. In Das Art und Rassenproblem bei Pilzen,

127

Internationales Symposium der Biologischen Gesellschaft in der D.D.R., 111–116.

DEMOULIN, V. 1970. La typification des Lycoperdon décrits par Persoon. Lejeunia 55: 1–20.

DEMOULIN, V. 1971. Lycoperdon norvegicum Demoulin sp. nov. A new Gasteromycete with Boreo-Continental Distribution in Europe and North America. Norw. J. Bot. 18: 161–167.

DEMOULIN, V. 1972a. Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique.

DEMOULIN, V. 1972b. Espèces nouvelles ou méconnues du genre Lycoperdon (Gastéromycètes). Lejeunia 62: 1–27.

DEMOULIN, V. 1983. Clé de Détermination des espèces du genre Lycoperdon présentes dans le Sud de l’Europe. Revista fr Biologia 12: 65–70.

DEMOULIN, V. 1976. Species od Lycoperdon with a setose exoperidium. Mycotaxon 3: 275–296.

DENTINGER, B.T.M., M.Y. DIDUKH, and J.M. MONCALVO. 2011. Comparing COI and ITS as DNA barcodemarkers for mushrooms and allies (Agaricomycotina). PLoS ONE 6: 1–8.

DISSING, H., and M. LANGE. 1962. Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’État a Bruxelles 32: 325–416.

DIXON, K.R., and G.W. SAUNDERS. 2013. DNA barcoding and phylogenetics of Ramicrusta and Incendia gen. nov., two early diverging lineages of the Peyssonneliaceae (Rhodophyta). Phycologia 52: 368–374.

DRUZHININA, I.S., A.G. KOPCHINSKIY, M. KOMON, J. BISSETT, G. SZAKACS, and C.P.

KUBICEK. 2005. An oligonucleotide barcodefor species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology 42: 813–828.

EDWARDS, D., A. HORN, D. TAYLOR, V. SAVOLAINEN, and J.A. HAWKINS. 2008. DNA barcoding of a large genus,. DNA Sequence 57: 1317–1327.

FARRIS, J.S. 1989. The Retention Index and the Rescaled Consistency Index. Cladistics 5: 417–419.

128

FELSENSTEIN, J. 1985. Use of Bootstrap in phylogenetic calculations. Evolution 39: 783–791.

FLOYD, R., E. ABEBE, A. PAPERT, and M. BLAXTER. 2002. Molecular barcode s for soil nematode identification. Molecular Ecology 11: 839–850.

FRIES, E. 1829. Systematic Mycologicum, III, sec I.

GEISER, D.M., M.D.-M. JIMÉNEZ-GASCO, S. KANG, I. MAKALOWSKA, N.

VEERARAGHAVAN, T.J. WARD, N. ZHANG, ET AL. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology 110: 473–479.

GÖKER, M., G. GARCÍA-BLÁZQUEZ, H. VOGLMAYR, M.T. TELLERÍA, and M.P. MARTÍN. 2009. Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PLoS ONE 4: 8–10.

GRASSO, V., H. SIEROTZKI, A. GARIBALDI, and U. GISI. 2006. Relatedness among agronomically important rusts based on mitochondrial cytochrome b gene and ribosomal ITS sequences. Journal of Phytopathology 154: 110–118.

HAJIBABAEI, M., M.A. SMITH, D.H. JANZEN, J.J. RODRIGUEZ, J.B. WHITFIELD, and

P.D.N. HEBERT. 2006. A minimalist barcodecan identify a specimen whose DNA is degraded. Molecular Ecology Notes 6: 959–964.

HEBERT, P.D.., and R.D.H. BARRETT. 2005. Reply to the comment by L. Prendini on “Identifying spiders through DNA barcode s.” Canadian Journal of Zoology 83: 505–506.

HEBERT, P.D.N., A. CYWINSKA, S.L. BALL, and J.R. DEWAARD. 2003. Biological identifications through DNA barcode s. Proceedings. Biological sciences / The Royal Society 270: 313–21.

HEBERT, P.D.N., and T.R. GREGORY. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54: 852–859.

HEBERT, P.D.N., M.Y. STOECKLE, T.S. ZEMLAK, and C.M. FRANCIS. 2004. Identification of birds through DNA barcode s. PLoS Biology 2: 1657–1663.

HENNINGS, V.P. 1904a. Fungi amazonici I. a. cl. Ernesto Ule collecti. Hedwigia 43:

129

154–186.

HENNINGS, V.P. 1904b. Fungi Paulenses III. a cl. Puttemans collecti. Hedwigia 43: 197– 209.

HOGG, I.D., and P.D.N. HEBERT. 2004. Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcode s. Canadian Journal of Zoology 82: 749–754.

HOMRICH, M.H., and J.E. WRIGHT. 1988. South American Gasteromycetes. II. The Genus Vascellum Šmarda. Canadian Journal of Botany 66: 1285–1307.

HUBERT, N., R. HANNER, E. HOLM, N.E. MANDRAK, E. TAYLOR, M. BURRIDGE, D.

WATKINSON, ET AL. 2008. Identifying Canadian freshwater fishes through DNA barcode s. PLoS ONE 3: .

HUELSENBECK, J.P., and F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17: 754–5.

IWEN, P.C., S.H. HINRICHS, and M.E. RUPP. 2002. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Medical mycology : official publication of the International Society for Human and Animal Mycology 40: 87–109.

JEPPSON, M., and V. DEMOULIN. 1989. Lycoperdon atropurpureum found in Sweden. Opera Botanica 100: 131–134.

JEPPSON, M., E. LARSSON, and M.P. MARTÍN. 2012. Lycoperdon rupicola and L. subumbrinum: Two new puffballs from Europe. Mycological Progress 11: 887– 897.

KELLY, L.J., P.M. HOLLINGSWORTH, B.J. COPPINS, C.J. ELLIS, P. HARROLD, J. TOSH,

and R. YAHR. 2011. DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist 191: 288–300.

KIRK, P.M., P.F. CANNON, D.W. MINTER, and J.A. STALPERS. 2008. Dictionary of The Fungi. 10th editi. P. M. Kirk, P. F. Cannon, D. W. Minter, and J. A. Stalpers [eds.],. CABI Europe, Wallingford.

KLUGE, A.G., and J.S. FARRIS. 1969. Quantitative phyletics and theevolution of anurans.

130

Systematic Zoology 18: 1–32.

KÕLJALG, U., K.H. LARSSON, K. ABARENKOV, R.N. NILSSON, I.J. ALEXANDER, U.

EBERHARDT, S. ERLAND, ET AL. 2005. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063–1068.

KÕLJALG, U., R.H. NILSSON, K. ABARENKOV, L. TEDERSOO, A.F.S. TAYLOR, and M.

BAHRAM. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22: 5271–5277.

KREISEL, H. 1976. Gasteromyzeten aus Nepal II. Feddes Repertorium 87: 83–107.

KREISEL, H. 1989. Studies in the Calvatia complex (Basidiomycetes). Nova Hedwigia 48: 281–296.

KRESS, W.. J., K.J. WURDACK, E.A. ZIMMER, L.A. WEIGT, and D.H. JANZEN. 2005. Use of DNA barcode s to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369–74.

LARGET, B., and L. SIMON. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees Markov chain Monte Carlo. Mol. Biol./ Evol. 16: 750–759.

LARSSON, E., and M. JEPPSON. 2008. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycological Research 112: 4–22.

LE GALL, L., and G.W. SAUNDERS. 2010. Dna barcoding is a powerful tool to uncover algal diversity: A case study of the phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora1. Journal of Phycology 46: 374–389.

MARTIN, M.P., and K. WINKA. 2000. Alternatice methods of extracting and amplifyngo DNA from Lichens. Lichenologist 32: 189–196.

MCDEVIT, D.C., and G.W. SAUNDERS. 2009. On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycological Research 57: 131–141.

MEIER, R., K. SHIYANG, G. VAIDYA, and P.K.L. NG. 2006. DNA Barcoding and

131

Taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Systematic Bio 55: 715–728.

MEYER, C.P., and G. PAULAY. 2005. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3: 1–10.

MILSTEIN, D., and G.W. SAUNDERS. 2012. DNA barcoding of Canadian Ahnfeltiales (Rhodophyta) reveals a new species – Ahnfeltia borealis sp. nov. Phycologia 51: 247–259.

MORA, C., D.P. TITTENSOR, S. ADL, A.G.B. SIMPSON, and B. WORM. 2011. How many species are there on earth and in the ocean? PLoS Biology 9: 1–8.

MORINIÈRE, J., L. HENDRICH, A. HAUSMANN, P. HEBERT, G. HASZPRUNAR, and A.

GRUPPE. 2014. Barcoding fauna bavarica: 78% of the neuropterida fauna barcode d! PLoS ONE 9: .

MOYERSOEN, B., and V. DEMOULIN. 1996. Les Gastéromyètes de Corse: Taxonomie, écologie, chorologie. Lejeunia 152: 1–128.

NELSON, L.A., J.F. WALLMAN, and M. DOWTON. 2007. Using COI barcode s to identify forensically and medically important blowflies. Medical and Veterinary Entomology 21: 44–52.

NGUYEN, H.D.T., and K.A. SEIFERT. 2008. Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia: Molecular Phylogeny and Evolution of Fungi 21: 57–69.

NILSSON, R.H., E. KRISTIANSSON, M. RYBERG, N. HALLENBERG, and K.H. LARSSON. 2008. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 2008: 193–201.

NILSSON, R.H., M. RYBERG, K. ABARENKOV, E. SJÖKVIST, and E. KRISTIANSSON. 2009. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters 296: 97–101.

NILSSON, R.H., M. RYBERG, E. KRISTIANSSON, K. ABARENKOV, K.H. LARSSON, and U.

KÖLJALG. 2006. Taxonomic reliability of DNA sequences in public sequences databases: A fungal perspective. PLoS ONE 1: .

132

NYLANDER, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Uppsala University.

O’BRIEN, H.E., J.L. PARRENT, J.A. JACKSON, J.-M. MONCALVO, and R. VILGALYS. 2005. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Applied and Environmental Microbiology 71: 5544–5550.

PAGE, T.J., S.C. CHOY, and J.M. HUGHES. 2005. The taxonomic feedback loop: symbiosis of morphology and molecules. Biology letters 1: 139–42.

PEGLER, D.N., T. LAESSOE, and B.M. SPOONER. 1995. British puffballs, earthstars and stinkhorns. An account of the British gasteroid fungi. 1 st. Royal Botanic Gardens, Kew.

PENNISI, E. 2007. TAXONOMY: Wanted: A Barcodefor Plants. Science 318: 190–191.

PERDECK, A.C. 1950. Revision of the Lycoperdaceae of the Netherlands. Blumae 6: 480–516.

PRENDINI, L. 2005. Comments on “Identifying spiders through DNA barcode s.” Canadian Journal of Zoology 83: 498–504.

RAMADAN, H.A.I., and N. BAESHEN. 2012. Biological identifications through DNA barcode s. In G. GA [ed.], Biodiversity Conservation and Utilization in a Diverse World, 109–128. In Tech.

RAMBAUT, A. 2002. “Se-Al v2. 0a11 Carbon.” University of Oxford.

RICK, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasilia. Iheringia, Sér. Bot. 9: 451–480.

ROBBA, L., S.J. RUSSELL, G.L. BARKER, and J. BRODIE. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of Botany 93: 1101–1108.

ROBIDEAU, G.P., A.W.A.M. DE COCK, M.D. COFFEY, H. VOGLMAYR, H. BROUWER, K.

BALA, D.W. CHITTY, ET AL. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources 11: 1002–1011.

RODRÍGUEZ, F., J.L. OLIVER, A. MARÍN, and J.R. MEDINA. 1990. The general stochastic

133

model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

RONQUIST, F., and J.P. HUELSENBECK. 2003. MRBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

ROY, S., A. TYAGI, V. SHUKLA, A. KUMAR, U.M. SINGH, L.B. CHAUDHARY, B. DATT, ET

AL. 2010. Universal plant DNA barcodeloci may not work in complex groups: A case study with Indian berberis species. PLoS ONE 5: .

RUBINOFF, D., S. CAMERON, and K. WILL. 2006. Are plant DNA barcode s a search for the Holy Grail? Trends in Ecology and Evolution 21: 1–2.

SCHEFFERS, B.R., L.N. JOPPA, S.L. PIMM, and W.F. LAURANCE. 2012. What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology and Evolution 27: 501–510.

SCHOCH, C.L., K.A. SEIFERT, S. HUHNDORF, V. ROBERT, J.L. SPOUGE, C.A. LEVESQUE,

W. CHEN, ET AL. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcodemarker for Fungi. Proceedings of the National Academy of Sciences 109: 6241–6246.

SEIFERT, K.A. 2009. Progress towards DNA barcoding of fungi. Molecular Ecology Resources 9: 83–89.

SEIFERT, K.A., R.A. SAMSON, J.R. DEWAARD, J. HOUBRAKEN, C.A. LÉVESQUE, J.-M.

MONCALVO, G. LOUIS-SEIZE, and P.D.N. HEBERT. 2007. Prospects for fungus identification using CO1 DNA barcode s, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America 104: 3901–3906.

SPEGAZZINI, C. 1898. Fungi Argentini novi v. critici. Anales Museum Nacional de Histaria Naturales de Buenos Aires 6: 81–3667.

STIELOW, J.B., C.A. LEVESQUE, K.A. SEIFERT, W. MEYER, L. IRINYI, D. SMITS, R.

RENFURM, ET AL. 2015. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcode s. Persoonia 35: 242–263.

STOECKLE, M.Y. 2003. The Bar Code of Life. BioScience 53: 796–797.

134

SUWANNASAI, N., M.P. MARTÍN, C. PHOSRI, P. SIHANONTH, A.J.S. WHALLEY, and J.L.

SPOUGE. 2013. Fungi in Thailand: A case study of the efficacy of an ITS Barcodefor Automatically Identifying Species within the Annulohypoxylon and Hypoxylon Genera. PLoS ONE 8: e54529.

SWOFFORD, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other methods). Sinauer Associates, Massachsetts.

VITTADINI, C. 1842. Monographia Lycoperdinerum. Mem. Accad. Torino 5: 145–238.

WILL, K.W., and D. RUBINOFF. 2004. Myth of the molecule: DNA barcode s for species cannot replace morphology for identification and classification. Cladistics 20: 47– 55.

WILSON, E.O. 2003. The encyclopedia of life. Trends in Ecology and Evolution 18: 77– 80.

YAO, H., J. SONG, C. LIU, K. LUO, J. HAN, Y. LI, X. PANG, ET AL. 2010. Use of ITS2 region as the universal DNA barcodefor plants and animals. PLoS ONE 5: e13102.

135

Supplementary Figure 1 Strict consensus maximum parsimony of ITS sequences of Lycoperdon species.

136

Supplementary Figure 2The 50% majority-rule consensus tree from the Bayesian phylogenetic analysis of

ITS sequences of Lycoperdon species.

137

Table 2 Sequences used in the molecular analysis. In bold new ITS sequences generated in this work

Species Country Herbarium voucher GenBank Acc. Number Lycoperdon altimontanum Nepal Dobremez – holotypus DQ112589 Lycoperdon altimontanum Norway MJ 4270 DQ122588 Lycoperdon altimontanum (as France MA-Fungi 63392 KX686860 L. molle) Lycoperdon altimontanum (as Macedonia MC-Fungi 05-787 KX686859 L. cf molle) Lycoperdon atropurpureum Sweden MJ 3269 DQ112586 Lycoperdon atropurpureum France MA-Fungi 63389 KX686841 Lycoperdon atropurpureum Spain MA-Fungi 38535 KX686842 Lycoperdon atropurpureum Macedonia MC-Fungi 08-10194 KX686834 Lycoperdon atropurpureum Macedonia MC-Fungi 08-10227 KX686838 Lycoperdon atropurpureum Macedonia MC-Fungi 08-10122 KX686840 Lycoperdon atropurpureum Macedonia MC-Fungi 05-2233 KX686843 Lycoperdon atropurpureum Macedonia MC-Fungi 99-10248 KX686835 Lycoperdon atropurpureum Macedonia MC-Fungi 06-10067 KX686837 Lycoperdon atropurpureum Macedonia MC-Fungi 89-9572 KX686836 Lycoperdon atropurpureum Macedonia MC-Fungi 87-7733 KX686839 Lycoperdon caudatum Sweden RG 920818 DQ112633 Lycoperdon cretaceum Iceland MJ 4105 DQ112597 Lycoperdon cretaceum Norway MJ 4302 DQ112598 Lycoperdon decipiens Sweden MJ 7715 DQ112583 Lycoperdon decipiens Spain MA-Fungi 27674 KX686855 Lycoperdon decipiens France MA-Fungi 63390 KX686856 Lycoperdon decipiens Spain MA-Fungi I45055 KX686857 Lycoperdon dermoxanthum Sweden MJ 4568 DQ112579 Lycoperdon echinatum Sweden MJ 6498 DQ112578 Lycoperdon echinatum Spain MA-Fungi 39586 KX686881 Lycoperdon echinatum Spain MA-Fungi 84507 KX686882 Lycoperdon echinatum Macedonia MC-Fungi 05-782 KX686875 Lycoperdon echinatum Macedonia MC-Fungi 05-5160 KX686876 Lycoperdon echinatum Macedonia MC-Fungi 06-5916 KX686879 Lycoperdon echinatum Macedonia MC-Fungi 06-9676 KX686880 Lycoperdon echinatum Macedonia MC-Fungi 05-5376 KX686877 Lycoperdon echinatum Macedonia MC-Fungi 06-5900 KX686878 Lycoperdon ericaeum Sweden MJ 4866 DQ112606 Lycoperdon ericaeum Sweden MJ 5395 DQ112605 Lycoperdon ericaeum USA MA-Fungi 63393 KX686883 Lycoperdon excipuliforme Sweden MJ 6467 DQ112590

138

Lycoperdon excipuliforme (as Macedonia MC-Fungi 98-10138 KX686861 L. altimontanum) Lycoperdon excipuliforme Macedonia MC-Fungi 08-10217 KX686862 Lycoperdon excipuliforme Macedonia MC-Fungi 06-6224 KX686863 Lycoperdon excipuliforme Macedonia MC-Fungi 03-2892 KX686864 Lycoperdon excipuliforme Macedonia MC-Fungi 06-9715 KX686865 Lycoperdon excipuliforme Macedonia MC-Fungi 08-10049 KX686866 Lycoperdon frigidum Lange 901009 DQ112563 Lycoperdon frigidum Iceland MJ 4088 DQ112564 Lycoperdon frigidum Norway MJ 4273 DQ112562 Lycoperdon frigidum Svalbard Lange 191 DQ112559 Lycoperdon frigidum Sweden MJ 7716 DQ112561 Lycoperdon lambinonii Belgium Demoulin 4622 DQ112575 Lycoperdon lambinonii Norway MJ 5245 DQ112576 Lycoperdon lambinonii (as L Sweden MJ 4556 DQ112591 umbrninum) Lycoperdon lambinonii (as L Sweden MJ 4556a DQ112593 umbrninum) Lycoperdon lambinonii (as L Sweden MJ 4559 DQ112592 umbrninum) Lycoperdon lambinonii Macedonia MC-Fungi 05-10226 KX686867 Lycoperdon lividum Nepal Dobremez 19740514 DQ112599 Lycoperdon lividum Sweden MJ 4005 DQ112600 Lycoperdon lividum Spain MA-Fungi 19219 KX686873 Lycoperdon lividum Spain MA-Fungi 68346 KX686871 Lycoperdon lividum Spain MA-Fungi 68348 KX686874 Lycoperdon lividum Macedonia MC-Fungi 05-10007 KX686872 Lycoperdon lividum Macedonia MC-Fungi 05-5323 KX686868 Lycoperdon lividum Macedonia MC-Fungi 02-3594 KX686869 Lycoperdon lividum Macedonia MC-Fungi 08-10040 KX686870 Lycoperdon mammiforme Sweden MJ 4841 DQ112567 Lycoperdon mammiforme Spain MA-Fungi 24103 KX686831 Lycoperdon mammiforme Spain MA-Fungi 31251 KX686827 Lycoperdon mammiforme Macedonia MC-Fungi 05-773 KX686833 Lycoperdon marginatum USA Anderson & Parker DQ112632 750822 Lycoperdon marginatum Spain MA-Fungi 31252 KX686827 Lycoperdon marginatum Spain MA-Fungi 34063 KX686828 Lycoperdon molle Norway MJ 4260 DQ122566 Lycoperdon molle Sweden MJ 4557 DQ112565

139

Lycoperdon molle Greece MA-Fungi 73601 KX686853 Lycoperdon molle Spain MA-Fungi 31259 KX686850 Lycoperdon molle Portugal MA-Fungi 31618 KX686851 Lycoperdon molle Spain MA-Fungi 21623 KX686852 Lycoperdon molle Spain MA-Fungi 21737 KX686854 Lycoperdon molle Macedonia MC-Fungi 06-5918 KX686844 Lycoperdon molle Macedonia MC-Fungi 05-5380 KX686845 Lycoperdon muscorum Sweden MJ 7717 DQ112604 Lycoperdon nigrescens Sweden MJ 5376 DQ122577 Lycoperdon nigrescens Spain MA-Fungi 22012 KX686889 Lycoperdon nigrescens (as L. Spain MA-Fungi 31296 KX686891 pyriforme) Lycoperdon nigrescens Spain MA-Fungi 39587 KX686890 Lycoperdon niveum Iceland MJ 4109 DQ112570 Lycoperdon niveum Iceland MJ 4068 DQ112571 Lycoperdon niveum Iceland MJ 484 DQ112568 Lycoperdon cf niveum Sweden MJ 5594 DQ112572 Lycoperdon niveum Norway MJ 5267 DQ112569 Lycoperdon niveum Spain MA-Fungi 21618 KX686848 Lycoperdon niveum Norway MA-Fungi 63397 KX686847 Lycoperdon niveum Macedonia MC-Fungi 06-5915 KX686849 Lycoperdon niveum Macedonia MC-Fungi 02-10008 KX686846 Lycoperdon norvegicum Sweden MJ 5453 DQ112631 Lycoperdon perlatum Sweden MJ 4684 DQ112630 Lycoperdon perlatum Spain MA-Fungi 29732 KX686826 Lycoperdon perlatum Spain MA-Fungi 31233 KX686825 Lycoperdon perlatum Spain MA-Fungi 31253 KX686824 Lycoperdon perlatum Spain MA-Fungi 64953 KX686808 Lycoperdon perlatum Macedonia MC-Fungi 03-10225 KX686814 Lycoperdon perlatum Macedonia MC-Fungi 06-5917 KX686816 Lycoperdon perlatum Macedonia MC-Fungi 07-6663 KX686822 Lycoperdon perlatum Macedonia MC-Fungi 87-7735 KX686812 Lycoperdon perlatum Macedonia MC-Fungi 02-2389 KX686811 Lycoperdon perlatum Macedonia MC-Fungi 90-10234 KX686813 Lycoperdon perlatum Macedonia MC-Fungi 02-2995 KX686815 Lycoperdon perlatum Macedonia MC-Fungi 08-10055 KX686817 Lycoperdon perlatum Macedonia MC-Fungi 08-10119 KX686820 Lycoperdon perlatum Macedonia MC-Fungi 08-10035 KX686821 Lycoperdon perlatum Macedonia MC-Fungi 07-10144 KX686823 Lycoperdon perlatum Macedonia MC-Fungi 05-5316 KX686809

140

Lycoperdon perlatum Macedonia MC-Fungi 08-10209 KX686810 Lycoperdon perlatum Macedonia MC-Fungi 07-7207 KX686818 Lycoperdon perlatum Macedonia MC-Fungi 05-9247 KX686819 Lycoperdon pratense Czechia MJ 5880 DQ112556 Lycoperdon pratense Sweden MJ 4864 DQ112554 Lycoperdon pratense Russia SAHanson 20000915 DQ112555 Lycoperdon pratense Macedonia MC-Fungi 08-10114 KX686830 Lycoperdon pratense Macedonia MC-Fungi 03-3040 KX686829 Lycoperdon pyriforme Sweden MJ 4849 DQ112558 Lycoperdon pyriforme Spain MA-Fungi 16908 KX686895 Lycoperdon pyriforme Macedonia MC-Fungi 01-745 KX686892 Lycoperdon pyriforme Australia MC-Fungi 08-10196 KX686897 Lycoperdon pyriforme Macedonia MC-Fungi 05-5074 KX686893 Lycoperdon pyriforme Macedonia MC-Fungi 08-10128 KX686894 Lycoperdon pyriforme Macedonia MC-Fungi 98-3045 KX686896 Lycoperdon radicatum USA Parker 970911 DQ112608 Lycoperdon rupicola Norway MJ 4304 DQ112580 Lycoperdon rupicola Sweden Vetter 407 DQ112581 Lycoperdon sp. 1 Brazil ICN 154484 KX686807 Lycoperdon sp. 2 India MA-Fungi 73250 KX686858 Lycoperdon sp. 3 (as L. Norway MJ 4285 DQ112573 ericaeum) Lycoperdon sp. 3 (as L. Norway MJ 4277 DQ112574 ericaeum) Lycoperdon subumbrinum Sweden MJ 6377 DQ112602 Lycoperdon subumbrinum Sweden MJ 6394 DQ112601 Lycoperdon subumbrinum Sweden LO 148-03 DQ112603 Lycoperdon subumbrinum United Kingdom MA-Fungi 28449 KX686884 Lycoperdon subumbrinum Spain MA-Fungi 30564 KX686888 Lycoperdon subumbrinum France MA-Fungi 63391 KX686885 Lycoperdon subumbrinum Spain MA-Fungi 31234 KX686887 Lycoperdon subumbrinum Macedonia MC-Fungi 87-10137 KX686886 Lycoperdon tuneri Greenland Lange 08-95 DQ11259 Lycoperdon tuneri Norway MJ 5251 DQ112594 Lycoperdon tuneri Norway MJ 4265 DQ112595 Lycoperdon umbrinum Macedonia MC-Fungi 06-5918 KX686844 Lycoperdon umbrinum Macedonia MC-Fungi 05-5380 KX686845 Lycoperdon umbrinoides Spain MA-Fungi 35530 KX686898 Lycoperdon utriforme Sweden MJ 5388 DQ112607 Morganella fuliginea Paraguay TENN59070 AF485065

141

Morganella subincarnata Germany REG106/81 AJ237626 Outgroup Bovista furfuracea Sweden MJ 5435 DQ112622 Sweden MJ 7719 DQ112612 Sweden MJ 4856 DQ112613

142

Table 3 Identifications success based on ¨Best Match¨ and ¨Best Close Match¨.

Best match Best close match

Number Success Ambiguous Incorrect Success Ambiguous Incorrect of identification identification sequences

145 127 2 (1.37%) 16 (11.03%) 127 2 (1.37%) 14 (9.65%) (87.58%) (87.58%)

Table 4 Sequence names with incorrect identification based on "Best Match/Best Close Match" within threshold. In bold the values that repeat in the “Best Close Match”.

Sequence names Incorrect match Lycoperdon frigidum MAF63397 0.00% Lycoperdon molle DQ122566 0.00% Lycoperdon niveum MAF21618 0.00% Lycoperdon umbrinum 05MCF5380Lu 0.00% Lycoperdon umbrinum DQ112591 0.42% Lycoperdon excipuliforme 08MCF10049Lmol 0.43% Lycoperdon radicatum DQ112608 0.71% Lycoperdon utriforme DQ112607 0.71% Lycoperdon ericaeum DQ112605 1.17% Lycoperdon niveum DQ112569 1.19% Lycoperdon atropurpureum 06MCF10067La 1.28% Lycoperdon perlatum DQ112630 1.62% Lycoperdon rupicola DQ112581 1.73% Lycoperdon lividum DQ112600 2.55% Lycoperdon norvegicum DQ112631 3.36% Lycoperdon atropurpureum 87MCF7733La 3.55%

143

CAPÍTULO 2 / CHAPTER 2

Integrative taxonomy for the identification of species of Lycoperdon (Basidiomycota) from Central and South America

144

Abstract

The species of the genus Lycoperdon (puff ball fungi) are recognized by their basidioma with a cellular subgleba and dehiscence by an apical pore. The genus has a large distribution in North America and Europe, and many works also report Lycoperdon species from New Zealand, Australia, Japan, Mexico and Africa. In Central and South America, 30 species are reported, similar to the number reported from North America and Europe. Traditionally, the taxonomy of Lycoperdon has been based only on morphological characters, and individual taxonomists have adopted their own distinct concepts to separate the species. Recently, based on ITS-LSU sequences, the genus Morganella and Vascellum were included in Lycoperdon as two distinct subgenera. In a previous study (Chapter 1), the ITS barcoderegion was evaluated to be used in the discrimination and identification of Lycoperdon species from the Northern Hemisphere; the identification power was around 80%. The main aim of the present work, that combines morphological taxonomic methods with sequence analyses and statistics to identify species, is to confirm whether or not the Lycoperdon species from Central and South America are the same as those described mainly from the Northern Hemisphere. We have obtained the ITS barcodefrom Lycoperdon specimens previously identified by morphological data; some from types or from specimens from type localities. After the analyses, excluding specimens previously identified as Morganella, nineteen Lycoperdon species were delimitated to Central and South America; from some of the specimens no ITS sequences were obtained (e.g. L. calvescens, L. endotephrum, L. eximium or L. utriforme). More samples are needed before describing three possible new species (Lycoperdon sp. 1, Lycoperdon sp. 4 and Lycoperdon sp. 5). In conclusion, four of the species are first records to Central and South and American. According our dataset, and literature available, only six species are confirmed to be present in countries of the two Hemispheres (L. lividum, L. marginatum, L. nigrescens, L. perlatum, L. pyriforme and L. umbrinum). DNA barcoding is an exciting tool for taxonomic research, but the effectiveness of this approach clearly depends on the availability of an extensive database of barcodesequence standards from specimens previously identified by taxonomists.

Key-words: DNA barcoding, Lycoperdaceae, morphological review, Neotropics.

145

1 INTRODUCTION

The genus Lycoperdon Pers. is recognized by its basidiomata subglobose, pyriform to turbinate, with a cellular subgleba and dehiscence by an apical pore (Demoulin, 1970; Calonge, 1998); and it is well distributed around the world (Demoulin, 1973a).

Lycoperdon has a large distribution in North America and Europe; reported by many taxonomists since the 19th century (Bonorden, 1857; Berkeley, 1873; Massee, 1887; Saccardo, 1888; Morgan, 1891). Afterward, Lloyd (1905a) and Coker and Couch (1928) described in detail 25 and 35 species respectively, increasing the knowledge about the Lycoperdon species from United States. In Canada, Bowerman (1961) reported 18 Lycoperdon species, giving new combinations (L. ericaetorum Pers. var. cepiforme (Massee) Bowerman and L. perlatum Pers. var. excoriatum (Lloyd) F. Smarda and a new species (L. flavotinctum Bowerman).

From Europe, diverse works have contributed to the understanding of the Lycoperdon species, here some of them are mentioned. Lloyd (1905b), in his review of the European herbaria began to report taxonomic problems with Bonorden’s descriptions of the species. Lloyd says “…he [Bonorden] observed and recorded many unimportant details such as the color of the plant at different stages of its growth…”. Perdeck (1950) reviewed the Persoon specimens to describe the Lycoperdon species from Netherlands; this is an important work, since the concepts adopted by him help to identify the species of Lycoperdon excipuliforme Pers. (= Calvatia excipuliformis (Pers.) Perdeck), L. Pers. and L. umbrinum Pers. Demoulin (1968a), reported 10 species from Belgium giving detailed description of the macro- and micromorphological features. From Germany, Kreisel (1973), in the reedited work of 1962, contributed to the knowledge of the genus establishing the different kinds of peridium, and the localities of the type species. Pegler et al. (1995), in their work about the British gasteroid fungi, studied 30 Lycoperdon species. From the Iberian Peninsula, Calonge and Demoulin (1975) and Calonge (1998) studied many species of gasteroid fungi including 12 Lycoperdon species. After that Calonge et al. (2006) made an extensive list of gasteroid fungi from Castilla-La Mancha in Spain, with ten Lycoperdon species. From Italy, Sarasini (2005) conducted extensive work about the gasteroid fungi including Lycoperdon species.

146

Demoulin (1970) studied deeply the concept of species in Lycoperdon, making the typification of species described by Persoon, and reporting new species (Demoulin, 1971, 1972a). Moreover, in his thesis work (Demoulin, 1972b) updated the definition of the genus, made distribution maps for Europe and North America, and an artificial phylogenetic relationship based on morphological characters. Demoulin (1972b) recognized 30 Lycoperdon species in Europe and North America; whereas Larsson and Jeppson (2008), based on ITS-LSU nrDNA and morphological data, considered that in Europe the genus comprises about 31 species, including some species that were under other genera (e.g. Calvatia excipuliformis (Scop.) Perdeck, Morganella subincarnata (Peck) Kreisel & Dring. and Vascellum pratense (Pers.) Kreisel).

Cunningham (1926, 1944) reported 14 species of Lycoperdon from New Zealand and Australia; however, some species included in their studies are currently considered synonymous, e.g. L. spadiceum Pers. (= L. lividum Pers.) or L. polymorphum Vittad. (= Bovista polymorpha Kreisel).

In South Africa, Bottomley (1948) considered the occurrence of 15 species with two South African species: L. duhiei Bottomley and L. qudenii Bottomley. Afterward, Dissing and Lange (1962) and Dring (1964) reported a total of 15 species from Congo and West of Africa, including three new species: L. angulatum Dissing & Lange, L. umbrinoides Dissing & Lange, and L. ashantiense D.M. Dring.

In the Asian continent, the mycologists Kobayasi (1937), Dennis (1953) and Sharma (1991) worked in Japan and India. Dennis (1953) conducted extensive work in India about the gasteroid fungi describing nine species and indicating the localities of the types. Bisht et al. (2006) described a peculiar new species with basidiospores having a pedicel 22 µm long.

147

The Lycoperdon species from Central and South America — Fries (1829) reported Lycoperdon brasiliense Fr. and eight additional species from South America, with deep description and discussion. Massee (1887), Saccardo (1888) and Spegazzini (1898) contributed to the knowledge of Lycoperdon species from Argentina, Brazil, Peru and Venezuela (Saccardo, 1888). In the 20th century taxonomists contributed to the knowledge of Lycoperdon genus in the continent (Hennings, 1904a; b; Sydow and Sydow, 1907). Rick (1930, 1961), Bononi et al. (1981, 1984) and Domínguez de Toledo (1989, 1993) made a great contribution to the study of Lycoperdon from Brazil and Argentina. Dios et al. (2011) added one species from Argentina: Lycoperdon furfuraceous.

In the 1990s there was a gap without publications about Lycoperdon from South America. In the 21th, Baseia (2005), Cortez et al. (2008, 2011, 2013) gave new reports and new species of Lycoperdon from Brazil: L. atrum, L. lividum, L. marginatum, L. nigrescens, L. perlatum, L. pyriforme and L. ovoidisporum. Also, from South America, Siabatto (2005), in a preliminary record of basidiomycetes from Colombia, cited Lycoperdon sp.; and Rocabado et al. (2007) gave two records of Lycoperdon species: L. perlatum and L. wrightii (= L. curtisii). According to the literature, around 42 species of Lycoperdon have been recorded in South America, a similar number to that in Nort America and Europe.

Garner (1956), Herrera (1964) and Rodríguez and Herrera (1970) contributed to the knowledge of the genus from Costa Rica, Panamá and Mexico. Demoulin (1972a), described L. mauryanum from Guatemala and Mexico. Calonge et al. (2005), reported nine species from Guatemala; Moreno et al., (2010) reported six species from Mexico.

1.1 Problems with the species concept and names in Lycoperdon

Many experts in gasteroid fungi (Massee, 1887; Cunningham, 1926; Coker and Couch, 1928; Perdeck, 1950; Demoulin, 1968a; Kreisel, 1973; Pegler et al., 1995; Calonge, 1998) have studied the genus Lycoperdon; however, the current and modern concepts about the delimitation of Lycoperdon species were established by Dr. Vincent Demoulin in his thesis work (Demoulin, 1972b).

A divergence of opinion about the concept and naming of the species has been on- going among various expert taxonomists. For example, Cunningham (1926) and Coker and Couch (1928) considered Lycoperdon excipuliforme Scop. synonymous with L.

148

perlatum Pers.; however, Perdeck (1950), in the revision of the species studied by Persoon, treated L. excipuliforme and L. perlatum as distinct species, and, even more, he proposed the new combination, Calvatia excipuliformis (Pers.) Perdeck. Also, Perdeck (1950) expanded the concept of L. molle Pers. and included it as synonymous with L. atropurpureum Vittad. However, Calonge and Demoulin (1975) and Jeppson and Demoulin (1989) disagreed with Perdeck and considered these taxa as two separate species. In more recent work, Calonge (1998) synonymized L. decipiens Durieu & Mont. to L. atropurpureum, disregarding the work of Demoulin (1968a) and Calonge and Demoulin (1975).

1.2 Current taxonomy of Lycoperdon

With the advances of the molecular analyzes based on sequences of nrDNA, specialists also wanted to understand the relationships among the fungi (Bruns et al., 1989; Baldwin, 1992; Gardes and Bruns, 1993). Related to basidiomycete gasteroid fungi, the paper of Hibbett et al. (1997) confirmed that these fungi do not form a monophyletic group: the gasteroid habit has arisen many times, for example from agaricoid or boletoid morphotypes.

Krüger et al. (2001) based on ITS and SSU rDNA regions demonstrated that Lycoperdon was polyphyletic; and L. pyriforme was segregated from the Lycoperdon genus. The positions of genera Bovistella Morgan, Morganella Zeller and Vascellum Smarda in relation to Lycoperdon remained uncertain. Afterward, based on the ITS region, Kruger and Kreisel (2003), following Krüger et al. (2001), transferred L. pyriforme to Morganella, and a new subgenus Apioperdon emerged. In addition, Larsson and Jeppson (2008), based on the ITS and LSU regions, proposed a world taxonomy for Lycoperdon, where species and specimens from the Southern Hemisphere were infrarepresented; they proposed two new subgnera: Lycoperdon subgenus Morganella and Lycoperdon subgenus Vascellum.

The genus Morganella emerged in Zeller (1948), and Kreisel and Dring (1967) ammended the genus to accommodate the species of Lycoperdon with no capillitium in the mature gleba, but abundant paracapillitium encrusted with remains of glebal membrane. Also, they proposed six new combinations and one new species: Morganella fuliginea (Berk. & M.A. Curt.) Kreisel & Dring (≡ L. fuligineum), M. velutina Berk. & M.A. Curti) Kreisel & Dring (≡ L. velutinum), M. purpurascens (Berk. & M.A. Curti)

149

Kreisel & Dring (≡ L. purpurascens), M. puiggarii (Speg.) Kreisel & Dring (≡ Bovista puiggarii), M. compacta (G.H. Cunn.) Kreisel & Dring (≡ L. compactum), M. subincarnata (Peck) Kreisel & Dring (≡ L. subincarnatum) and M. afra. Afterward, Ponce de León (1971) added two more species: M. samoensis (Bres. & Pat.) Ponce de León (Globaria samoensis), and M. stercoraria Ponce de León. Suárez and Wright (1996) reviewed the genus from South America and added the first record of M. costaricensis Morales to the continent. In Larsson & Jeppson (2008) only two samples from Morganella were included; in our opinion, more species and specimens need to be studied, using ITS and LSU sequences, to clarify the status of Morganella as a subgenus of Lycoperdon. In this study, some ITS sequences of Morganella species are included, and the taxonomic revision of the samples is done in Chapter 3.

The genus Vascellum emerged in F. Smarda (in Pilát,1958), to include Lycoperdon species that had a diaphragm to separate the gleba from subgleba; Vascellum pratense was erected as the type species of the genus. Later, Ponce de León (1970) added eight more species: V. subpratense (Lloyd) Ponce de León (≡ L. subpratense), V. curtisii (Berk.) Kreisel, V. cruciatum (Rostk.) Ponce de León (≡ L. cruciatum), V. djurense (P. Henn.) Ponce de León (≡ L. djurensis), V. abscissum (Fr.) Kreisel (≡ L. abcissum), V. qudenii (Bottom) Ponce de León (≡ L. qudenii), V. angulatum (Dissing & Lange) Ponce de León (≡ L. angulatum) and V. rhodesianum (Verwoerd) Ponce de León (≡ L. rhodesianum). Next, Homrich (1975) and Homrich and Wright (1988) studied the genus from South America, giving descriptions and distributions of new species. In this present work we follow the taxonomy proposed by Larsson and Jeppson (2008) and consider Vascellum as a subgenus of Lycoperdon.

1.3 DNA Barcode to identify fungi

The DNA barcodeis a fast and practical tool to identify species based on short sequences, around 700 bp long (Hebert et al., 2003, 2004; Kress et al., 2005). This approach, as described in the web site of Barcodeof Life (www.barcoding.si.edu), arose to help taxonomists identify and describe biodiversity; clarify limits between species, and to detect cryptic species (DeSalle et al., 2005; Janzen et al., 2005; Hubert et al., 2008).

For the Basidiomycota, the ITS have been used with success to delimit species from ecological samples such as soil and plant debris, in the absence of fruitbodies (Nilsson et al., 2008, 2009). Although the ITS region is not very successful to discriminate

150

species in all groups of fungi (Dentinger et al., 2011), Schoch et al. (2012) proposed ITS region as the first barcodeof fungi, due to mainly the high success of PCR amplifications (90%), and the most resolving power of species discrimination (e.g. Basidiomycota 77% resolution).

Although the genus Lycoperdon has been studied in the Northern Hemisphere by a great number of authors; they do not always agree on the limits among species. This fact leads us to consider the following question: Are the Lycoperdon species from Central and South America correctly identified since they are compared with Northern Hemisphere species? Following the research conducted in Chapter 1, where the ITS DNA barcodeallowed delimiting and identifing 80% of the Lycoperdon species from the Northern Hemisphere, in this study we used the ITS barcode from Lycoperdon specimens from Central and South America (including some types, and specimens from type localities from other parts of the world), to check whether the species reported from Central and South America correspond to Northern Hemisphere species. As mentioned above, ITS barcode sequences were obtained from Morganella and included in the ITS database in this study; however, as other markers are required to clearly state the phylogenetic position of Morganella species, in this chapter these species are not discussed (see Chapter 3).

151

2 MATERIAL AND METHODS

2.1 Collections studied

Specimens were obtained from Herbarium Harvard University (FH), personal herbaria Dr. Vincent Demoulin (VDEMOULIN), Université de Liège (LG). Brazilian collections Universidade Federal do Rio Grande do Sul (ICN), Instituto Anchietano de Pesquisas/UNISINOS (PACA), Universidade Federal do Rio Grande do Norte (UFRN- Fungos) were analyzed; as well as from the New York Botanical Garden (NY), Royal Botanical Gardens (K), Universidad de Buenos Aires (BAFC), IMBIV-Museo Botánico (CORDC). Collection data are included in Table 1. Unfortunately, the herbaria of U.S. National Fungus Collection (BPI), Universidade Federal de Pernambuco (URM) and Instituto de Botânica (SP) did not send the specimens to analyze in our studies. The Harvard University herbarium did not permit the use of the specimens for molecular analyses.

2.2 Morphological analyses

2.2.1 Analyses of macrostructures

Macrostructure analyses were done following Silva et al. (2014). The size of basidioma was measured (length × width), with naked eyes or with aid of stereomicroscopy; the exoperidium ornamentation and endoperidium surface, as well as the texture of the gleba and subgleba were observed. According to the traditional works about Lycoperdon (Massee, 1887; Cunningham, 1944; Bottomley, 1948; Perdeck, 1950; Bowerman, 1961), the authors have considered that when the subgleba occupied one- third to one-half of the basidioma then it was well-developed, and when it occupied less than one-third or one-fifth of the basidiome it was considered reduced. Here, the basidioma length was divided by three: if the result is greater than or equal to ⅓ of the basidioma, the subgleba is considered well-developed; and if the result is less than to ⅓ of basidioma, it is reduced. The color of macrostructures such as exoperidium ornamentation, endoperidium surface, gleba and subgleba were coded accordance Küppers (2002).

152

2.2.2 Analyses of microstructures

The microstructures were mounted on slides and immersed in lactophenol cotton blue, Melzer´s reagent and/or 5% KOH following (Cunningham, 1944; Bottomley, 1948). In accordance with Cunningham, we warmed the slides containing portion of the gleba and peridium plus solution of lactophenol cotton blue or Melzer´s reagent until bubbles begin to appear. The heating of the solution helps the microstructures return to the normal size. The peridium was cut in cross section to visualize how the layers of endoperidium and exoperidium are organized. After a first visualization, the slides are splashed to measure the hyphae from endoperidium, sphaerocysts, mycosclerids and hyphae with inflated termination (these hyphae can be found in the apical portion of the basidioma). To check if there are differences in the kind of peridium from the apical and the basal part of the basidiome, observations were done to the apical portion (from half basidioma towards the apical portion), and to the basal portion (from half basidioma towards the basal portion).

Ten basidiospores were measured per specimen; the degree of ornamentation was annotated following Demoulin (1972a,b) and Moyersoen and Demoulin (1996). In the description of the species, the size of the spores includes the ornamentation, and when necessary the size of diameter without ornamentation is discussed. The basidiospores were classified as: [A] to smooth to punctate ornamentation; [B] slightly verrucose; [C] verrucose and [D] strongly verrucose. The mounted basidiospores were observed first at 40 , to check the ornamentation: [A] smooth to punctate, when no ornamentation is observed; [D] strongly verrucose, when the ornamentation is easily visualized. These kinds of ornamentations are easy to observe and to discriminate at 40 ; however, to see [B] slightly verrucose, and [C] verrucose, the observation has to be done at 100 . If the observer cannot easily count the ornamentation, the spores are [B] slightly verrucose, and if the ornamentation can be counted, the spores are [C] verrucose. The density of ornamentation was calculated as: number of ornamentations divided by the diameter of the spore multiplied by 3.14, to give a number of warts by a reduced area of 10 µm; spore ornamentation was also analyzed using scanning electron microscopy (SEM); the preparation and mounting of samples was as described by Cortez et al. (2008) and Silva et al. (2011).

153

The descriptive terminology of the basidiome shapes, sphaerocysts and basidiospores follows those adopted by (Stearn, 2010).

2.3 Molecular Analyses

2.3.1 DNA isolation, amplification and sequecing

Total genomic DNA was extracted using DNeasy Plant Kit (Qiagen 69106) following the instructions of the manufacturer; lysis buffer incubation was done overnight at 55º C. The PCR was done in a 25 μl reaction mix using illustraTM PureTaqTM Ready- To-Go-TM PCR Beads (GE Healthcare, Buckinghamishire, UK) as described in Martín and Winka (2000). The thermal cycling conditions to amplify internal transcribed spacer of ribosomal nrDNA (ITS) were used as indicated in Martín and Winla (2000) with the primer ITS5/ITS4, or ITS1F/ITS2 and ITS3/ITS4b (White et al., 1990; Gardes and Bruns, 1993). Negative controls lacking fungal DNA were run for each experiment to check for contamination. Also, to check the quality of extracted DNA from each sample, an electrophoresis in agarose gel (1.5%) was made. Five µl of DNA from each sample was mixed with 2 µl of run buffer plus 1 µl of GelRed buffer to visualize the PCR products.

The PCR products were subsequently purified using the QIAquick Gel PCR Purification (Qiagen) according to the manufacturer's instructions or with 8 μl of 1:10 ExoSAP-IT® (USB Corporation, OH, USA). The purified PCR products were sequenced using the same amplification primers in Macrogen Inc. (Amsterdam, Netherlands). Sequencer 4.1.1 (Gene Codes Corporation, Ann Arbor, Michigan, USA) was used to edit the resulting electropherograms and to assemble contiguous sequences. To test if the sequences belong to the genus Lycoperdon and not to contaminations with other fungi, BLAST searches with the megablast option were used to compare the sequences obtained against the sequence in the National Center of Biotechnology Information (NCBI) nucleotide databases (Altschul et al., 1997).

2.3.2 The molecular identification of Lycoperdon species

The ITS nrDNA sequences obtained (Table 5) were aligned using Seaview version 4.6 (Galtier et al., 1996; Gouy et al., 2010) for multiple sequences; these sequences were compared with homologous sequences from GenBank mainly published in Larsson and Jeppson (2008), Jeppson et al., (2012), Kumla et al. (2013) and Kim et al. (2016) (Table

154

5); as well as sequences obtained in Chapter 1 (Table 2). Three sequences of Bovista Pers. were included as outgroup. Where ambiguities in the alignment occurred, the alignment generating the fewest potentially informative characters was chosen. Alignment gaps were marked “–“, unresolved nucleotides and unknown sequences were indicated with “N“.

First, a maximum parsimony analysis (MP) was carried out; minimum length Fitch trees were constructed using heuristic searches with tree-bisection-reconnection (TBR) branch swapping, collapsing branches if maximum length was zero and with the MulTrees option on in the PAUP*4.0b10 (Swofford, 2002); and a default setting to stop the analysis when reaching 100 trees. Gaps were treated as missing data. Nonparametric bootstrap support (bs) (Felsenstein, 1985), for each clade, based on 10,000 replicates using the fast-step option, was tested. The consistency index CI (Kluge and Farris, 1969), retention index RI, and rescaled consistency RC (Farris, 1989) were obtained.

A second analysis was done by Bayesian approach (Larget and Simon, 1999; Huelsenbeck and Ronquist, 2001), using MrBayes 3.1 (Ronquist and Huelsenbeck, 2003). The analysis was performed assuming the general time reversible model (Rodríguez et al., 1990), including estimation of invariant sites and assuming a discrete gamma distribution with six categories (GTR+I+G) as selected by MrModelTest v.2.3 (Nylander, 2004). Two independent and simultaneous analyses starting from different random trees were run for 10,000,000 generations with four parallel chains and tree and model scores saved every 100th generation. The default priors in MrBayes were used in the analysis. Every 1,000th generation tree from the two runs was sampled to measure the similarities between them and to determine the level of convergence of the two runs. The potential scale reduction factor (PSRF) was used as a convergence diagnostic and the first 25% of the trees were discarded as burn-in before stationary was reached. Both the 50% majority- rule consensus tree and the posterior probability (pp) of the nodes were calculated from the remaining trees with MrBayes. The dendogram tree was viewed with FigTree v1.42 (http://tree.bio.ed.ac.uk/ sofware/figtree/) and edited with free software InkScape Wink, version 0.92.0 r15299 (http://wiki.inkscape.org/wiki/index.php?title=Release_notes/0.91&oldid=98966).

To check if a barcode gap exists, pairwise K2P distances were used to characterize the intraspecific and interspecific variation (Meyer and Paulay, 2005; Chen et al., 2010; Ramadan and Baeshen, 2012). Moreover, the probability of correct identification (PCI) 155 based on distance (CBOL, 2009; Suwannasai et al., 2013), was calculated using the Taxon/DNA in accordance with (Meier et al., 2006). The probability of correct identification is given for at least two samples from any species showing the barcode gap. If the maximum intraspecific sequence distance is less than its minimum interspecific sequence distance, this is considered “correct identification”. With the K2P distances, a tree was generated using neighbor-joining (NJ) to visualize the specimens under each species.

Trees were viewed with Figtree v. 1.3.1 (http:// tree.bio.ed.ac.uk/sofware/figtree/) and edited with adobe Illustrator CS3 v.11.0.2 (adobe Systems).

156

3 RESULTS

3.1 Molecular analysis

3.1.1 DNA, amplification, and sequencing

DNA was isolated from two hundred and thirty-nine samples (Table 5-6) obtaining successful amplification in forty-five samples representing 19%, and seventy- four samples (31%) were not unsuccessfully amplified. From thirty-three samples (13%) no permission from the herbarium was obtained for the molecular analysis. Seventy-one sequences were obtained. After blast search, twenty-six (11%) of them belong to Cryptococcus albidus, Schizophillum commune, and Phoma spp. All new sequences were deposited at the EMBL/GenBank/DDBJ databases.

3.2 Molecular identification of Lycoperdon species

The new ITS sequences were aligned with 73 sequences downloaded from GenBank under Bovista Pers., Morganella Zeller and Lycoperdon Pers., and ninety-one sequences generated in Chapter 1 (Table 2), to produce a matrix with two hundred thirty- eight sequences and 777 unambiguously aligned nucleotide positions (characters). No nucleotide positions were excluded from the analyses. All characters are of type 'unord' and have equal weight, 79 characters are parsimony-uninformative, 240 parsimony- informative. The 100 most parsimonious trees gave a length of 900 steps, CI = 0.518, HI = 0.482 and RI = 0.896. The trees obtained from the MP (strict consensus tree) (Suplement 1, Fig. 1), the Bayesian analyses (Suplement 1, Fig. 2), and the Neighbor- Joining K2P (NJ) (Fig. 20), except in a few branches, showed similar topologies. Here, the clades and single branches from Fig. 20 are described, and the bootstrap (bs) and posterior probabilities (pp) indicated to show the support of each clade.

Twenty-five Lycoperdon terminal branches are formed by sequences retrieved from GenBank or obtained by us from Europe (Chapter 1); these branches correspond to the following morphological taxa: Lycoperdon albiperidium, L. altimontanum, L. atropurpureum, L. caudatum, L. cretaceum, L. decipiens, L. dermoxanthum, L. echinatum, L. ericaeum, L excipuliforme, L. frigidum, L. lambinonii, L. lividum, L. mammiforme, L. molle, L. niveum, L. norvegicum, L. radicatum, L. rupicola, L.

157 subumbrinum, L. turneri, L. umbrinum and L. utriforme; also two unnamed taxa Lycoperdon sp. 2 and Lycoperdon sp. 3.

The Lycoperdon specimens from Central and South America are distributed in 10 terminal clades, mainly related to known morphological species: L. atrum, L. endotephrum, L. marginatum, L. nigrescens, L. ovoidisporum, L. perlatum, L. pratense and L. pyriforme. Based on morphological analyses, some specimens were not possible to identify to the species level, they appear in the tree in single branches (e.g. Lycoperdon sp.5) or forming clades exclusively with Southern Hemisphere specimens, such as Lycoperdon sp. 1, Lycoperdon sp. 4.

From up to down in Fig. 20, the specimens are distributed in the following species: - Lycoperdon sp. 4 terminal branch is well supported (bs = 100%, pp = 1), and includes samples from Brazil (UFRN-Fungos 164 and UFRN-Fungos 485), and Hungary (MA-Fungi 14141). Previously these samples were identified under Lycoperdon pratense (=Vascellum pratense); however, the morphological review showed distinct features.

- Lycoperdon perlatum terminal branch (bs = 77%, pp = 1) includes 35 samples, from GenBank (3), MA-Fungi (6), MC-Fungi (15), UFRN-Fungos (6) and LG (4) and KW (1) herbaria. The samples were collected in Asia (China and South Korea), Europe (Macedonia, Spain and Sweden) and South America (Argentina and Brazil). These sequences were distributed in two subgroups; one formed by specimens only from Europe (ESP, MKD and SWE), and the second with samples from Asia (KOR), Europe (ESP and MKD), South America (ARG and BRA) and Central America (MEX). Some samples from Brazil (DeMeijer 206, UFRN-Fungos 811, UFRN-Fungos TSC70, KW200236 and exU87) identified as L. perlatum did not group here; they are distributed in different branches.

- Lycoperdon marginatum terminal branch is well supported (bs = 97%, pp = 0.99); and the seven specimens are distributed in two subgroups: one composed of North American and European samples, while the second is formed by only South American samples. The Argentinean samples were identified previously under the name Vascellum pampeanum (CORD 72) and V. texense (CORD 573); however, the morphological review showed typical features of L. marginatum. - Lycoperdon sp. 1 terminal branch is well supported (bs = 100%, pp = 1) and includes samples from Argentina and Brazil. The sample ICN154484, in Chapter 1, was

158

under L. pratense, and the sample CORD 167 under L. lambinonii. These two samples share the same morphological features, and molecular analysis confirmed that they belong to the same species.

- Lycoperdon sp. 5 terminal branch has two sequences, both from Brazil, are arranged unexpectedly in the different analyses. In the NJ tree, one sample (UFRN- Fungos 152) grouped among some Morganella specimens, whereas the other sample (UFRN-Fungos 300) is basal to the specimens of the subgenus Vascellum (L. endotephrum and L. pratense). However, both in MP and Bayesian analyses, these two samples grouped with L. curtissi, L. endotephrum and L. hyalinum.

- Lycoperdon endotephrum terminal branch is weakly supported in bootstrap (bs = <50%) and highly supported in Bayesian (pp = 1). The group includes Brazilian samples, and the South African sample LG 72RW1006 that Demoulin and Dring (1975) examined to propose Vascellum endotephrum comb. nov. The Brazilian samples belong to different morphological species; moreover, L. curtisii and L. hyalinum grouped here. also, The Lycoperdon pratense terminal branch is sister to L. endotephrum and allies, and is well supported (bs = 96%, pp = 1), including samples from South and Central America, and Europe.

- Lycoperdon ovoidisporum terminal branch (bs = 52%, pp = 1) includes only Brazilian samples.

- Lycoperdon nigrescens terminal branch is well supported (bs = 98%, pp = 1), and includes samples from Asia (South Korea), Europe (Spain and Sweden) and South America (Argentina).

- Lycoperdon atrum terminal branch is moderate to well supported (bs = 74%, pp = 1), and includes samples from Europe (Spain) and South America (Brazil); in Chapter 1, the sample MA-Fungi 35530 was named under L. umbrinoides, but here more samples in a more conserved state, show that it belongs to L. atrum.

159

- Lycoperdon pyriforme terminal branch is moderate to well supported (bs = 73%, pp = 1), grouping samples from Europe (Belgium, Macedonia, Spain and Sweden), Oceania (Australia), South America (Argentina and Brazil) and North America (Mexico). Lycoperdon melanesicum, together with the sample VDEMOULIN 3195, is an authentic specimen of L. pyriforme; although the branch length in L. melanesicum is larger than other specimens of L. pyriforme; the morphological features are different between these species.

Figure 20 Neighbord-Joining tree obtained after calculating the K2P distance of the ITS sequences included in Table 1. Names and vouchers numbers as mentioned in the text and tables. New sequences in bold. Colours to indicate the geographic origin of the specimens and sequences. Yellow, mainly specimens from Central and South America (it can be some specimens from other part from the Southern Hemisphere); Orange, specimens from the Southern Hemisphere, not Central or South America; Red, specimens from both Hemispheres; Blue, only specimens from the Northern Hemisphere.

160

3.3 Probability Correct Identification (PCI) of Lycoperdon perlatum and L. pyriforme

To the analysis of PCIs, intraspecific and interspecific distances were calculated. In the Lycoperdon perlatum terminal branch, with the search by the Best Match/Best Close Match using threshold of 3%, 32 sequences were found and the correct identifications according to “Best Match” was100%, the ambiguous and incorrect identification was 0%. The correct identification according to “Best Close Match” was 97.05%, the ambiguous and incorrect identifications were 0%. Based on GenBank sample DQ112630, the group of specimens that formed the larger sub-branch obtained the intraspecific distance of 0.43–2.28% (Table 6).

In the terminal branch of L. pyriforme (including L. melanesicum NY00795902 in this terminal branch), with the search by the Best Match/Best Close Match using threshold of 3%, 19 sequences were found (18 L. pyriforme, and one L. melanesicum). The sequences have at least one matching sequence and the correct identifications according “Best Match” was 94.73%, and the incorrect identification 5.26% due to the sample of L. melanesicum. The results of “Best Close Match” were the same as that obtained by the “Best Match”; the intraspecific distance based on GenBank sample DQ 112558, for all specimens in L. pyriforme excluding L. melanesicum was 0–2.58% (Table 7), while L. melanesicum was 6.25%.

From some species/specimens no ITS sequences were obtained due to failure of the amplifications or because, after Blast search, sequences were confirmed as belonging to contaminants, mainly Ascomycetes; however, the morphological characters were enough to identify them as distinct species. Based on the ITS sequences from many of the specimens analyzed, and the study of macro and microstructures, nineteen species from Central and South America are included in the taxonomic part of this paper.

161

3.4 Taxonomy

Lycoperdon atrum Pat. Bull. Soc. Mycol. France XVIII (2): 176 (1902). Mycobank: MB 168322. Figs. 21a, 22a.

Basidiomata subpyriform to pyriform, 29–35 length ×12–32 mm width. Subgleba cellular, well-developed (occupying > ⅓ of basidiome), yellowish (N00Y10M00). Exoperidium persistent to falling off with the age, verrucose, with minute (< 0.5 mm long) darkish warty (N99Y00M00) at apex, becoming brown (N70Y90M20) at the base, sometimes velutineous and falling off. Endoperidium papery, smooth, yellowish (N30Y90M20).

Dehiscence by plane pore apical. Gleba grayish brown (N70Y20M20).

Exoperidium basal and apical composed by two types of sphaerocysts: elongated one 60–97 length × 14–25 µm width, wall 2–3.5 µm thickness, weakly dextrinoid, below at the elongated sphaerocysts there are globose to subglobose cells 22–36 µm length × 14–24 µm width, wall 1–1.5 µm thickness, weakly dextrinoid, yellowish in 5% KOH. Endoperidium apical like to the basal, without mycosclerids and hyphae with terminations inflated. Endoperidium basal 3.5–4 µm diam., wall 0.5–1 µm thickness, aseptate, weakly to strongly dextrinoid, yellowish in 5% KOH. Paracapillitium 4–6 µm, septate, 0.5–1 µm thickness, cyanophilous, hyaline in 5% KOH. Capillitium 3.5–6 µm diam., wall 1–1.5 µm thickness, aseptate, branched, absent pore, acyanophilous, yellowish in 5% KOH. Basidiospores, globose 3.5–5 × 3.6–5.2 µm, slightly verrucose to verrucose [B-C] often [C] in LM, number of ornamentation 9.5–12.5 for a circumference reduced to 10 µm.

Habitat and substrate: gregarious, growing on leaf-litter.

Specimens Examined: ARGENTINA, Catamarca, Dpto. Concepción, between leaf- litter, 01 Mar 1995, leg. V.L. Suárez and L.D. Gottlieb (BAFC s.n.). BRAZIL, Rio Grande do Sul, Santa Maria, Morro do Elefante, on soil in forest seasonal deciduous, 30º08’18’’S and 54º19’58’’W, 23 Jun 2006, leg. V.Gd. Cortez, no. V.G. 059 (UFRN-Fungos 832 – as L. juruense); ibidem, 1935, leg. Pe. J. Rick (HUH 00373703 – as L. atropurpureum); ibidem, 1935, growing on soil, leg. Pe. J. Rick (PACA 13773); ibidem, Itaara, Parque do Pinhal, growing on soil on leaf-litter, 30º00’58’’S and 54º16’27’’W, leg. V.G. Cortez, no. 044/06 (UFRN-Fungos 825); ibidem, São Leopoldo, 1907, leg. Pe. J.Rick (HUH 00373794 – as L. juruense); ibidem, 1906, leg. Pe. J. Rick (HUH 00373795 – as L. juruensis); ibidem, 1915, leg. Pe. J. Rick (HUH 00373796 – as L. juruense); ibidem, n.d.,

162

leg. Pe. J. Rick (HUH 00373798); ibidem, 1907, leg. Pe. J. Rick (PACA 13788 – as L. juruense); Goiás, n.d., leg. Pe. J. Rick (PACA 13791 – as L. nigrescens). Extralimital collections: SPAIN, Gerona, Sant Sadurní de L’Huera, in riverside forest, under Alnus glutinosa, 08 Nov 1995, leg. J.M. Vidal (MA-Fungi 35530).

Notes: Lycoperdon atrum is characterized by its exoperidium ornamentation composed of sphaerocysts with weakly dextrinoid elongated cells; endoperidium hyphae are dextrinoid; and basidiospores slightly verrucose to verrucose [B-C], frequently [C]. Lycoperdon juruense Henn was synonymized to L. atrum by Demoulin (1976); the author studied the isotypes of L. jurunse, and described that some specimens can have an exoperidium falling off at the apex and velvety spines at the base (at the level of subgleba). From the specimens studied here, some of them, such as HUH 00373703 (labelled by Demoulin 1970), HUH 00373794 and HUH 00373795, have a velutinous basal portion, and the apical exoperidium falling off. The specimens of UFRN-Fungi 832 and UFRN-Fungi 825 have the apical exoperidium darker than other specimens analyzed here; but all specimens have the same microstructures. In Chapter 1, the specimen MA- Fungi 35530 was identified as L. umbrinoides; in our molecular analyses, the specimens MA-Fungi 35530, UFRN-Fungos 825 and UFRN-Fungos 832, grouped in the same terminal branch. These samples are from the type locality of L. juruense, synonymous of L. atrum. Thus, we keep the three specimens under L. atrum.

Lycoperdon calvescens Berk. & M.A. Curtis, Grevillea 2 (16): 50 (1873). Mycobank: MB 218823. Fig. 21b.

Basidiomata subpyriform, pyriform to turbinate, 12–47 mm length × 11–45 mm width. Subgleba compact cell, well-developed (occupying > ⅓ of basidiome), grayish brown

(N30Y50M20) to purplish brown (N50Y60M50). Exoperidium falling off in units, with pyramidal spines with slender tips (< 1 mm long.), cream (N00Y30M00) to brown

(N40Y80M80). Endoperidium papery, grayish yellow (N20Y50M10); in some specimens (NY 0071975) the exoperidium and endoperidium partially fallen off. Gleba powdery, yellowish brown (N20Y80M50) to brown (N50Y88M40).

Exoperidium basal likely to the apical, composed by sphaerocysts subglobose to clavate, 16–30 length × 8–17 µm width, wall 1–2 µm thickness, weakly reaction, acyanophilous, hyaline in 5% KOH. Endoperidium apical composed by mycosclerids and hyphae with inflated terminations: mycosclerids composed by cells of 33.92–63.3 length

163

× 12.5–31.5 µm width, wall 0.6–3.2 µm thickness, irregular shape, weakly to dextrinoid, yellowish brown to brown in 5% KOH; hyphae with terminations inflated 8.5–20.5 µm diam., wall 0.9–2 µm thickness, weakly to dextrinoid, brownish in 5% KOH. Endoperidium basal composed by hyphae 3.3–6.9 µm diam., aseptate, weakly dextrinoid. Paracapillitium 1.7–7.1 µm diam., wall 0.4–1.5 µm thickness, septate, cyanophilous, hyaline in 5% KOH. Capillitium 2.7–5.5 µm diam., wall 0.6–1.2 µm thickness, occasional septate, occasional pores, without reaction in Melzer’s reagent, yellowish in 5% KOH. Basidiospores globose, 3–5 length × 3–4.5 µm width, smooth to punctate [A], sometimes slightly verrucose [B] in LM, pedicel 1–3 µm long.

Habitat and substrate: gregarious and cespitose, growing in fields of clay soil, also between Eucalyptus trees.

Specimens examined: ARGENTINA, Córdoba, Pernilla, Cuesta Blanca, Sierra Grande, 09 Mar 1980, leg. L. Dominguéz, no. CORD 997, (CORDC 191). URUGUAY, Montevideo, Miguelete, Jun 1928, leg. W.G. Herter, no. 203a (HUH 00373989, ex. HERB. HERT. 83476); ibidem, (NY 0071974, ex. HERB. HERT. 83476 – as L. pyriforme); ibidem, Candones, Floresta, Jul 1946, leg. W.G. Herter, no. 203d (NY 0071975, ex Herb. HERT. 61021 – as L. pyriforme).

Notes: Lycoperdon calvescens is characterized by its exoperidium with slender spines falling off, and basidiospores smooth [A]; capillitium with occasional pores and septate, hyphae from endoperidium weakly dextrinoid and mycosclerids present. Demoulin (1972b), reported the occurrence of sphaerocysts from exoperidium of big size and brown color, likely found in the specimens studied here. The exoperidium falling off in plates, subgleba not tinged purplish brown and basidiospores [A-B] often B in L. marginatum are distinguished from L. calvescens (Demoulin, 1983). The specimens here studied were misidentified under L. pyriforme; however, L. calvescens is distinct from L. pyriforme because the sphaerocysts do not have a spine shape, and it does not grow in decaying wood. Lycoperdon calvescens was described by Berkeley (1873) for USA, the author reported the presence of basidiospores pedicellate, here the specimens NY0071974 showed pedicel 1–3 µm long., and sometimes has remains of pedicels immersed between basidiospores. Here is the first time reported for South America.

Lycoperdon curtisii Berk., Grevillea 2 (16): 50 (1873). Mycobank: MB 221192. Fig. 21c.

164

Synonymous (Homrich and Wright 1988): = Vascellum curtisii (Berk.) Kreisel, Feeds Repert. 68: 87 (1963). = Lycoperdon curtisii Brek., N.A. Fungi no. 333. Grevillea, 2 (16): 50 (1873). = Lycoperdon argentinum Speg., Anal. Mus. Nac. Hist. Nat. Buenos Aires 6: 196 (1899) = Lycoperdon wrightii Berk. & M.A. Curt., N.A. Fungi no. 334. Grevillea, 2 (16): 50(1873).

Basidiomata globose to turbinate, 10–22 mm length × 9–20 mm width. Subgleba compact cellular, well-developed (occupying > ⅓ of basidiome), cream (N00Y10M20); diaphragm present only in one specimen, thin < 0.05 mm thickness. Exoperidium spiny, persistent to falling off in some specimens, with stellate spines < 1.0 mm long., cream (N10Y10M20), can be granulose or slender minute spines (< 0.1 mm long.) around of the stellate spines.

Endoperidium papery, yellowish (N20Y90M00); dehiscence by an irregular pore apical.

Gleba yellowish brown (N30Y99M00).

Exoperidium apical likely to the apical 12.3–30 length × 10–21 µm width, wall 1 – 1.5 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH. Endoperidium apical composed by mycosclerids and hyphae with inflated termination: mycosclerids 50– 68 length × 14.6–26.3 µm width, wall 0.8–2.9 µm thickness, without reaction, acyanophilous, yellowish 5% KOH; hyphae with inflated terminations 7–13.8 µm diam., 1.4–2.2 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH; endoperidium basal composed by hyphae 2–3 µm diam., wall < 0.5 µm thickness, aseptate, without reaction, acyanophilous, yellowish 5% KOH; paracapillitium 2.5–5.5 µm diam., wall 0.5–1 µm thickness, without reaction, cyanophilous, hyaline in 5% KOH; capillitium 3–3.8 µm diam., wall, < 0.5 µm thickness, aseptate, pores absent, without reaction, acyanophilous, yellowish in 5% KOH. Basidiospores globose, 3.5–4 µm × 3.61– 4 µm, slightly verrucose [B] in LM (specimens with incomplete maturation can be found [A]); without reaction, acyanophilous, yellowish in 5% KOH;

Habitat and substrate: gregarious, growing on debris of plants.

Specimens Examined: BRAZIL, Rio Grande do Sul, São Leopoldo, Mar 1933, leg. Pe. J. Rick (HUH 00373747 – as L. wrightii); Pernambuco, Recife, Casa Forte-Recife, on soil, 05 Mar 1955, leg. E. Barros-Wandeley, no. 2005 (K (M): 200237). Extralimital collections: UNITED STATES, New York, Athens, Greene Co., besides the Hudson, alluvial sands to the Hudson with little vegetation (some Rhus typhina), 25 Oct 1970, V.

165

Demoulin (LG/V.DEMOULIN 4073); ibidem, North Dakota, Kulm, Sep 1912, leg. J.F. Brenckle, no. 334 (PACA 21636 – as L. wrightii).

Notes: Lycoperdon curtisii is characterized by its exoperidium with stellate spines and basidiospores globose and slightly verrucose. In the morphological analyses, the stellate exoperidium spines and the slightly verrucose basidiospores [B], leads us to think of Lycoperdon marginatum and L. pratense. However, in L. marginatum the exoperidium is falling off in plates and has bigger basidiospores (4–4.8 µm), these features are not found in L. curtisii. Lycoperdon pratense has an exoperidium with slender spines, the capillitium is generally absent, basidiospores slightly verrucose [B] (Calonge and Demoulin, 1975). Unfortunately, the molecular analyses were not possible because no amplifications were obtained for ITS. In agreement with Smith (1974), in all specimens analyzed (except in K(M) 200237), no conspicuous diaphragm was found; however, in K(M) 200237 a thin diaphragm was found as described by Ponce de León (1970).

Lycoperdon endotephrum Pat., Bull. Soc. mycol. Fr. 18(4): 300 (1902), Fig. Mycobank: MB 218055. Fig. 21d, 5d-f.

Synonymous (Demoulin and Dring, 1975): = Vascellum endotephrum (Pat.) Demoulin & Dring, Bull Jard. Bot. Natn. Belg. 45 (3-4): 358 (1975). = Lycoperdon todayense Copel., Ann. Mycol. 3: 25 (1905). = Lycoperdon vanderystii Bres., Ann. Mycol. 9: 274 (1911). = Lycoperdon djurense Auct. non-P. Henn.

Basidioma subglobose, subpyriform to pyriform, 5–13 mm length × 9–18 mm width.

Subgleba cellular, well-developed (≥ ⅓ basidioma), cream (N00Y10M00), sometimes becoming grayish (N20Y30M10). Diaphragm present but not at all specimens, when present < 0.1 mm thickness, concolor to gleba. Exoperidium with warts at the base, becoming spiny at the top, spines < 0.1 mm long., falling off with the age, brown (N40Y70M50).

Endoperidium papery, smooth, cream (N00Y20M10) to gray (N10M30M10); gleba grayish brown (N40Y60M20), powdery.

Exoperidium apical with chain of sphaerocysts composed of cells subglobose to pyriform 14–38 × 14–29 µm, wall up to 1.5 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH. Exoperidium basal with chain of sphaerocysts composed of cells globose, subglobose to pyriform 15.0–31.0 × 14.0–25.0 µm, wall 0.7– 1.3 µm thickness without reaction, yellowish. Endoperidium apical composed of mycosclerids and hyphae with inflated terminations: mycosclerids 40.5–66.2 length ×

166

13.2–55 µm width, wall 1.3–2.2 µm thickness, without reaction, yellowish in 5% KOH; hyphae with inflated terminations 6–10 µm diam., wall 0.8–1.5 µm thickness, without reaction, yellowish in 5% KOH. Endoperidium basal composed by hyphae 3.5–5.3 µm diam., wall 0.9–1.5 µm thickness, without reaction to weakly dextrinoid, yellowish in 5% KOH. Paracapillitium 3–5.9 µm diam., septate, wall 0.6–1.2 µm thickness, cyanophilous, hyaline in 5% KOH. Capillitium rare, when present 3–4 µm diam., aseptate, pores absent, without reaction, yellowish in 5% KOH. Basidiospores globose, subglobose to oboval, 3.5–4.8 length × 3.5–4.5 µm width, slightly verrucose [B] in LM, minute warty (<0.5 µm long.) in SEM (ICN 154482 – as V. hyalinum), pedicel 0.35–3.7 µm long.

Habitat and substrate: gregarious, growing in soil.

Specimens examined: BRAZIL, São Paulo, Itapeva, (17 Km Se of), Canyon do Rio Taquari-Guaçu, Oct 1968, leg. D. Aytai (K (M): 19869); ibidem, Goiás, Goiáma, Hospital Veterinário, May1968, s. leg. (K (M) 200182 – as V. curtisii); Rio Grande do Sul, Santa Maria, Bairro Dores, 29º41’03’’S and 53º48125’’W, 23 Feb 2009, leg. V.G. Cortez, no. 007/09 (ICN 154482); Rio Grande do Norte, Natal, 6º18’18’’S and 35º21’40’’, 2008, leg. M.I.M. Cocentino, s.n. (UFRN-Fungos 814 – as Morganella). Extralimital collections: RWANDA, District des Lacs Edouard et Kivu, Forêt de Rugege, Vallée de la rivière, Bizumu (entre le mont Muzimu et le Bigugu, prefect. Cyangugu), 2400 m, pelouse semi- naturelle de versant, à Eragrostis blepharoglumis et Exotheca abyssunuca, 04 Mar 1972, leg. Lambinon, no. 72/1006 (LG 72RW1006).

Notes: Lycoperdon endotephrum can be recognized by its exoperidium falling off with spines < 0.1 mm long., rare capillitium, abundant paracapillitium, endoperidium apical with mycosclerids and hyphae with inflated terminations. Demoulin and Dring (1975) consider that the features such as the presence and thickness of diaphragm, color of gleba, shape of basidiospores and strength of warts are not sufficient to recognize this species. In the specimens studied here, the diaphragm was absent in UFRN-Fungos 814 and ICN 154482; the exoperidium was partially or completely fallen off in the specimen’s K (M) 200182 and K (M)19869. Demoulin and Dring (1975) consider L. endotephrum close to L. curtisii, separating these two species by exoperidium less floccose in L. endotephrum, and absence of capillitium in this species.

Lycoperdon eximium Morgan, J. Cincinnati Soc. Nat. Hist. 14: 15 (1892), Mycobank: MB 227237. Fig. 21e.

167

Basidiomata subglobose to pyriform, 10–19 mm length × 11–17 mm width. Subgleba reduced (occupying < ⅓ of basidioma), cellular, yellowish (N10Y70M10). Exoperidium falling off, remains only warts, light brown (N40Y70M30). Endoperidium papery, sometimes with furfuraceous aspect, yellowish (N00Y70M10). Gleba cottony, grayish brown (N30Y60M40).

Exoperidium apical likely to the basal, 13.6 – 32.9 length × 15.7 – 28 µm width, wall 0.7–1.7 µm thickness. Exoperidium basal composed by globose to subglobose cells, 13.8–31.3 length × 10.4–23.7 µm width, wall 0.6–1.2 µm thickness, without reaction, yellowish in 5% KOH. Endoperidium apical composed by mycosclerids and hyphae with inflated terminations: mycosclerids irregular shape, 22.5–77. 8 length × 6.5–46.4 µm width, wall 0.5–1 µm thickness, weakly reaction, yellowish in 5% KOH; hyphae with inflated terminations 2.8–8 µm diam., wall 0.6–1 µm thickness, weakly reaction. Endoperidium basal composed by hyphae 2.1–4.2 µm diam., wall 0.7–1.1µm thickness, septate, strongly dextrinoid, yellowish in 5% KOH. Capillitium elastic, 2.5–4 µm diam., wall 0.5–1 µm thickness, septate, abundant pores, without reaction, yellowish in 5% KOH. Paracapillitium absent. Basidiospores ovoid, oboval to ellipsoid, 4.3–6.1 length × 3.5–4 µm width, often punctate [A] to occasional slightly verrucose [B]in LM, pedicel 0.5–3 µm, strongly dextrinoid, yellowish in 5% KOH.

Habitat and substrate: gregarious, growing on leaf-litter.

Specimens examined: BRAZIL, Rio Grande do Sul, São Leopoldo, Mar 1933, leg. Pe. J. Rick (HUH 374007 – as L. spadiceum). VENEZUELA, Maracay, on the Maracay- Choroni road, Parque Nacional Henry Pittier, Edo. Aragua, on unidentified rotted wood, 12 Jul 1971, leg. K.P. Dumont, J.H. Haines and G.J. Samuels, no. Dumont-VE1961 (NY 0071978 – as L. pyriforme).

Notes: Lycoperdon eximium is recognized by its elastic capillitium with abundant pores, basidiospores ovoid, oboval to ellipsoid, often punctate [A] but can be slightly verrucose [B], dextrinoid, and basal endoperidium strongly dextrinoid. Morgan (1891) described this species from United States. In his description, the basidiospores showed size of 5–6 × 4–4.5 µm, the specimens analyzed here showed difference only in the width size (4.3–6.1 length × 3.5–4 µm width). Also, the exoperidium with slender spines reported by Morgan is not found in the present specimens; may be already fallen off. Demoulin (1972b), discussed that the slender spines are fragile and can be mixed or not

168

with granules; in the specimens NY 0071978 the granules are present. These specimens have been misidentified as L. pyriforme. However, L. pyriforme does not have basidiospores ovoid and dextrinoid, and the sphaerocysts from exoperidium are quite different since they do not have globose to subglobose shape (Moyersoen and Demoulin, 1996). Lycoperdon eximium is the first report in the South American continent.

Lycoperdon hyalinum Homrich, Can. J. Bot. 66 (7): 1296 (1988) – Mycobank: MB 134081. Fig. 21f.

Synonymous (Homrich and Wright, 1988): = Vascellum hyalinum Homrich, Can. J. Bot. 66(7): 1296 (1988).

Basidioma subglobose 12 mm length × 8 mm width; exoperidium persistent, warty, warts

< 0.05 mm long., dark brown (N60Y99M70). Endoperidium papery, wrinkly, yellowish brown (N30Y99M60). Subgleba reduced (occupying < ⅓ of basidioma), cellular, yellowish

(N60Y99M60). Gleba yellowish (N00Y30M00), incomplete mature.

Exoperidium basal likely apical composed by sphaerocysts globose to subglobose, 15–34 length × 12–25 µm width, displayed in regular chain, wall 0.6–1.2 µm, weakly dextrinoid, yellowish in 5% KOH. Endoperidium apical composed by only hyphae with inflated termination, 10–16 µm diam., without to weakly reaction, yellowish in 5% KOH. Endoperidium basal composed by hyphae 4–7 µm diam., wall 1–1.5 µm thickness, septate, weakly reaction, hyaline in 5% KOH. Paracapillitium 4–5.7 µm diam., wall 0.7– 1 µm thickness, septate, cyanophilous, hyaline in 5% KOH. Capillitium absent. Basidiospores 3–3.5 length × 3–3.5 µm width, globose to ovoid, smooth [A] in LM, asperulate in SEM, without reaction, yellowish in 5% KOH.

Habitat and substrate: gregarious, growing on soil.

Specimens examined: BRAZIL, Rio Grande do Sul, Santa Maria, 29º41’03’’S and 53º48’25’’W, 04 Mar 2009, leg. V.G. Cortez, no. 009/09 (ICN 154483); Paraíba, Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 06º59’091’’S and 35º44’398’’W, 592 m, between litter-leaf and piece of wood, 17 Jul 2013, leg. D.S. Alfredo, no. DSA178 (UFRN-Fungos 2829).

Notes: This species is characterized by its cottony gleba, absence of capillitium and presence of mycosclerids in apical endoperidium. The specimens studied were not well preserved; and the presence or absence of diaphragm was not possible to confirm. Cortez

169 et al. (2013), studied this specimen and also identified it as L. hyalinum (= V. hyalinum). Homrich and Wright (1988), described L. hyalinum from Argentina and Brazil, and reported the presence of mycosclerids at the apical pore, although these features were not observed here. The specimens showed hyphae with inflated terminations originating from the apical part of the endoperidium; perhaps, the apical mycosclerids are not present because of the poor conservation of this specimen.

Lycoperdon lividum Pers. J. Bot. (Desvaux) 2: 18 (1809) – Mycobank: MB 414454. Fig. 21g.

Synonymous (Demoulin 1972): = Lycoperdon spadiceum Pers., J. Bot. (Desvaux) 2: 20 (1809) non (Schaeff. 1774). = Lycoperdon fuscum Bonord., Bot. Ztg. 15: 628 (1857). = Lycoperdon calcareum Velen. České Houby 4-5: 826 (1922).

Basidiomata depressed globose to turbinate, 13–25 mm length × 18–24 mm width.

Subgleba well-developed (occupying >⅓ of basidioma), cellular, yellowish (Y40M00C00). Exoperidium falling off, warty, warts < 0.5 mm long., in some specimen’s spines can be found, grayish brown (N30Y70M40). Endoperidium papery, surface sometimes covered by crystals, areolate, pale yellow (N10Y20M10). Gleba powdery, yellowish brown

(N20Y90M40) to brown (N60Y80M40), occurring a transition of color between gleba and subgleba.

Exoperidium basal composed by sphaerocysts 11.2–37. 4 length × 9.5–24. 3 µm diam., wall 0.8–2 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH. Endoperidium apical composed only by hyphae with inflated terminations 10.9–20.8 µm diam., wall 0.9–1.7 µm thickness, dextrinoid, acyanophilous, yellowish in 5% KOH. Endoperidium basal composed by hyphae 4–6 µm diam., wall 0.6–1.3 µm thickness, occasional septate, without reaction, acyanophilous, yellowish in 5% KOH. Paracapillitium absent. Capillitium 3.5–7 µm diam., aseptate, pores commonly found, without reaction, acyanophilous, brown in 5% KOH.Basidiospores globose to subglobose, 4–5.5 length × 4–5.5 µm width, punctate [A] in LM, pedicel 0.5–9 µm long. (appear only in Melzr’s reagent), acyanophilous, without reaction, brown in 5% KOH.

Habitat and substrate: gregarious, growing on soil or leaf-litter.

Specimens examined: BRAZIL, Rio Grande do Sul, São Leopoldo, 1939, leg. Pe. J. Rick (PACA 13775 – as L. umbrinum). COLOMBIA, Dpto Boyacá, Ca. 92 km from

170

Aguazul, on the Aguazul-Sogamoso, on identified duff, 14 Jun 1976, leg. K.P. Dumont, S.E. Carpenter, M.A. Sherwood, L.A. Molina, no. Dumont-CO 5388 (NY 0071655 – as L. perlatum).

Notes: Lycoperdon lividum is characterized by its exoperidium warty, falling off, crystals present at the surface of areolate endoperidium, capillitium with pores and basidiospores punctate [A]. Lycoperdon lividum is distinct from L. ericaeum Bonord. because of its capillitium aseptate and basidiospores punctate [A] (Demoulin, 1972a, b). The specimens here studied were misidentified as L. umbrinum (PACA 13775) and L. perlatum (NY 0071655); although, L. umbrinum has basidiospores slightly verrucose [B] and capillitium with pores more abundant than L. lividum. Lycoperdon perlatum has exoperidium with conical spines, paracapillitium abundant and basidiospores verrucose [C] (Calonge and Demoulin, 1975; Moyersoen and Demoulin, 1996). This is the first time that Lycoperdon lividum is reported for South America.

Lycoperdon marginatum Vittad., Monogr. Lycoperd.: 185 (1842), Mycobank: MB 220793. Fig. 21h, 22b.

Synonymous (Demoulin 1972b): = Lycoperdum cruciatum Rostk., Deutschl. Fl., 3 Abt. (Pilze Deutschl.) 5(18): 19 (1839). = Lycoperdon muricatum Bonord., Bot. Ztg. 15: 612 (1857). = Utraria cruciatus Rostk., Quél., Mém. Soc. Émul. Montbéliard, Sér. 2 5: 368 (1873). = Lycoperdon separens Ann. Rep. N.Y. St. Mus. nat. Hist. 26: 73 (1874). = Lycoperdon wrightii Berk et M.A. Curt. var. atropurpureum Peck, [as 'atra-punctum'], Ann. Rep. N.Y. St. Mus. nat. Hist. 32: 67 (1880). = Vascellum cruciatum (Rostk) P. Ponce de León, Fieldiana, Bot. 32(9): 118 (1970).

Basidiomata globose, subglobose, pyriform to turbinate, 13–32 mm length × 10–61 mm width. Subgleba well-developed (occupying > ⅓ basidioma), cellular, cream (N00Y10M00) becoming grayish (N40Y40M10). Diaphragm present, < 1 mm thickness, brown

(N60Y80M60). Exoperidium falling off in plates, white pyramidal spines at the apex 1–2.5 mm long., while at the base persistent slender spines, yellowish (N00Y20M00) to brownish

(N10Y80M20 to N20Y60M30). Endoperidium surface covered by a brown (N50Y60M30) material furfuraceous, papery, yellowish (N00Y40M00) to grayish (N20C00Y20); dehiscence by a circular pore apical or partial fragmentation of endoperidium. Gleba powdery, brown

(N60Y80M60 to N70Y70M40).

171

Exoperidium basal likely to the apical, composed by globose, subglobose to pyriform sphaerocysts, 12.5–33 length × 10.5–33.5 µm width, wall 0.5–1 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH. Endoperidium apical composed by mycosclerids and common hyphae: mycosclerids 42–98 length × 8–24 µm width; wall 1–1.5 µm thickness, weakly to strongly dextrinoid, acyanophilous, yellowish in 5% KOH; common hyphae 3.1–5.5 µm, wall 0.8–1 µm, septate, weakly dextrinoid, acyanophilous, yellowish in 5% KOH. Endoperidium basal composed by hyphae aseptate 3–6.5 µm, without reaction to weakly dextrinoid, acyanophilous, yellowish in 5% KOH. Paracapillitium 2.6–7 µm diam., septate, without reaction, cyanophilous, hyaline in 5% KOH. Capillitium 3.8–7.6 µm diam., wall 0.5–1.2 µm, aseptate, commonly with pores, without reaction, acyanophilous, yellowish to brown in 5% KOH. Basidiospores globose, 3.7–4.8 length× 3.7–4.8 µm width, punctate to slightly verrucose [A-B], in LM, pedicel 0.5–1 µm, acyanophilous, without reaction, brown in 5% KOH.

Habitat and substrate: gregarious, growing in sand soil, soil and leaf-litter.

Specimens examined: ARGENTINA, Córdoba, Punilla, Los Gigantes, 1839 m on road, 08 Feb 2007, leg. M.L. Hernádez-Caffot, no. CORD72 (CORDC 374); ibidem, San Javier, Quebrada del Tigre, 11 May 2007, leg. M.L. Hernández-Caffot, no. CORD 272 (CORDC 314); Ciudad Universitaria, 06 Oct 1986, leg. L. Domínguez de Toledo, no. CORD573 (CORDC 839): ibidem, Calamuchita, Villa Alpina near from Cumbrecita, under Pinus sp., 26 Apr 1981, leg. L. Domínguez de Toledo, no. 345 (HUH 00373827). BRAZIL, Rio Grande do Sul, São Leopoldo, 1907, leg. Pe. J. Rick (HUH 00373825 – as C. cruciata); ibidem, 1906, leg. Pe. J. Rick (PACA 12527); ibidem, 1929, leg. L. Braum (PACA 12533); ibidem, 1933, leg. Pe. J. Rick (PACA 12534); ibidem, 1929, leg. L. Braum (PACA 13779 – as L. pulcherrimum); ibidem, Serro Azul, 1935, leg. Pe. J. Rick (PACA 13794); ibidem, Salvador do Sul, São Salvador, 18 Jan 1944, leg. Pe. J. Rick (PACA 20848). COLOMBIA, Boyaca, Paramo de Guantiva, Valle Q. El Desaguadero 4 km al NW de Santa Rosita, en terraza seca a lo largo de la Quebrada con rastrojo de Senecio sp. asociado con Halenia y Acaena cylindrostachya, n. d., leg. A.M. Cleef, no. 9768A (NY00398532 – as L. candidum). ECUADOR, s. d., s. leg., no.7190 (NY 00340572). URUGUAY, Canelones, in sand soil, Jul 1946, W.G. Herter (NY00398533 – ex HERB. HERT. 61104 – as L. cruciatum); ibidem, (HUH 00373829 – ex HERB. HERT. 61104 – as L. cruciatum); ibidem, Artigas, Estancia Timbauba, Barra del Arrago Tres Crucest, Feb 1955, leg. N. Garcia-Zorron, no. 2389 (K (M): 200242).

172

Notes: Lycoperdon marginatum is characterized by its exoperidium with white pyramidal spines at the apex of basidioma falling off in units or frequently in plates, surface of endoperidium with a furfuraceous material, basidiospores punctate to slightly verrucose [A-B], capillitium with pores. Lycoperdon calvescens is close to L. marginatum (Demoulin, 1972b, 1983); however the spines are falling off in units and basidiospores always punctate [A] are not found in L. marginatum. The specimens NY00398532 and NY00398533, as well as HUH 00373825 and HUH 00373829 have been labelled under the name L. candidum and L. cruciatum, respectively, considered by Ponce de León (1970), distinct species of L. marginatum. Although these specimens labelled by himself under the name L. candidum and L. cruciatum, share the same features as specimens labelled as L. marginatum; also, specimens have the same features described by (Demoulin, 1972b, 1983). Moreover, the molecular analyses confirm the position of these specimens as L. marginatum.

Lycoperdon mauryanum Pat. ex Demoulin, Leujenia 62: 16 (1972), Mycobank: MB 317034. Fig. 21i, 22c.

Basidioma subglobose, 41 mm length × 45 mm width; subgleba well-developed

(occupying > ⅓ of basidioma), cellular, purplish brown (N50Y60M50). Exoperidium persistent, verrucose, minute warts (< 1 mm long.), brown (N50Y60M30), also slender spines can be found spread in parts of basidioma. Endoperidium papery, smooth, yellowish brown (Y90M60C30). Gleba grayish brown (N50Y80M50).

Exoperidium basal likely to the apical, composed by sphaerocysts globose, subglobose to pyriform, 20.5–33 length × 21–32 µm width, wall 1–1.8 µm thickness, without reaction, acyanophilous, yellowish brown in 5% KOH. Endoperidium basal banal likely to the apical, hyphae aseptate, 2.5–3.5 µm diam., wall 0.5–1 µm thickness, aseptate, without reaction, acyanophilous, yellowish in 5% KOH. Paracapillitium absent. Capillitium 3.5–8.3 µm diam., wall 1–1.5 µm thickness, aseptate, occasional pores, without reaction, acyanophilous, brown in 5% KOH. Basidiospores globose, 3.8–4.5 µm width, strongly verrucose [D], in LM, number of ornamentation 9–11.5 for a circumference reduced to 10 µm.

Habitat and substrate: gregarious or solitary, growing on soil.

Specimens examined: GUATEMALA, Mixco, between Guatemala City and Antigua, on the ground, 22 Jun 1963, leg. B. Lowy (LG 1570!).

173

Notes: Lycoperdon mauryanum is characterized by its verrucose exoperidium, mixed with sparse slender spines in parts of the basidioma; basidiospores strongly verrucose [D], capillitium with occasional pores. According to Demoulin (1972b), L. mauryanum belongs to the Molle-group, together with L. molle and L. umbrinum; however, L. mauryanum has capillitium with occasional pores, and basidiospores strongly verrucose as mentioned in Demoulin (1972a). Although L. atropurpureum also has a strongly verrucose basidiospores, L. mauryanum has smaller ones (3.8–4.5 µm vs. 5.5–7 µm in L. atropurpureum), as indicated in Calonge et al. (2005). In accordance with some authors, L. mauryanum is a representative species of L. atropurpureum in America, and would be better as synonymous or a considering the similar features shared by these taxa. Despite that, the authors said “no somos partidarios de crear entidades taxonómicas a partir de diferencias en distribución geográfica”. Here, we have studied only the specimen LG 1570 (paratype) and more samples should be studied to clarify if L. mauryanum is a distinct species. Demoulin (1972b) preferred to consider this taxon as a good species, even though the morphological features are not enough to separate L. mauryanum from L. atropurpureum, and he said in Demoulin (1972b): “Il s’agit d’un de ces taxons que l’on pourrait considerer comme sous-espèce géographique. Nous préférons toutefois en principe ne pas utiliser de categories infraespécifiques dans l’étrat actuel de la science mycologique”.

Lycoperdon nigrescens Pers., Neues Mag. Bot.1: 87 (1794): Pers. Syn. meth. fung.: 146 (1801) – Mycobank: MB 218442. Figs. 22d, 23a.

Synonymous (Larsson and Jeppson, 2008) = Lycoperdon perlatum var. nigrescens Pers., Syn. meth. fung.: 146 (1801). = Lycoperdon foetidum Bonord., Handb. Allgem. Mykol. (Stuttgart): 253 (1851).

Basidiomata pyriform, subpyriform to turbinate, 20–36 mm length × 18 – 30 mm width.

Subgleba well-developed, cellular, pale orange (N00Y40M10), grayish (N60Y40M10) to grayish purple (N60Y30M30). Exoperidium falling off, spines with slender and convergent tips, yellowish (N00Y10M00), yellowish gray (N10Y30M00), grayish brown (N60Y70M40) to darkish brown (N90Y99M90). Endoperidium papery, areolate, yellowish (N00Y10M00 to

N00C00Y10) to yellowish brown (N20Y60M20); gleba powdery grayish brown (N70Y70M30) to brown (N90Y99M60).

174

Exoperidium basal likely to the apical composed by sphaerocysts globose, subglobose to pyriform 13–35 length × 9.5–33.5 µm width, without reaction, acyanophilous, hyaline in 5% KOH. Endoperidium apical composed also by mycosclerids 29.9–78.8 length × 8.6–31 µm width., wall 1–2.3 µm thickness, dextrinoid, acyanophilous, yellowish in 5% KOH. Endoperidium basal likely to the apical composed by hyphae 3–6.5 µm diam., wall 0.5–1.5 µm thickness, weakly reaction to dextrinoid, acyanophilous, hyaline in 5% KOH.

Figure 21 Dry basidiomata of Lycoperdon species. a. L. atrum (UFRN-Fungos 832); b. L. calvescens (CORD 997); c. L. curtisii (VDEMOULIN 4073); d. L. endotephrum (K (M): 200182); e. L. eximium (NY0071978); f. L. hyalinum (DSA 178, UFRN-Fungos 2829); g. L. lividum (NY 0071655); h. L. marginatum (CORD 72); i. L. mauryanum (LG 1570). Bars = 10 mm.

175

Paracapillitium 2.5–6.5 µm diam., wall 0.5–1 µm thickness, septate, cyanophilous, hyaline in 5% KOH. Capillitium 2.5–7.5 µm diam., wall 0.5–1 µ, thickness, aseptate, occasional pores, acyanophilous, brownish in 5% KOH. Basidiospores globose, 3.5–5 length × 3.6–5.2 µm width, punctate [A] in LM, remains of sterigmal mixed with the basidiospores, pedicel (cyanophilous) 1–4 µm long., without reaction, acyanophilous, brown in 5% KOH.

Habitat and substrate: gregarious and cespitose, growing on soil or decaying wood.

Specimens examined: ARGENTINA, Bariloche, Cerro Tronador, sobre solo, 2001, leg. M.L. Hernández-Caffot (UFRN-Fungos 2275 – as L. ericaeum); ibidem, Corrientes, Capital, Av. Independencia 5000, em isleta de monte, creciendo em el suelo entre la hojarasca, 21 Jan 1987, leg. Popoff, no. 130 (BAFC 50177 – as L. perlatum); ibidem, Tierra del Fuego, Bahía Ensenada, en suelo y restos de madera, entre Hepáticas, 24 Jan 1992, leg. I. Gamundi (BAFC 50186 – as L. foetidum); ibidem, Punta Lara, 01 May 1966, leg. S. Matteucci (BAFC 51008). BRAZIL, Rio Grande do Sul, São Leopoldo, 1904, leg. Pe. J. Rick (HUH 00373907 – as L. perlatum); ibidem, 1930, leg. Pe. J. Rick (PACA 13774 – as L. perlatum); ibidem, 1931, leg. Pe. J. Rick (PACA 13796 – as L. rimulatum). COLOMBIA, Boyacá, Pantano de Vargas, Vicinity km post 12 from Paipa, on soil, 12 Jun 1976, leg. K.P. Dumont, S.E. Carpenter, M.A. Sherwood, L.A. Molina, no. Dumont- CO 4864 (NY 0071657 – as L. perlatum). URUGUAY, Tacuarembó, Taquarembó, 1936, leg. Pe. J. Rick (PACA 13783 – as L. spacideum).

Notes: Lycoperdon nigrescens is a species with great variation in exoperidium spine color (yellowish to dark brown); basidiospores punctate [A]. Note that as the exoperidium is falling off, L. nigrescens can be misidentified as L. perlatum (e.g. in the specimens BAFC 50177 or PACA 13774), even with L. ericaeum (UFRN-Fungos 2275). However, L. nigrescens has an exoperidium with slender spines and convergent tips, and basidiospores [A] (Demoulin, 1972b). This last author has considered L. nigrescens (Pers. per. Pers.) C.G. Lloyd non (Pers. per Pers.) Poiret and L. perlatum var. nigrescens Pers. per Pers. as synonymous of L. foetidum; afterward he proposed the new combination to L. peckii Morg. as Lycoperdon foetidum var. peckii (Demoulin, 1979), considering that the pale spines are a variant of L. foetidum. After that, in the key to the identification of Lycoperdon species from South Europe, Demoulin (1983) treated L. foetidum and L. perlatum var. nigrescens as synonymous of L. nigrescens. The specimen PACA 13796, has been identified under the name Lycoperdon rimulatum; however this species has an 176

endoperidium not areolate and basidiospores strongly verrucose (Coker and Couch, 1928). This is the first time Lycoperdon nigrescens is reported from Argentina and Uruguay.

Lycoperdon ovoidisporum Cortez, Baseia & R.M.B. Silveira, Sydowia 63(1): 2 (2011), Mycobank: MB 561562. Figs. 22e, 23b.

Basidiomata, pyriform to turbinate, 10–31 mm length × 14–35 mm width. Subgleba well- developed, lanose, in some specimens with compact cell, yellowish brown (N30Y90M20), reddish brown (Y99M80C20) to brown (N60Y99M60). Exoperidium persistent, warty, warts

< 0.5 mm long., yellowish (N10Y99M90) to brown (N70Y99M70). Endoperidium papery, smooth, yellowish (N00Y10M00). Gleba olive brown (N60Y99M40).

Exoperidium basal likely to the apical composed by sphaerocysts 13–28 length × 11–29 µm width, wall 1–2 µm thickness, without reaction, acyanophilous, hyaline in KOH. Endoperidium apical composed by hyphae with inflated termination and mycosclerids: hyphae inflated terminations 6–15 µm diam., wall 0.5–1 µm thickness, septate, weakly reaction to dextrinoid, acyanophilous, hyaline in 5% KOH; mycosclerids 37–110 length × 10–25 µm width, 1–2 µm thickness, weakly reaction, acyanophilous, hyaline in 5% KOH. Paracapillitium absent; endoperidium basal composed by hyphae 3– 6 µm diam., wall 0.5–1 µm thickness, occasional septate, weakly reaction, acyanophilous, hyaline in 5% KOH. Capillitium 2.5–4.5 µm diam., 0.5–1 µm thickness, occasional septate, occasional pores, branched, without reaction, acyanophilous, brownish in 5% KOH. Basidiospores subglobose, ovoid to suboval (often ovoid have been found), 4.2–5 length × 3–4 width smooth, punctate to slightly verrucose [A-B] in LM, pedicel 0.5–1.2 µm thickness, without reaction, acyanophilous, brownish in 5% KOH.

Habitat and substrate: gregarious, growing on soil.

Specimens examined: ARGENTINA, Tucumán, En Quebrada de Lules, 10 Nov 1952, leg. A.T. Hunziker, no. CORD 510 (CORDC 182 – as L. gemmatum). BRAZIL, Rio Grande do Sul, Viamão, Parque Estadual de Itapuã, on soil, 30º11’42’’S and 51º03’18’’W, 22 May 2004, leg. V.G.Cortez (UFRN-Fungos 867); ibidem, São Leopoldo, 1931, leg. V.G. Cortez (PACA 13771); ibidem, leg. Pe. J. Rick (PACA 13805); Paraná, Curitiba, Reserva Biológica Cambuí, forest edge under shrub on the soil, 27 Jul 1979, leg. A.A.R. de Meijer, (VDEMOULIN ex De Meijer 103a).

177

Notes: Lycoperdon ovoidisporum is characterized by its exoperidium with persistent warts, gleba olive brown, basidiospores mostly ovoid. This species was described for the first time from Brazil in Cortez et al. (2011); these authors considered the basidiospore shape diagnostic for the species. Lycoperdon eximium also has peculiar ovoid basidiospores (Coker and Couch, 1928; Demoulin, 1972b), and it is close to L. ovoidisporum. However, L. eximium is separated from L. ovoidisporum by its capillitium with abundant pores, bigger basidiospores 4.3–6.1 length × 3.5–4 µm width, strongly dextrinoid (mostly in specimens studied here). Lycoperdon darjeelingense B. M. Sharma and L. ovalicaudatum D. Bisht, J.R. Sharma & Kreisel, are others species with ovoid basidiospores; however, they have a longer pedicel, up to 19 and 22 µm long, respectively (Sharma, 1991; Bisht et al., 2006).

Lycoperdon perlatum Pers., Observ. mycol. 1: 145 (1796): Pers., Syn. Meth. Fung.: 145 (1801), Mycobank: MB 220647. Figs. 22f, 23c.

Synonymous (Demoulin 1972b and the Index Fungorum website) = Lycoperdon gemmatum Schaeff., Fung. Bavar. Palat. Nasc. (Ratisbonae) 4: 130 (1774). = Lycoperdon gemmatum Batsch, Elench. Fung. (Halle): 147 (1783). = Lycoperdon perlatum var. lacunosom Pers., Syn. Meth. Fung. (Göttingen) 1: 146 (1801). = Lycoperdon perlatum var. albidum Alb. & Schwein., Consp. fung. (Leipzig): 80 (1805). = Lycoperdon perlatum var. bonordenii (Massee) Perdeck, Blumea 6: 505 (1950). = Lycoperdon var. dobremezianum Kreisel, Feddes Repert. Spec. Nov., Beih. 87(1-2): 103 (1976). = Lycoperdon perlatum var. lacunosum Pers., Syn. meth. fung. (Göttingen) 1: 146 (1801). = Lycoperdon pseudogemmatum Speg., Anal. Soc. cient. argent. 17(2): 85 [no. 95] (1884).

Basidiomata subglobose, pyriform, subpyriform to turbinate, 8–65 mm length × 10–40 mm width. Subgleba well-developed (occupying > ⅓ of basidioma), cellular, yellowish

(N10Y30M00), grayish (N50Y80M00) to gray (N50Y20M10). Exoperidium falling off (mostly the spines), conical and pointed spines, cream (N00Y10M00 to N00Y30M00) to light brown

(Y80M40C30), mixed with persistent warts brown (N70Y90M60). Endoperidium papery, areolate, in oldest or bad conserved specimen the areoles cannot be there, yellowish gray

(N50Y40M00), gold yellow (N10Y80M20) to shiny gray (N50C00Y10); dehiscence by an apical regular pore. Gleba grayish brown (N50Y60M20 to N50Y80M20), reddish brown

(N30Y99M60) to brown (N70Y90M70).

178

Exoperidium basal likely to the apical, composed by sphaerocysts globose, subglobose to pyriform, 19.4–65.1 length × 15.6–43.3 µm width, wall 0.7–2.7 µm thickness, without reaction, acyanophilous, hyaline to yellowish in 5% KOH. Endoperidium basal 3.3–7.7 µm diam., wall 0.5–2 µm thickness, without reaction to weakly reaction, acyanophilous, yellowish in 5% KOH. Paracapillitium 3–6.5 µm diam., wall 0.5–1.5 µm thickness, septate, without reaction, cyanophilous, hyaline in 5%KOH. Capillitium 3–4.5 µm diam., wall 0.5–1 µm thickness, aseptate, occasionally with pores, without reaction, acyanophilous, brown in 5% KOH. Basidiospores globose to subglobose, 3.5–5.5 length × 3.6–5 µm width, verrucose [C] in LM, aculeate, slender aculeus connected each other by lines in SEM, number of ornamentation 6.3–11.8 for a circumference reduced to 10 µm; acyanophilous, yellowish to brown in 5% KOH.

Habitat and substrate: gregarious, cespitose, growing on soil on decaying wood.

Specimens examined: ARGENTINA, Missiones, Parque Nacional Iguazú, bosque de Palo Rosa, 03 Mar 1982, leg. J. Wright (BAFC 28012); ibidem, Dpto. Guarani, prédio Guarani, Fac. Cs. Forest. El Dorado, 06 Sep 1994, leg. O. Popoff, no. 2343 (BAFC 34025); Salta, Campamento Las Heras (Los Tigres), en el suelo, 23 Sep 1958, leg. Morello, Legname y Cuezzo, no. 833 (BAFC 32162); Patagônia, Província Rio Negro, Parque Nacional de Lanín, sobre suelo, 2002, leg. M.L. Hernández-Caffot (UFRN- Fungos 2273 – as L. perlatum var. nigrescens); ibidem, 2005, leg. Hernández-Caffot (UFRN-Fungos 2274); ibidem, 2003, leg. M.L. Hernández-Caffot (UFRN-Fungos 2272). BRAZIL, Amazonas, leg. T.S. Cabral, no. TSC 70 (UFRN-Fungos 2828); Minas Gerais, Santa Rita do Sapucaí, Reserva Biológica Municipal de Santa Rita Mitzi Brandão, 22°15’35.17”S and 45°43’59.41”W, 27 Dec. 2013, leg. D.S. Alfredo and P. Lavor, no. DSA 198 (UFRN-Fungos 2335); Paraná, Curitiba, Reserva Biológica Cambuí, secundar leafy tree on humus path, 02 Nov 1979, leg. A.A.R. de Meijer (VDEMOULIN ex DeMeijer206 – as L. pseudogemmatum); Rio Grande do Sul, Santa Maria, on wood of Enterolobium sp. 30º08’18’’S and 54º19’58’’, 17 May 2003, leg. G. Coellho (UFRN- Fungos 811); ibidem, São Salvador, Jun 1943, Pe. J. Rick (PACA 20088); ibidem, São Leopoldo, 1929, leg. L. Brun (PACA 13789 – as L. gemmatum); ibidem, 1908, Pe. J. Rick (HUH 00373903 – as L. gemmatum); ibidem, 1906, Pe. J. Rick (HUH 00373916 – as L. pseudogematum); São Paulo, Instituto de Botânica, on wood, 23 Nov 1969, leg. D.M. Dring, no. 139 (K (M) 200238); ibidem, Estação Ecológica de Jataí, Mar 2000, leg. I.G. Baseia (UFRN-Fungi 2269 – contaminated amplification). Colombia, Departamento del

179

Cauca, Cordillera Central, vertiente occidental, Cabeceras del rio palo, quebrada del rio López, Alto del Duende matorrales y bosquecillo de páramo, 3300-3350 m alt., 1-2 Dec 1944, leg. J. Cuatrecasas (HUH 00373892); ibidem, Vereda Guazabarita, Finca “El Bosque”, El Tambo, on soil, 15 Jul 1974, leg. K.P. Dumont, J.H. Haines, J.M. Idrobo, L.F. Velasquez, no. Dumont-CO 1365 (NY 0071656). ECUADOR, Galapagos Islands, San Cristobal Island (as Chatham), n.d., leg. Capitan Wood, s.n. (KW 200236 – as L. ericaeum). PARAGUAY, Guarapi, Aug 1882, leg. B. Balansa, no. 3921 (K (M) 200241 – Isotype of L. pseudogemmatum!). URUGUAY, Montevideo, n.d., leg. Herter (PACA 13795). VENEZUELA, Caracas, Junquito-Colonia Tovar, Edo. Aragua, on road, on unidentified wood, 22 Jun 1971, leg. K.P. Dumont, J.H. Haines, E. Moreno, no. Dumont- VE 446 (NY 00793106 – as L. pseudogemmatum); Estado de Merida, Sierra Nevada, La Mucuy, Laguna de Coromotto, in soil amongst rocks, 3200 m alt., 07 Aug 1958, leg. R.W.G. Dennis, no. 1797 (K(M):200240); Chichiriviche, Falcon (as Destrito Federal), on soil aroundo of Coffea sp., 500 m alt., 06 Jul 1958, leg. R.W.G. Dennis, no. 1312 (K (M) 200239). Extralimital collections: MEXICO, Falla de Telapón, Rio Frio, bosque de Abies and Pinus, Jul 1958, leg. G. Guzmán (VDEMOULIN ex ENCB 1533); ibidem, Zacatecas, Cerro del Pinal, 20 Sep 1959, leg. G. Guzmán (VDEMOULIN ex ENCB 2223); Hidalgo, Zacualtipan, en bosque subtropical, 1900 m alt., 22 Sep 1960, leg. G. Guzmán (VDEMOULIN ex ENCB 2633). UNITED STATES, Michigan, Pellston, Michigan University, Lawrence lake, NW of Biological Station, deciduous forest, Jun 1965, leg. G. Guzmán (VDEMOULIN ex ENCB - U87 – as L. pyriforme); Washington, Bremerton, on gravelly ground among short grass, 2 Sep 1912, leg. E. Bartholomew (K (I.M.I) 28707).

Notes: Lycoperdon perlatum is characterized by its basidioma mostly pyriform or turbinate, exoperidium spines falling off and remaining warts, endoperidium surface mostly areolate, basidiospores verrucose [C], capillitium with occasional pores and abundant paracapillitium. This species has worldwide distribution growing everywhere (Calonge, 1998), and, as mentioned in Demoulin (1972b) it has a wide morphological variation. Demoulin (1972b) also reported that in North American specimens, in the capillitium the pores are rare. Likewise, in many of the specimens studied here, the capillitium has no or rare pores (PACA 20088, K(M) 200240, etc.). The specimen UFRN- Fungos 2335 was reported from Brazil as first record under the name Lycoperdon lambinonii (Alfredo et al., 2016). Cunningham (1944) considered that L. perlatum has basidiospores [A], but it must be a mistake; because just the basidiospores [C] separates

180

L. perlatum from L. lividum and L. nigrescens (both have basidiospores [A]) (Pegler et al., 1995). Also, the exoperidium spines in L. perlatum are more conical and with angular tips, whereas in L. nigrescens slender curved tips are found (Honrubia et al., 1982). The authors found 10-11 ornamentations in a circumference of 10 µm. Here similar number (6.8–11.8) were obtained; the extreme values were slightly different because of our increased sampling. An important factor here was the analysis of the specimen K (M) 200241, isotype of L. pseudogemmatum. After morphological reexamination, we confirmed that L. pseudogemmatum shares the same characters as L. perlatum: warts remain around areoles of endoperidium surface, capillitium with rare pores (Paraguayan specimen) and basidiospores verrucose [C]. Moreover, the description of Saccardo (1888) (“cortice exterior mox evanescente, albo, tenui, cortice interior tenui payraceo- membranaceo, tenacello, laxe minuteque granuloso-verrucoloso, sicco albo vel pallescente…”) fits with L. perlatum. Additionally, the specimens labelled under L. pseudogemmatum (NY 00793106, HUH 00373916 and VDEMOULIN ex DeMeijer206) have no differences with the L. perlatum specimens studied here; therefore L. pseudogemmatum is confirmed as a synonym of L. perlatum.

Lycoperdon pratense Pers., Neues Mag. Bot.1: 87 (1794): Pers., Syn. Meth. Fung.: 142 (1801), Mycobank: MB 174409. Fig. 22g, 23d, 24g-i.

Synonymous (Larsson and Jeppson 2008): = Vascellum pratense (Pers.) Kreisel, Feddes Repert. 64: 159 (1962). = Lycoperdon depressum Bonord., Bot. Zeitung (Berlin) 15: 611 (1857). = Vascellum depressum (Bonord.) F. S ˇmarda, Flora CSR, B1: 305 (1958). Synonymous (here proposed) = Vascellum delicatum Homrich, Canadian Journal of Botany 66 (7): 1292 (1988) [Mycobank: MB134080].

Basidiomata pyriform to turbinate, 12–20 mm length × 13–32 mm width. Subgleba well- developed, cellular whitish, yellowish (N00Y40M00) in specimens not complete mature, brown (N30Y80M30). Diaphragm absent or disappearing; exoperidium falling off in plates, stellate spines with slender tips, pale yellow (N00C00Y10) to yellowish (N00Y20M00).

Endoperidium papery, smooth, yellowish (N00Y30M00) in specimens immature, becoming shiny gray (N80C00Y20) to grayish brown (N50Y50M30). Gleba powdery, whitish becoming light brown (N20Y80M10) to brown (N60Y60M40).

Exoperidium likely to the apical, composed by sphaerocysts globose to subglobose 14.6 – 34.8 length × 13.5 – 29.6 µm width, wall 0.87 – 2.2 µm thickness, weakly reation,

181 acyanophilous, yellowish in 5% KOH. Endoperidium apical composed by mycosclerids and hyphae with inflated terminations: mycosclerids irregular shape, 60–110 length × 12– 50 µm width, without reaction, acyanophilous, yellowish in 5% KOH; hyphae inflated terminations 7.8–14.2 µm diam., wall 1.2–3 µm thickness, without reaction, acyanophilous, yellowish in 5% KOH. Endoperidium basal composed hyphae 3–4 µm diam., wall 0.5–1 µm diam., without reaction, acyanophilous, yellowish in 5% KOH. Paracapillitium 4–6 µm diam., wall 0.5–1 µm thickness, without reaction, acyanophilous, hyaline in 5% KOH. Capillitium can be absent in some specimens mostly in young ones, 3–4.5 µm diam., wall 0.5–1 µm thickness, aseptate, pores absent, branched, without reaction, acyanophilous, yellowish in 5% KOH. Basidiospores globose, 3.5–4.5 µm width, punctate to slightly verrucose [A-B], in LM, minute aculeus in SEM, without reaction, acyanophilous, hyaline to yellowish in 5% KOH.

Habitat and substrate: gregarious, cespitose, growing on soil

Specimens examined: BRAZIL, Rio Grande do Sul, Santa Maria, Campus UFSM, 29º41’03’’S and 53º48’25’’W, 05 Mar 2009, leg. G. Coelho, s.n. (ICN 154485 – as V. hyalinum). Chile, Santiago, Forest close to El Tabo, among the grass at the border of the road, 01 Jul 1966, leg. W. Lazo (VDEMOULIN ex AGUCH-ET8 – as Isotype of V. delicatum!). NICARAGUA, Nueva Segovia, Santa Clara, on the ground, around Pinus caribae var. hondurensis, 700 m alt., Jun 1973, leg. A. Greaves, s.n. (K (M) 200187). URUGUAY, Montevideo, Paysandu, Jul 1934, leg. Herter, no. 2183 (HUH 00373786 ex HERB. HERT. 94793 – as L. hiemale). Extralimital collections: MEXICO, Ciudad de Mexico, Colonia Santo Tomás, calle de Plan de Ayala, jardín con pasto, 2200 m alt., 15 Jul 1969, leg. G. Guzmán, (VDEMOULIN ex ENCB 7412); ibidem, SW de La Presa Guadalupe, carretera a Nicolas Romen, pastizal árido, 2380 m alt., leg. G. Guzmán, no. 4036 (K (M) 200229).

Notes: Lycoperdon pratense is characterized by its exoperidium falling off in plates, stellate spines with slender tips, endoperidium smooth and shiny, basidiospores globose, punctate to slightly verrucose [A-B]. In respect to the absence of capillitium, Smith (1974) reported that in some specimens from North America he did not find capillitium. This feature has been found near the inner surface of the endoperidium or near the subgleba (when present) as indicated by Reid (1977). Although authors have found basidiospores dextrinoid, in the specimens studied here there was no reaction in Melzer’s reagent. Pegler et al. (1995) and Cortez et al. (2008), described an exoperidium furfuraceous, however 182

this feature has not found here, only in the K (M) 20018, in which the powdery gleba has covered the endoperidium surface with masses of basidiospores giving a furfuraceous aspect. Lycoperdon pratense has a worldwide distribution being reported in all continents (Ponce de León, 1970). In Mexico, L. pratense has been found under the name L. hiemale (Herrera, 1964), in Brazil L. pratense has been reported by Bononi et al. (1984) and Cortez et al., 2008, 2013).

Lycoperdon pyriforme Schaeff., Fung. Bavar. Palat. nasc. 4: 128 (1774): Pers., Syn. Meth. Fung.: 148 (1801), Mycobank: MB 123159. Fig. 22h, 23e. Synonymous (Larsson and Jeppson 2008): = Morganella pyriformis (Schaeff.) Kreisel & D. Kruger, Mycotaxon 86: 175 (2003).

Basdiomata pyriform to turbinate, 12–50 mm length × 9–35 mm width. Subgleba well- developed, lanose, whitish, yellowish (N00Y30M00) becoming grayish (N10Y20M00 to

N40Y30M10). Exoperidium persistent, minute spines (< 0.5 mm) brown (N40Y80M80); endoperidium papery, yellowish (N00Y00M00 to N00Y10M00); dehiscence by a regular apical pore or sometimes by rupture of the peridium. Gleba powdery, yellowish brown

(N20Y80M50) to grayish brown (N60Y70M30).

Exoperidium basal likely apical composed by sphaerocysts irregular of spiny aspect 56.4–109.9 length × 38.1–76.7 µm width, wall 0.9–3.2 µm thickness, dextrinoid, acyanophilous, yellowish in 5% KOH. Endoperidium basal likely apical composed by hyphae 2.3–4.5 µm diam., wall 0.5–2.2 µm thickness, aseptate, weakly to dextrinoid, acyanophilous, yellowish in 5% KOH. Paracapillitium 3–6.7 µm diam., wall 0.6–1.82 µm thickness, septate, without reaction, cyanophilous, hyaline in 5% KOH. Capillitium 2.5– 4.7 µm diam., wall 0.5–1.2 µm thickness, aseptate, absent pores, without reaction, acyanophilous, brown in 5% KOH. Basidiospores globose 2.6 – 4.6 µm width, smooth [A] in LM, pedicel 1.5–3.4 µm long., without reaction, acyanophilous, brown in 5% KOH.

Habitat and substrate: gregarious and cespitose, growing on decaying wood.

Specimens examined: ARGENTINA, Provícia de Córdoba, Parque Nacional Quebrada del Condorito, sobre solo, 2007, leg. M.L. Hernádez-Caffot (UFRN-Fungos 2276); Tucumán, Chicligasta, Alpachiri, Piedra Grande, 500 m alt., 02 Feb 1946, leg. A. Garolere, no. 7181 (BAFC 31387). BRAZIL, Pernambuco, solo humoso, 06º37’47’’S and 35º02’15’’W, 13 Feb 2003, leg. T.G. Gibertoni (UFRN-Fungos 155); Rio Grande do Sul, 183

São Francisco, Floresta Nacional, 29º26’52’’S and 50º35’02’’W, 23 May 2015, leg. L. Trierveiler-Pereira, no. LTP236 (ICN 177101); ibidem, Nova Petropolis, 1912, leg. Pe. J. Rick (HUH 00373988); Porto Alegre, Iboti, 17 Jan 1976, leg. Y. Doi, no. AS-166 (VDEMOULIN ex TNSF 226943 – as L. atrum); ibidem, São Leopoldo, 1904, Pe. J. Rick (HUH 00373990); ibidem, 1904, leg. Pe. J. Rick (PACA 13780); ibidem, 1904, (NY 0071972); São Paulo, Instituto de Botânica de São Paulo, leaf-litter, 11 Dec 1999, leg. I.G. Baseia (UFRN-Fungi 2271); ibidem, 27 Oct 1998, leg. I.G. Baseia (UFRN-Fungi 2268 – as Calvatia rubroflava). COLOMBIA, Depto. Magdalena, Sierra Nevada de Santa Maria, Hacienda Cincinati, 1250-1500 m alt., 17 Aug 1935, leg. G.W. Martin, no. 3437 (HUH 00373985); ibidem, (NY 0071971). ECUADOR, n.d., leg. G. Massee (NY 0071973). Extralimital collections: BELGIUM, Liege, between Brachythecium rutabulum, 03 Oct 1965, leg. V. Demoulin (VDEMOULIN 3195). MEXICO, Amecameca, Tlamácas, en Abietum, 300 m alt., 18 Aug 1963, leg. G. Guzmán (VDEMOULIN ex ENCB 5084); ibidem, La Marquesa, El Zarco, en Abietum, 24 Nov 1957, leg. G. Guzmán (VDEMOULIN ex ENCB 1401). UNITED STATES, Alaska, Ptermingan Creek, 14 Sep 1970, leg. W. Kemptn (VDEMOULIN 4593). Venezuela, n.d., leg. Fendler (NY 0071979).

Other specimens examined: Lycoperdon melanesicum — FIJI, Viti Levu, Vicinity of Rewasa, near Vaileka, alt. 50–200 m, on log. on dry forested forehill, 28 May and 17 Jun 1941, leg. O. Degener, no. 15547a (NY00795902 – Type!).

Notes: Lycoperdon pyriforme is characterized by its persistent exoperidium, with minute spines, endoperidium smooth, basidiospores globose and smooth [A], capillitium and paracapillitium abundant, sphaerocysts of irregular shape resembling a spiny shape, dextrinoid. In our analyses, some specimens were labelled under L. pyrifome due to their smooth basidiospores (NY 0071978 – see in L. eximium; NY 0071974 and NY 0071975 – see in L. calvescens). However, it could be a misidentification with L. calvescens and L. eximium; although L. calvescens has exoperidium with pyramidal spines, capillitium with pores and basidiospores can be found as slightly verrucose [B], features not found in L. pyriforme; while in L. eximium the ovoid and dextrinoid basidiospores are diagnostics to separate these two species (Demoulin, 1968a, 1972b, 1983). In South America, Wrigth et al. (2008) reported L. pyriforme from Argentina, and Rocabado et al. (2007), from Bolivia; the authors reported sphaerocysts of big size likely found in the specimens here studied. In Brazil it was cited by Sydow and Sydow (1907), Rick (1961),

184

Bononi et al. (1984) and Baseia (2005). López-Quintero et al. (2011) reported L. pyriforme from Colombia, and Herrera (1964), as well as Rodríguez and Herrera (1970) from Mexico. Cunningham (1944) considered that L. pyriforme has a worldwide distribution, and cited the type locality in Europe.

Lycoperdon melanesicum is a peculiar species easy to recognize by its exoperidium falling off, with brown warts, sometimes the exoperidium has fallen off in all basidioma, exoperidium is composed by dextrinoid elongated hyphae with pointed terminations, basidiospores smooth [A], capillitium and paracapillitium are abundant. Lycoperdon pyriforme is close to L. melanesicum; however, L. pyriforme has an exoperidium composed by different cells (like irregular spines), that are also dextrinoid (Demoulin, 1976). According to this author, L. melanesicum can be misidentified with some Morganella species, especially M. samoense. Although, the occurrence of capillitium distinguishes these species.

185

Figure 22 Scaning electronic microscopy of basidisporoes. a. L. atrum (UFRN-Fungos 832; b. L. marginatum (CORD 573); c. L. mauryanum (VD 1570); d. L. nigrescens (PACA 13783); e. L. ovoidisporum (UFRN-Fungos 967); f. L. perlatum (UFRN-Fungos 811); g. L. pratense (ICN 154485); h. L. pyriforme (NY 0071971); i. Lycoperdon sp. 5 (UFRN-Fungos 152).

186

Lycoperdon umbrinum Pers., Ann. Bot. (Usteri) 11: 28 (1797): Syn. meth. fung.: 147 (1801), Mycobank: MB 232824. Fig. 23f. Basidiomata pyriform to turbinate, 31–64 mm length × 24–60 mm width. Subgleba well- developed (occupying < ⅓ of basidioma), cellular, light brown (N30Y90M50), olive brown

(N60Y80M20) to grayish brown (N50Y50M30). Exoperidium persistent to falling off, warty, warts < 1 mm long., light brown (N20Y60M20 to N50Y90M40). Endoperidium papery, smooth, pale yellow at the base (N00Y40M00) to yellowish green (N20Y30M00), becoming shiny gray (N30Y20M10) to light brown (N00Y80M30) to reddish brown (N30Y90M50). Gleba powdery, light brown (Y99M40C20), olive brown (N60Y99M30), brown (N70Y99M50).

Exoperidium basal likely apical, composed by sphaerocysts globose, subglobose, pyriform to collapsed 13–35 length × 13–25 µm width, wall 1.2–2.3 µm thickness, weakly reaction, acyanophilous, hyaline in 5% KOH. Endoperidium basal likely to the apical, composed by hyphae 3–5 µm diam., wall 0.5–1 µm thickness, weakly to strongly dextrinoid, acyanophilous, hyaline in 5% KOH. Capillitium 3–6.5 µm diam., wall 0.7–1 µm thickness, septate, abundant pores, without reaction, acyanophilous, brown in 5% KOH. Basidiospores globose 4–5.5 × 4.2–5.3 µm width, punctate [A] to slightly verrucose [B], in LM, columnar warts with flattened top in LM, pedicels 0.7–2 µm long., without reaction, acyanophilous, brown in 5% KOH.

Habitat and substrate: gregarious, can be found solitary, growing on soil or leaf- litter.

Specimens examined: ARGENTINA, Tierra del Fuego, Parque Nacional Lapataia, pasando cruce de camino a Cascada Rio Pipo, en base de N. Betuloides, sobre tierra apoyado al árbol, 24 Feb 1988, leg. M. Rajchemberg, no. 4048 (BAFC 31601); ibidem, Dpto. Ushuaia, Ea. Harberton, en bosque de Nothofagus pumilio sobre suelo, 26 Feb 1988, s.leg. (BAFC 32079); ibidem, camino con troncos, 30 Oct 1989, leg. C.L. Leite (BAFC 32183); ibidem, Turbera cercana a La Pataia, sobre suelo, en bosque de

Nothofagus batuloides, 21 Nov 1974, leg. I. Gamundi (BAFC 32178). BRAZIL, Rio Grande do Sul, São Salvador, 17 Jan 1944, leg. Pe. J. Rick (PACA 20701). Extralimital collections: UNITED STATES, Florida, Alachua Co., Sugarfoot Hammock, Lat. 29ºN and Log. 82ºW, 27 Aug 1977, leg. J. Ammirati and Chenes (VDEMOULIN 5119); Michigan, Livingston Co., oak grove, sous Picea, 04 Oct 1973, leg. V. Demoulin (VDEMOULIN 4784).

187

Notes: Lycoperdon umbrinum is characterized by its exoperidium persistent but in some specimens can be found falling off, warty, light brown, endoperidium smooth, gleba powdery light brown, mostly olive to brown in mature basidioma, basidiospores slightly verrucose [B] (but specimens with punctate ones [A] can be found), capillitium with abundant pores. The specimens analyzed here have the same features as those described by Coker and Couch (1928). Bottomley (1948) considered the color of gleba (olivaceous to brown) and size of basidiospores (3.7–5.2 µm) as the main characters to identify this species. Bowerman (1961) considered L. umbrinum synonymous of L. molle; however, as discussed by Perdeck (1950), the brown gleba color and the ornamentation pattern of basidiospores [A-B] in L. umbrinum are decisive to separate these species. Herrera (1964) and Rodríguez and Herrera (1970), consider two varieties: L. umbrinum var. umbrinum and L. umbrinum var. floccosum Lloyd, differing because the last one has globose to subglobose basidiomes, exoperidium furfuraceous and persistent, with spines mixed with granules, and the spines partially falling off in flakes; however, the authors said: “la distinción entre L. umbrinum var. umbrinum y L. umbrinum var. floccosum no siempre puede hacerse con facilidad, por la inestabilidad de algunos de sus caracteres fundamentales (forma de la fructificación, color de la gleba, tamaño de la base estéril, evolución del exoperídio, etc)”. Demoulin (1972b), treated L. umbrinum var. floccosum as synonymous of Lycoperdon floccosum Lloyd. Here some specimens (BAFC 32183 and BAFC 32079) show the exoperidium falling off likely described by Bottomley (1948) and Perdeck (1950), however Calonge and Demoulin (1975), Pegler et al. (1995) and Calonge (1998) have not reported this character.

Lycoperdon utriforme Bull., Hist. Champ. France: 153 (1791): Pers., Syn. meth. fung.: 143 (1801), Mycobank: MB 232539. Fig. 23g.

Synonymous (Larsson and Jeppson (2008) and the IndexFungorum website) = Calvatia utriformis (Bull.) Jaap, Verh. Bot. Vereins Prov. Brandenburg 59: 37 (1918). = (Bull.) Kreisel, Nova Hedwigia 48: 288 (1989).

Basidiomata subglobose to turbinate 20–45 mm length × 9–28 mm width. Subgleba well- developed (occupying > ⅓ of basidioma), lanose in immature specimens, becoming cellular in mature specimens, white in immature specimens, becoming yellowish

(N10Y10M10) to yellowish brown (N30Y99M00) to brown (N40Y70M50) in mature specimens. Exoperidium echinulate, pyramidal spines 1–1.5 mm long. with convergent extremities, yellowish (N10Y00M10) to grayish brown (N40Y60M20). Endoperidium yellow (N10Y10M10) 188

at base, becoming brown (N70Y80M70), smooth. Gleba powdery, white becoming olive brown (N60Y60M20).

Exoperidium basal likely to the apical composed by sphaerocysts globose to subglobose 22.5–30 length × 20–29 µm width, with reaction, acyanophilous, yellowish in 5% KOH. Endoperdidium basal likely to the apical, composed by interwoven hyphae 3.5 5.3 µm diâm., wall 0.8 – 1.2 µm thickness, weakly dextrinoid, acyanophilous, yellowish in 5% KOH. Capillitium 5–7.2 µm diam., wall 0.6–1.3 µm thickness, septate, abundant pores, pores slit-like, acyanophilous, without reaction, brown in 5% KOH. Basidiospores globose, subglobose, sometimes ovoid, 4.6–5.6 length × 4.5–5.6 µm width, punctate [A] in LM, pedicels 0.5–1 µm, acyanophilous, without reaction, brown in 5% KOH.

Habitat and substrate: gregarious, growing on soil.

Specimens analyzed: ARGENTINA, Falkland Islands (Islas Malvinas), Old Wireless Station, Mar 1942, leg. J.G. Gibbs, s.n. (K (M): 200231 – as L. argentinum); ibibem, Pebble Island, Feb 1942, leg. J.G. Gibbs, s.n. (K (M): 200232 – as L. argentinum). CHILE, Puerto Arturo, Tierra del Fuego, 01 Feb 1946, leg. J.G. Gibbs, s.n. (K (M) 200230 – as L. argentinum).

Notes: Lycoperdon utriforme is characterized by its exoperidium with pyramidal spines and extremities convergent, subgleba becoming yellowish brown at maturity, gleba olive brown at maturity, capillitium with abundant pores slit-like and septate, basidiospores punctate [A]. This species is easily misunderstood as L. excipuliforme; however, the absence of pyramidal exoperidium spines and the verrucose basidiospores [C] in L. excipuliforme separate these two species (Moyersoen and Demoulin, 1996). The specimens studied here were misidentified as L. argentinum; specimen K(M) 200232 has mature gleba, whereas in the others, the gleba is in different degrees of maturation. Lycoperdon argentinum was synonymized to L. curtisii (= Vascelllum curtisii) by (Homrich and Wright, 1988); however, the pyramidal exoperidium ornamentation and capillitium with pores and septae have not been found in L. curtisii. This is the first time Lycoperdon utriforme is reported in South America.

189

Lycoperdon sp. 1, Fig. 23h.

Basidiomata immature subglobose to pyriform, 13 mm length × 9 mm width. Basidiomata mature globose, subglobose, pyriform to turbinate, 14–30 mm length × 17–36 mm width.

Subgleba well-developed (occupying > ⅓ of basidioma), cellular, yellowish (N00Y10M00) becoming gray (N30Y20M10); diaphragm < 2 mm thickness, concolor to the gleba.

Exoperidium persistent becoming falling off, warty, warts yellowish (N00Y40M00) becoming grayish brown (N60Y40M10). Endoperidium papery, smooth yellowish

(N00Y10M00) becoming yellowish gray (N10C00Y20); dehiscence by an irregular apical pore or rupture of endoperidium. Gleba powdery, grayish brown (N20Y70M40) to brown

(N70Y80M40).

Exoperidium basal likely to the apical 12–26.5 length × 9.3–22.8 µm width, wall 0.6–1.2 µm thickness, without reaction, acyanophilous hyaline in 5% KOH. Endoperidium apical composed by mycosclerids and banal hyphae: mycosclerids 35.7– 85.7 length × 13–32.8 µm width; wall 1.2–2.5 µm thickness; weakly reaction, acyanophilous, yellowish in 5% KOH; banal hyphae 4.5–12.3 µm diam., wall 0.9–1.6 µm thickness, weakly reaction, hyaline in 5% KOH. Endoperidium basal composed by hyphae 4–6 µm diam., wall 0.5–1.2 µm thickness, without reaction, acyanophilous, hyaline in 5% KOH. Paracapillitium 3–6 µm diam., wall 0.7–1.2 µm thickness, septate, incrusted with remains of membrane glebal. Capillitium 3.2–5.3 µm diam., wall 0.5–1 µm thickness, septate, pores absent, without reaction, acyanophilous, light brown in 5% KOH. Basidiospores globose to subglobose, 3.5–4.4 length × 3.5–4.6 µm width, punctate to slightly verrucose [A-B], pedicel 0.5–7.3 µm long., without reaction, acyanophilous, light brown in 5% KOH.

Habitat and substrate; gregarious, growing on soil.

Specimens examined: ARGENTINA, Córdoba, San Javier, Quebrado El Hueco, 02 Mar 2007, leg. M.L. Hernández-Caffot, no. CORD 167 (CORDC 308). BRAZIL, Rio Grande do Sul, Santa Maria, Campus Universitário UFSM, 29º41’03’’S and 53º48’25’’W, 06 Mar 2009, leg. V.G. Cortez, no. VG010/09 (ICN 154484).

Notes: This species is recognized by its cellular subgleba well-developed and separate from the gleba (shades of brown) by a conspicuous diaphragm, exoperidium falling off with brown warts, irregular dehiscence or rupture of endoperidium, basidiospores punctate to slightly verrucose [A-B], abundant capillitium and

190

paracapillitium, mycosclerids weakly reacting covering the apical portion where the exoperidium is falling off. Lycoperdon pratense is distinct from Lycoperdon sp.1 because its exoperidium ornamentation is falling off in plates, with stellate spines of slender tips, capillitium less abundant or absent and the absence of basidiospores with long pedicel (Smith, 1974; Reid, 1977). Lycoperdon endotephrum can be separated from Lycoperdon sp.1 by the endoperidium basal hyphae weakly dextrinoid, and absence of capillitium (Demoulin and Dring, 1975). Lycoperdon marginatum is distinct because it has white pyramidal spines, and the hyphae from the basal part of the endoperidium are weakly dextrinoid, as well as mycosclerids from the apical portion (Demoulin, 1972b, 1983).

Lycoperdon sp. 4, Fig. 23i. Basidiome subglobose, pyriform to turbinate, 26–47 mm length × 17–25 mm width.

Subgleba well-developed (occupying > ⅓of basidioma), cellular, cream (N00Y10M00) becoming purplish gray (N70Y40M40). Diaphragm concolor to subgleba, < 0.1 mm thickness. Exoperidium ornamentation with slender spines falling off, 0.5–1 mm long., yellowish (N00Y20M00), mixed with persistent warts < 0.5 mm long., greyish brown

(N30Y40M20). Endoperidium surface pale yellow (N10Y40M00), areolate (< 0.5 mm width); dehiscence by an irregular apical pore or rupture of endoperidium. Gleba powdery, greyish brown (N50Y40M20) to olive brown (N60Y90M30).

Exoperidium basal likely to the apical, composed by sphaerocysts globose, subglobose to elliptic 15.1–25.5 length × 9.3–21.3 µm width, wall 0.5–1.0 µm thickness, without reaction, acyanophilous, hyaline in 5% KOH. Endoperidium basal likely to the apical, composed by hyphae 3–4.2 µm, wall 0.6–1µm thickness, pale yellow without reaction, mycosclereids and inflated terminations absent. Paracapillitium 3.2–7 µm diam., wall 0.7–1.3 µm thickness septate, without reaction, cyanophilous, hyaline in 5% KOH. Capillitium 4.8–7.7 µm diam., wall 1.3–1.7 µm thickness, septate, branched, pores absent, without reaction, acyanophilous, brown in 5% KOH. Basidiospores globose 3.8– 4.8 × 3.8–4.5, slightly verrucose to verrucose [B-C] in LM, aculeate, aculeus with slender tips in SEM (UFRN 164), number of ornamentation 6.3–11.8 for a circumference reduced to 10 µm; pedicels 0.5–1.5 µm long., without reaction, acyanophilous, light brown in 5% KOH.

Habitat and substrate: gregarious, growing on grassland or leaf-litter.

191

Specimens examined: BRAZIL, Pernambuco, Igarassu, Reserva Ecológica Charles Darwin, in soil insight of forest, 03 Apr 2003, leg. I.G. Baseia, s.n. (UFRN-Fungos 164); São Paulo, Instituto de Botânica, on soil, 07 Dec 2000, leg. I.G. Baseia (UFRN-Fungos 495 – as Vascellum pratense). Extralimital collections: HUNGARY, Tolna, Szeskszard, field of Palank, n.d., leg. L. Hollós (MAF-Fungi 14141).

Notes: Lycoperdon sp. 4 is recognized by its exoperidium with spines falling off mixed with persistent warts, endoperidium areolate, basidiospores slightly verrucose [B- C], capillitium without pores and paracapillitium present. These specimens were labelled L. pratense; however, the exoperidium ornamentation of stellate spines with slender tips, endoperidium smooth, basidiospores punctate to slightly verrucose [A-B], and the presence of mycosclerids and hyphae with inflated termination allow to distinguish L. pratense from Lycoperdon sp. 4 (Kreisel, 1973; Reid, 1977). On the other hand, L. perlatum can be confused with Lycoperdon sp. 4, because of its basidiospores [C]; however, the conical and pointed spines plus the capillitium with pores are absent in Lycoperdon sp. 4. These two species are morphologically very close; however, molecular analyses help to separate them. More samples of Lycoperdon sp. 4 are needed to clarify the morphological differences with L. perlatum. For now, we prefer keeping them as distinct unnamed species.

Lycoperdon sp. 5, Figs. 22i, 24 a-c. Basidiomata pyriform to turbinate, 42–52 mm length × 18–26 mm width. Subgleba well- developed, cellular, yellowish (N00Y60M20); exoperidium persistent, warty at the base becoming spiny at the apex, dark brown (N60Y99M70). Endoperidium papery, wrinkle, yellowish (N20Y80M50); dehiscence by a plane pore apical. Gleba powdery, brown

(N60Y99M60); pseudocolumella clavate concolor to the gleba.

Exoperidium basal likely to the apical composed sphaerocysts subglobose, clavate to irregular shape 8–23 length × 12–36 µm width, weakly dextrinoid, acyanophilous, hyaline in 5% KOH; mycosclerids and hyphae with inflated terminations absent. Endoperidium basal likely to the apical composed banal hyphae 5–10 µm diam., wall 1– 2 µm thickness, septate, without reaction, acyanophilous, yellowish in 5% KOH. Paracapillitium 2–4 µm diam., wall 0.5–1 µm thickness, septate, without reaction, acyanophilous, hyaline in 5% KOH. Paracapillitium 2–4 µm diam., wall 0.5–1 µm thickness, septate, without reaction, acyanophilous, hyaline in 5% KOH. Basidiospores

192

globose to subglobose, 3.5–4.5 length × 4–5 µm width, smooth [A], in LM, without reaction, acyanophilous, yellowish 5% KOH.

Habitat and substrate: gregarious, growing on soil.

Specimens examined: BRAZIL, Pernambuco, Gurjaú, Cabo Santo Agostinho, sobre solo, 25 Mar 2003, leg. I.G. Baseia, s.n. (UFRN-Fungos 152); Rio Grande do Norte, Natal, Parque Estadual Dunas do Natal, Atlantic forest, on leaf-litter, 6º18’18’’S and 35º21’40’’W, 08 Aug 2004, leg. I.G. Baseia and M.M.B. Barbosa, s.n. (UFRN-Fungos 300).

Notes: Lycoperdon sp. 5 is characterized by its persistent exoperidium, warty at the base and spiny at the apex, basidiospores smooth [A], capillitium and paracapillitium present, mycosclerids and hyphae with inflated terminations absent, and sphaerocysts with irregular shape. Lycoperdon pyriforme remembers Lycoperdon sp. 5 because of the irregular shaped sphaerocysts and abundant capillitium and paracapillitium (Pegler et al., 1995; Calonge, 1998); however, Lycoperdon sp. 5 does not have dextrinoid sphaerocysts, and there are mixed of subglobose to clavate cells. Lycoperdon endotephrum and L. pratense are close to Lycoperdon sp. 5, but the exoperidium ornamentation is quite different from latter: L. endotephrum has an exoperidium falling off and the basidiospores slightly verrucose and suboval; and in L. pratense the exoperidium ornamentation is falling off in plates with stellate spines (Demoulin and Dring, 1975). For now, we prefer to keep these specimens as Lycoperdon sp. 5.

193

Figure 23. Dry basidiomata of Lycoperdon species. a. L. nigrescens (NY0071657); b. L. ovoidisporum (PACA13771); c. L. perlatum (VDEMOULIN ex ENCB 1533); d. L. pratense (K(M): 200187); e. L. pyriforme (UFRN-Fungos 2271); f. L. umbrinum (VDEMOULIN 4784); g. L. utriforme (K (M): 2002300); h. Lycoperdon sp. 1 (CORD 167); i. Lycoperdon sp. 4 (UFRN-Fungos 495). Bars = 10 mm.

194

Figure 24 Comparative between the species of Lycoperdon sp. 5, L. endotephrum and L. pratense. a-c. Lycoperdon sp. 5 (UFRN-Fungos 152); d-f. L. endotephrum (UFRN-Fungos 164); g-i. L. pratense (Basidioma – VDEMOULIN ex AGUCH-ET8; spore – ICN 154485); a, d, g. Dry basidiomata; b, e, h. Sphaerocysts; c, f, i. Basidiospores in scanning eletronic microscopy (SEM). Bars a, g = 10 mm; d = 5 mm; b, e, h = 20 µm; c, f, i = 1 µm.

195

4 DISCUSSION

The DNA barcode s are used around the world to identify species (Hebert et al., 2003, 2004; Kress et al., 2005) from various groups of organisms. The web site of Barcode of Life (www.barcoding.si.edu) was created with the main idea of helping scientists in the identification of organisms through short DNA sequences (around 700 bp). For example, with the DNA barcode , cryptic species can be detected helping taxonomists to describe them (Salle et al., 2005; Janzen et al., 2005; Hubert et al., 2008).

The use of DNA barcodehas expanded recently (Druzhinina et al., 2005; O’Brien et al., 2005; Rehner and Buckley, 2005; Seifert et al., 2007). However, no barcode was designed for fungi untill the creation of the Fungal Barcoding Consortium that involves researchers from around the world, working with different groups of fungi to find the best barcode region. In Schoch et al. (2012), the ITS region was proposed as the first barcode to fungi, because around 80% of the species tested could be identified, and separated from others; however, it was clear that in some groups a second marker would be needed. In our study, the ITS barcode was efficient to discriminate 19 Lycoperdon species in Central and South America; although as stated in Chapter 1, in some species groups (e.g. L. excipuliforme, L. lambinonii, L. molle and L. umbrinum), a second marker is needed to discriminate among species (Stielow et al., 2015).

The NJ-tree based on K2P distances showed some difference of topologies, compared with the strict MP consensus tree and the Bayesian tree. These differences, such as in Lycoperdon perlatum terminal branch are due to the differences in the sequence length. From some specimens, the sequences were shorter than 400 bp, (e.g. deMeijer 206, UFRN-Fungos 811, UFRN-Fungos 2335, UFRN-Fungos 2272, TSC70, KW200236 and exU87). Likewise, in the L. pyriforme terminal branch with specimens NY00795902, UFRN-Fungos 2271, UFRN-Fungos 2268, UFRN-Fungos 2269. From these specimens, only part of the ITS region was amplified and sequenced (ITS1 region with primer pair ITS1F/ITS2, or ITS2 region with primer pair ITS3/ITS4b. Min and Hickey (2007) noted this problem and wrote “…as the length of the molecular sequences is reduced, there is a concomitant loss of resolution at the internal nodes of the phylogenetic tree”. Also, the branch length could be related to the geographic location since, in NJ, MP and Bayesian trees, the Central and South America specimens are distributed in at least two subgroups in the main L. perlatum group; however, the intraspecific variability can attract the

196

branches from the same geographic locality while excluding the specimens from others localities (Bergsten et al., 2012).

In L. perlatum the intraspecific distance in all specimens was 0–2.28%, while in the subgroup with long branches was 0.6–2.28%. Meier et al. (2006) concluded that when small length sequences are analyzed together with big ones, the accuracy of the analyses decreases. In this group, specimens are similar. The association of morphological plus molecular taxonomy is strongly recommended in barcode approaches (Hebert and Barrett, 2005; Hebert and Gregory, 2005; Nguyen and Seifert, 2008).

In Lycoperdon sp. 5, specimens UFRN-Fungos 152 and UFRN-Fungos 300 show the same morphological features, and the differences in the tree topologies are not due to sequence length, but in some ambiguous bases that made that these sequences to not group together in the NJ tree. In the MP and Bayesian analyses, these specimens appear together within L. endotephrum and L. hyemale sequences. These species are morphologically different. In these cases, some more markers are needed to discriminate both species. As suggested by Stielow et al. (2015), the TEF1α marker could improve the discrimination of Lycoperdon species.

Demoulin (1972b) using only morphological data proposed an artificial phylogeny of Lycoperdon species. The features such as exoperidium falling off, basidiospores smooth/punctate to slightly verrucose [A-B] placed the species L. marginatum, L. calvescens and Vascellum spp. as closest taxa to L. perlatum and L. norvegicum. Although our study is not related to phylogenetic relationship among Lycoperdon species, the NJ tree based on ITS also includes L. perlatum, L. norvegicum and L. marginatum as nearby species.

The groups Lycoperdon atropurpureum, L. molle and L. umbrinum, have occasioned some disagrements among taxonomists. In the taxonomic section of this paper, only L. umbrinum is described and discussed, since no specimens of L. atropurpureum nor of L. molle were studied from South America, although they were studied in Chapter 1. Lycoperdon atropurpureum has been treated as a good species by many mycologists (Massee, 1887; Lloyd, 1905a; b; Coker and Couch, 1928); however Perdeck (1950) synonymized it to L. molle. Demoulin (1972b) did not agree with Perdeck’s work, and treated L. molle and L. atropurpureum as distinct species, but called caution to L. atropurpureum since it can be confused with L. molle and L. decipiens.

197

Additionally, Demoulin, (1968b) and Demoulin and Schumacker (1972) have considered as a Lycoperdon-Molle group the species: L. atropurpureum, L. molle and L. umbrinum. Calonge (1998), has considered Lycoperdon decipiens as synonymous of L. atropurpureum, deciding not to follow the concepts of Jeppson and Demoulin (1989) that treated them as separate species. Afterward, the molecular analyses based on ITS and LSU regions, confirmed those morphological studies that treated them as distinct species (Larsson and Jeppson, 2008). Both in Chapter 1, and in this study, L. atropurpureum, L. molle and L. umbrinum are resolved as distinct species.

The analyses of the ITS barcode also help to find misidentifications, such as in the case of the specimen UFRN-Fungos 2275 that was previously labelled under L. ericaeum; however, the position in the molecular trees, and a second revision of the morphological features, spines of exoperidium with slender and convergent tips, and basidiospores [A] (Demoulin 1972b; Pegler et al. 1995), confirmed this specimen as belonging to L. nigrescens.

198

5 CONCLUSIONS

- In the present work, the use of DNA barcode based on ITS region to separate species of Lycoperdon showed promise; however, it would be necessary to improve some protocols to obtain the barcode sequences from those precious specimens (e.g. types) for which no barcode sequence has yet been obtained.

- As in other organisms, the number of Lycoperdon species studied with a world wide distribution is reduced (7); although the number of species studied from both Hemispheres is similar (21 studied from Northern Hemisphere vs. 19 from Southern Hemisphere).

- Even though the barcode analysis helps to discriminate among species, and to detect cryptic species, morphological taxonomy continues being essential in discriminate species when the sequences are identical or when it is not possible to obtain them. As mentioned in Hebert and Barrett (2005) the partnership between “barcoders” and alpha taxonomists has to continue in order to advance the understanding of species diversity.

199

REFERENCES

ALFREDO, D.S., J.O. SOUSA, E.J. SOUZA, L.M.N. CONRADO, and I.G. BASEIA. 2016. Novelties of gasteroid fungi, earthstars and puffballs, from the Brazilian Atlantic rainforest. Anales del Jardín Botánico de Madrid 73: 45.

ALTSCHUL, S.F., T.L. MADDEN, A.A. SCHÄFFER, J. ZHANG, Z. ZHANG, W. MILLER, and

D.J. LIPMAN. 1997. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

BALDWIN, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the compositae. Molecular Phylogenetics and Evolution 1: 3–16.

BASEIA, I.G. 2005. Some notes on the genera Bovista and Lycoperdon (Lycoperdaceae) in Brazil. Mycotaxon 91: 81–86.

BERGSTEN, J., D.T. BILTON, T. FUJISAWA, M. ELLIOTT, M.T. MONAGHAN, M. BALKE, L.

HENDRICH, ET AL. 2012. The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61: 851–869.

BERKELEY, M.J. 1873. Notices of North American fungi. Grevillea 2: 49–53.

BISHT, D., J.R. SHARMA, H. KREISEL, and K. DAS. 2006. A new species and a new record of Lycoperdaceae from india. Mycotaxon 95: 91–96.

BONONI, V.L.R., G. GUZMÁN, and M. CAPELARI. 1984. Basidiomicetos do Parque Estadual da Ilha do Cardoso, V: Gasteromicetos. Rickia 11: 91–97.

BONONI, V.L.R., S.F.B. TRUFEM, and R. A. P. GRANDI. 1981. Fungos macroscópicos do Parque Estadual das Fontes do Ipiranga, São Paulo, Brasil, depositados no Herbário do Instituto de Botânica. Rickia 9: 37–53.

BONORDEN, H.F. 1857. Die Gattungen Lycoperdon, Bovista und ihr Bau.

BOTTOMLEY, A.M. 1948. Gasteromycetes of South Africa. Bothalia 4: 473–810.

BOWERMAN, C. 1961. Lycoperdon in Eastern Canada With Special Reference To The Ottawa District. Canadian Journal of Botanyof Botany 39: 353–383.

200

BRUNS, T.D., R. FOGEL, T. WHITE, and J.D. PALMER. 1989. Accelerated evolution of a fulse-truffe from a mushroom ancestor. Nature 339: 140–142.

CALONGE, F.D. 1998. Gasteromycetes, I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica.

CALONGE, F.D., and V. DEMOULIN. 1975. Les Gastéromycètes D’Espagne. Bulletin de la Sociéé Mycologique de France 91: 247–292.

CALONGE, F.D., A. GONZÁLEZ, and F. PRIETO-GARCÍA. 2006. Aproximation towards the catalogue of Gasteromycetes s.l. of Castilla-La Mancha. Bol. Soc. Micol. Madrid 30: 99–110.

CALONGE, F.D., M. MATA, and J. CARRANZA. 2005. Contribución al catálogo de los Gasteromycetes (Basidiomycotina, Fungi) de Costa Rica. Anales del Jardin Botánico de Madrid 62: 23–45.

CBOL, P.W.G. 2009. A DNA barcode for land plants. PNAS academy 106: 12794– 12797.

CHEN, S., H. YAO, J. HAN, C. LIU, J. SONG, L. SHI, Y. ZHU, ET AL. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5: 1–8.

COKER, W.C., and J.N. COUCH. 1928. The Gasteromycetes of the Eastern United States and Canada. The University of North Carolina Press, Chapel Hill.

CORTEZ, V.C., I.G. BASEIA, and R.M.B. SILVEIRA. 2008. Gasteromicetos (Basidiomycota) no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6: 291–299.

CORTEZ, V.G., I.G. BASEIA, R.T. GUERRERI, and R.M.B. SILVEIRA. 2008. Two sequestrate cortinaroid fungi from Rio Grande do Sul, Brazil. Hoehnea 35: 513– 518.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2013. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Lycoperdon and Vascellum. Mycosphere 4: 745–758.

201

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2011. Lycoperdon ovoidisporum sp. nov. from Brazil. Sydowia 63: 1–7.

CUNNINGHAM, G.H. 1926. Lycoperdaceae of New Zealand. Transactions of the New Zealand Institute 57: 187–217.

CUNNINGHAM, G.H. 1944. The Gasteromycetes of Australia and new Zealand. John McIndoe, Dunedin, N.Z.

DEMOULIN, V. 1968a. Gasteromycetes de Belgique Sclerodermatales, Tulostomatales, Lycoperdales. Bulletin du Jardin botanique national de Belgique 38: 1–101.

DEMOULIN, V. 1968b. Taxonomical criteria in the european Lycoperdon and the problem of L. umbrinum and related species. In Das Art und Rassenproblem bei Pilzen, Internationales Symposium der Biologischen Gesellschaft in der D.D.R., 111–116.

DEMOULIN, V. 1970. La typification des Lycoperdon décrits par Persoon. Lejeunia 55: 1–20.

DEMOULIN, V. 1971. Lycoperdon norvegicum Demoulin sp. nov. A new Gasteromycete with Boreo-Continental Distribution in Europe and North America. Norw. J. Bot. 18: 161–167.

DEMOULIN, V. 1972a. Espèces nouvelles ou méconnues du genre Lycoperdon (Gastéromycètes). Lejeunia 62: 1–27.

DEMOULIN, V. 1972b. Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique.

DEMOULIN, V. 1973a. Definition and typification of genus Lycoperdon Tourn. per Pers. (Gasteromycdetes). Persoonia 7: 151–154.

DEMOULIN, V. 1973b. Phytogeography of the fungal genus Lycoperdon in relation to the opening of the Atlantic. Nature 242: 123–125.

DEMOULIN, V. 1976. Species od Lycoperdon with a setose exoperidium. Mycotaxon 3: 275–296.

202

DEMOULIN, V. 1979. The Typification of Lycoperdon described by Peck and Morgan. Sydowia 66: 139–151.

DEMOULIN, V. 1983. Clé de Détermination des espèces du genre Lycoperdon présentes dans le Sud de l’Europe. Revista fr Biologia 12: 65–70.

DEMOULIN, V., and D.M. DRING. 1975. Gasteromycetes of Kivu (Zaire), Rwanda and Burundi. Bulletin du Jardin botanique national de Belgique 45: 339–372.

DEMOULIN, V., and R. SCHUMACKER. 1972. Utilisation du traitement de Linformation par ordinateur dans la taxonomie du groupe de Lycoperdon umbrinum - L. molle (Gasteromycetes, Fungi). Bulletin de la Société royale de Botanique de Belgique, Tome 105: 265–287.

DENNIS, R.W. 1953. Some West Indian Gasteromycetes. Kew Bulletin 8: 307–328.

DENTINGER, B.T.M., M.Y. DIDUKH, and J.M. MONCALVO. 2011. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS ONE 6: 1–8.

DESALLE, R., M.G. EGAN, and M. SIDDALL. 2005. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360: 1905–16.

DIOS, M.M., E. ALBERTÓ, and G. MORENO. 2011. Catálogo de hongos gasteroides (Basidiomycota) de Catamarca, Argentina. Boletín de la Sociedad Argentina de Botánica 46: 5–11.

DISSING, H., and M. LANGE. 1962. Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’État a Bruxelles 32: 325–416.

DOMÍNGUEZ DE TOLEDO, L.D. 1993. Gasteromycetes (Eumycota) del centro y oeste de la Argentina. I analisis critico de los caracteres taxonomicos clave de los generos y orden Podaxales. Darwiniana 32: 195–235.

DOMÍNGUEZ DE TOLEDO, L.S. 1989. Contribucion al conocimiento de Gasteromycetes del centro de Argentina. Universidad Nacional de Córdoba.

203

DRING, D.M. 1964. Gasteromycetes of West Tropical Africa. Mycological Papers 98: 1–60.

DRUZHININA, I.S., A.G. KOPCHINSKIY, M. KOMON, J. BISSETT, G. SZAKACS, and C.P.

KUBICEK. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology 42: 813–828.

FARRIS, J.S. 1989. The Retention Index and the Rescaled Consistency Index. Cladistics 5: 417–419.

FELSENSTEIN, J. 1985. Use of Bootstrap in phylogenetic calculations. Evolution 39: 783–791.

FRIES, E. 1829. Systematic Mycologicum, III, sec I.

GALTIER, N., M. GOUY, and C. GAUTIER. 1996. SEA VIEW and PHYLO_ WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences: CABIOS 12: 543–548.

GARDES, M., and T.D. BRUNS. 1993. ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.

GARNER, J.H.B. 1956. Gasteromycetes from Panama and Costa Rica. Mycologia 48: 757–764.

GOUY, M., S. GUINDON, and O. GASCUEL. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular biology and evolution 27: 221–224.

HEBERT, P.D.., and R.D.H. BARRETT. 2005. Reply to the comment by L. Prendini on “Identifying spiders through DNA barcode.” Canadian Journal of Zoology 83: 505–506.

HEBERT, P.D.N., A. CYWINSKA, S.L. BALL, and J.R. DEWAARD. 2003. Biological identifications through DNA barcode. Proceedings. Biological sciences / The Royal Society 270: 313–21.

204

HEBERT, P.D.N., and T.R. GREGORY. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54: 852–859.

HEBERT, P.D.N., M.Y. STOECKLE, T.S. ZEMLAK, and C.M. FRANCIS. 2004. Identification of birds through DNA barcode. PLoS Biology 2: 1657–1663.

HENNINGS, V.P. 1904a. Fungi amazonici I. a. cl. Ernesto Ule collecti. Hedwigia 43: 154–186.

HENNINGS, V.P. 1904b. Fungi Paulenses III. a cl. Puttemans collecti. Hedwigia 43: 197– 209.

HERRERA, T. 1964. Especies de Lycoperdon del Valle de Mexico. Anales del Instituto de Biologia 34: 43–68.

HIBBETT, D.S., E.M. PINE, E. LANGER, G. LANGER, and M.J. DONOGHUE. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 94: 12002–12006.

HOMRICH, M.H. 1975. O gênero Vascellum Smarda na America do Sul Meridional. Universidade Federal do Rio Grande do Sul.

HOMRICH, M.H., and J.E. WRIGHT. 1988. South American Gasteromycetes. II. The Genus Vascellum Šmarda. Canadian Journal of Botany 66: 1285–1307.

HONRUBIA, M., F.D. CALONGE, V. DEMOULIN, G. MORENO, and X. LLIMONA. 1982. Aportación al conocimiento de los hongos de SE. de España VI: Esclerodermatales, Licoperdales, Nidualriales, Falales, Himenogastrales,, Podaxales (Gasteromicetes, Basidiomicetes). Anales de la Universidad de Murcia 38: 101’132.

HUBERT, N., R. HANNER, E. HOLM, N.E. MANDRAK, E. TAYLOR, M. BURRIDGE, D.

WATKINSON, ET AL. 2008. Identifying Canadian freshwater fishes through DNA barcode. PLoS ONE 3:

HUELSENBECK, J.P., and F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17: 754–5.

205

JANZEN, D.H., M. HAJIBABAEI, J.M. BURNS, W. HALLWACHS, E. REMIGIO, and P.D.N.

HEBERT. 2005. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1835–1845.

JEPPSON, M., and V. DEMOULIN. 1989. Lycoperdon atropurpureum found in Sweden. Opera Botanica 100: 131–134.

JEPPSON, M., E. LARSSON, and M.P. MARTÍN. 2012. Lycoperdon rupicola and L. subumbrinum: Two new puffballs from Europe. Mycological Progress 11: 887– 897.

KIM, C.S.U.N., J.W.O.N. JO, Y. KWAG, G. SUNG, J. HAN, B. SHRESTHA, S. OH, ET AL. 2016. Two new Lycoperdon species collected from Korea: L. albiperidium and L. subperlatum spp. nov. Phytotaxa 260: 101–115.

KIRK, P.M., P.F. CANNON, D.W. MINTER, and J.A. STALPERS. 2008. Dictionary of The Fungi. 10th editi. P. M. Kirk, P. F. Cannon, D. W. Minter, and J. A. Stalpers [eds.],. CABI Europe, Wallingford.

KLUGE, A.G., and J.S. FARRIS. 1969. Quantitative phyletics and theevolution of anurans. Systematic Zoology 18: 1–32.

KOBAYASI, Y. 1937. Fungi Austro-Japonie et Micronesiae. II. The Botanical Magazine 51: 797–804.

KREISEL, H. 1973. Die Lycoperdaceae der DDR. Bibliotheca Mycologica 36: 1–197.

KREISEL, H., and D.M. DRING. 1967. An emendation of the genus Morganella Zeller (Lycoperdaceae). Feddes Repertorium 74: 109–122.

KRESS, W.. J., K.J. WURDACK, E.A. ZIMMER, L.A. WEIGT, and D.H. JANZEN. 2005. Use of DNA barcode to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369–74.

KRÜGER, D., M. BINDER, M. FISCHER, and H. KREISEL. 2001. The Lycoperdales. A molecular approach to the systematics of some gasteroid mushrooms. Mycologia 93: 947–957.

206

KRÜGER, D., and H. KREISEL. 2003. Proposing Morganella subgen Apioperdon subgen nov for the puffball Lycoperdon pyriforme.pdf. Mycotaxon 86: 169–177.

KUMLA, J., N. SUWANNARACH, B. BUSSABAN, and S. LUMYONG. 2013. New report of Morganella purpurascens in Thailand. Mycoscience1–4.

KÜPPERS, H. 2002. Atlas de los colores. 1 st. C. R. Fischer [ed.],. Blume, Barcelona.

LARGET, B., and L. SIMON. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees Markov chain Monte Carlo. Mol. Biol./ Evol. 16: 750–759.

LARSSON, E., and M. JEPPSON. 2008. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycological Research 112: 4–22.

LLOYD, C.G. 1905a. The genus Lycoperdon in Europe. Mycological Notes205–217.

LLOYD, C.G. 1905b. The Lycoperdon of the United States. Mycological Notes221–237.

LÓPEZ-QUINTERO, C.A., A.M. VASCO-PALACIOS, and A.E. FRANCO-MOLANO. 2011. MACROMICETES RECOLECTADOS EN ZONAS URBANAS DE MEDELLÍN ( ANTIOQUIA ). Actual Biol 33: 261–274.

MARTIN, M.P., and K. WINKA. 2000. Alternatice methods of extracting and amplify of DNA from Lichens. Lichenologist 32: 189–196.

MASSEE, G. 1887. A Monography of the genus Lycoperdon (Tournef.) Fr. Transactions of the Society 7: 701–727.

MEIER, R., K. SHIYANG, G. VAIDYA, and P.K.L. NG. 2006. DNA Barcoding and Taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Systematic Bio 55: 715–728.

MEYER, C.P., and G. PAULAY. 2005. DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3: 1–10.

MIN, X.J., and D.A. HICKEY. 2007. Assessing the effect of varying sequence length on DNA barcoding of fungi: Barcoding. Molecular Ecology Notes 7: 365–373.

207

MORENO, G., M. LIZÁRRAGA, M. ESQUEDA, and M.L. CORONADO. 2010. Contribution to the study of gasteroid and secotioid fungi of Chihuahua, Mexico. Mycotaxon 112: 291–315.

MORGAN, A.P. 1891. North American Fungi. The Cinccinati Society of Natural History 14: 1–73.

MOYERSOEN, B., and V. DEMOULIN. 1996. Les Gastéromyètes de Corse: Taxonomie, écologie, chorologie. Lejeunia 152: 1–128.

NGUYEN, H.D.T., and K.A. SEIFERT. 2008. Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia: Molecular Phylogeny and Evolution of Fungi 21: 57–69.

NILSSON, R.H., E. KRISTIANSSON, M. RYBERG, N. HALLENBERG, and K.H. LARSSON. 2008. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 2008: 193–201.

NILSSON, R.H., M. RYBERG, K. ABARENKOV, E. SJÖKVIST, and E. KRISTIANSSON. 2009. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters 296: 97–101.

NYLANDER, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Uppsala University.

O’BRIEN, H.E., J.L. PARRENT, J.A. JACKSON, J.-M. MONCALVO, and R. VILGALYS. 2005. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Applied and Environmental Microbiology 71: 5544–5550.

PEGLER, D.N., T. LAESSOE, and B.M. SPOONER. 1995. British puffballs, earthstars and stinkhorns. An account of the British gasteroid fungi. 1 st. Royal Botanic Gardens, Kew.

PERDECK, A.C. 1950. Revision of the Lycoperdaceae of the Netherlands. Blumae 6: 480–516.

PILÁT, A. 1958. Gasteromycetes. Praha.

208

PONCE DE LEÓN, P. 1971. Revision of the genus Morganella (Lycoperdaceae). Fieldiana: Botany 31: 27–44.

PONCE DE LEÓN, P. 1970. Revision of the genus Vascellum. Fieldiana: Botany 32: 109– 125.

RAMADAN, H.A.I., and N. BAESHEN. 2012. Biological identifications through DNA barcode. In G. GA [ed.], Biodiversity Conservation and Utilization in a Diverse World, 109–128. In Tech.

REHNER, S.A., and E. BUCKLEY. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98.

REID, D.A. 1977. Some Gasteromycetes from Trinidad and Tobago. Kew Bulletin 31: 657–690.

RICK, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasilia. Iheringia, Sér. Bot. 9: 451–480.

RICK, J. 1930. Lycoperdineas riograndenses. Egateae 15: 19–30.

ROCABADO, D., J.E. WRIGHT, O.Z. MAILLARD, and N.F. MUCHENIK. 2007. Catalogo de los Gasteromycetes (Fungi: Basidiomycota) de Bolivia. Kempffiana 3: 3–13.

RODRÍGUEZ, F., J.L. OLIVER, A. MARÍN, and J.R. MEDINA. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

RODRÍGUEZ, M., and T. HERRERA. 1970. Algunas especies de Lycoperdaceae para Mexico. Boletín de la Sociedad Mexico Micologia 4: 1–19.

RONQUIST, F., and J.P. HUELSENBECK. 2003. MRBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

SACCARDO, P.A. 1888. Gasteromyceteae, Phycomyceteae, Myxomyceteae, Ustilagineae et Uredineae.

SARASINI, M. 2005. Gasteromiceti epigei. Associazione Micologica Bresadola, Trento.

209

SCHAEFFER, J.C. 1774. No Title Fungorum Bavaria et Palatinatu. Ratisbonae.

SCHOCH, C.L., K.A. SEIFERT, S. HUHNDORF, V. ROBERT, J.L. SPOUGE, C.A. LEVESQUE,

W. CHEN, ET AL. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109: 6241–6246.

SEIFERT, K.A., R.A. SAMSON, J.R. DEWAARD, J. HOUBRAKEN, C.A. LÉVESQUE, J.-M.

MONCALVO, G. LOUIS-SEIZE, and P.D.N. HEBERT. 2007. Prospects for fungus identification using CO1 DNA barcode, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America 104: 3901–3906.

SHARMA, B.M. 1991. A new species of Lycoperdon from India. Mycological Research 95: 1144–1145.

SIABATTO, H.D.F. 2005. Registro preliminar de Basidiomycetes del Páramo de Ocetá Monguí-Boyacá Colombia. In IV Encuentro Científico de Estudiantes de Biología, 148.

SILVA, B.D.B., J.O. SOUSA, and I.G. BASEIA. 2011. Discovery of Geastrum xerophilum from the Neotropic. Sciences-New York 118: 355–359.

SILVA, B.D.B., M.A. SULZBACHER, and I.G. BASEIA. 2014. Metodologia. In I. G. Baseia, B. D. B. Silva, and R. H. S. F. Cruz [eds.], Fungos Gasteroides no Semiárido do Nordeste Brasileiro, 132. Print Mídia, Feira de Santana.

SMITH, A. 1974. The genus Vascellum (Lycoperdaceae) in the United States. Bulletin de la Société Linnéenne de Lyon 43: 63–133.

SPEGAZZINI, C. 1898. Fungi Argentini novi v. critici. Anales Museum Nacional de Histaria Naturales de Buenos Aires 6: 81–3667.

STEARN, W.T. 2010. Botanical Latin. Fourth. W. T. Stearn [ed.],. Timber Press, Portland.

STIELOW, J.B., C.A. LEVESQUE, K.A. SEIFERT, W. MEYER, L. IRINYI, D. SMITS, R.

RENFURM, ET AL. 2015. One fungus, which genes? Development and assessment of

210

universal primers for potential secondary fungal DNA barcode. Persoonia 35: 242–263.

SUÁREZ, V.L., and J.E. WRIGHT. 1996. South American Gasteromycetes V : The genus Morganella. Mycologia 88: 655–661.

SUWANNASAI, N., M.P. MARTÍN, C. PHOSRI, P. SIHANONTH, A.J.S. WHALLEY, and J.L.

SPOUGE. 2013. Fungi in Thailand: A case study of the efficacy of an ITS Barcode for Automatically Identifying Species within the Annulohypoxylon and Hypoxylon Genera. PLoS ONE 8: e54529.

SWOFFORD, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other methods). Sinauer Associates, Massachsetts.

SYDOW, V.H., and P. SYDOW. 1907. Verzeichnis der von Herrn F. Noack in Brasilien gesammelten Pilze. Annales Mycologici 5: 348–363.

WHITE, T.J., S. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications315–322.

WRIGTH, J.E., B. LECHNER, and O. POPOFF. 2008. Atlas pictório de los hongos del Parque Nacional Iguazú. J. E. Wright, B. Lechner, and O. Popoff [eds.],. LOLA, Buenos Aires.

ZELLER, S.M. 1948. Notes on certain Gasteromycetes, including two new Orders. Mycologia 40: 639–668.

211

Table 5 All specimens used in this study with voucher number, country and Genbank Accession Numbers when available. C: Calvatia; L: Lycoperdon; M: Morganella; V: Vascellum. In black, the new sequences generated in this study, from some of them Genbank Accession Numbers (Acc. N.) are not obtained yet. NP: No herbarium permission to molecular studies; NT: Not DNA isolation; C: sequences obtained do not belong to Lycoperdon, different contamination; : not successful amplifications are indicated or not good sequences were not obtained.

Species Specimens Country GenBank Acc. Number L. albiperidium KA12-1551 South Korea KP340183 L. albiperidium KA12-1210 South Korea KP340182 L. altimontanum MJ 4270 Norway DQ122588 L. altimontanum Dobremez – holotypus Nepal DQ112589 L. altimontanum MA-Fungi 63392 France KX686860 L. altimontanum MC-Fungi 05-787 Macedonia KX686859 L. atropurpureum MJ 3269 Sweden DQ112586 L. atropurpureum MA-Fungi 63389 France KX686841 L. atropurpureum MA-Fungi 38535 Spain KX686842 L. atropurpureum MC-Fungi 08-10194 Macedonia KX686834 L. atropurpureum MC-Fungi 08-10227 Macedonia KX686838 L. atropurpureum MC-Fungi 08-10122 Macedonia KX686840 L. atropurpureum MC-Fungi 05-2233 Macedonia KX686843 L. atropurpureum MC-Fungi 99-10248 Macedonia KX686835 L. atropurpureum MC-Fungi 06-10067 Macedonia KX686837 L. atropurpureum MC-Fungi 89-9572 Macedonia KX686836 L. atropurpureum MC-Fungi 87-7733 Macedonia KX686839 L. atrum (as L. juruense) UFRN-Fungos 825 Brazil Acc. N. L. atrum (as L. juruense) UFRN-Fungos 832 Brazil Acc. N. L. atrum HUH 00373703 Brazil NP L. atrum (as L. juruense) HUH 00373794 Brazil NP L. atrum (as L. decipiens) HUH 00373795 Brazil NP L. atrum (as L. decipiens) HUH 00373796 Brazil NP L. atrum (as L. decipiens) HUH 00373798 Brazil NP L. atrum (as L. juruense) PACA 13791 Brazil C L. atrum (as L. juruense) PACA 13773 Brazil C L. atrum (as L. juruense) PACA 13788 Brazil C L. atrum BAFC s/n Argentina  L. calvescens (as L. pyriforme) HUH 00373989 Uruguay NP L. calvescens (as L. pyriforme) NY 0071974 Uruguay  L. calvescens (as L. pyriforme) NY 0071975 Uruguay  L. calvescens (as L. curtisii) CORDC 191 (CORD 997) Argentina  L. caudatum RG 920818 Sweden DQ112633 L. cretaceum MJ 4105 Iceland DQ112597 L. cretaceum MJ 4302 Norway DQ112598 L. curtisii (as L. wrightii) PACA 21636 USA C L. curtisii (as L. wrightii) HUH 00373747 Brazil NP L. curtisii VDEMOULIN 4073 USA  L. curtsii (as L. vanderystii) K (M): 200237 Brazil  L. decipiens MJ 7715 Sweden DQ112583 L. decipiens MA-Fungi 27674 Spain KX686855 L. decipiens MA-Fungi 63390 France KX686856

212

L. decipiens MA-Fungi I 45055 Spain KX686857 L. dermoxanthum MJ 4568 Sweden DQ112579 L. echinatum MJ 6498 Sweden DQ112578 L. echinatum MA-Fungi 39586 Spain KX686881 L. echinatum MA-Fungi 84507 Spain KX686882 L. echinatum MC-Fungi 05-782 Macedonia KX686875 L. echinatum MC-Fungi 05-5160 Macedonia KX686876 L. echinatum MC-Fungi 06-5916 Macedonia KX686879 L. echinatum MC-Fungi 06-9676 Macedonia KX686880 L. echinatum MC-Fungi 05-5376 Macedonia KX686877 L. echinatum MC-Fungi 06-5900 Macedonia KX686878 L. endotephrum LG 72RW1006 Isotype? Rwanda Acc. N. L. endotephrum (as V. hyalinum) ICN 154482 Brazil Acc. N. L. endotephrum (as Morganella sp.) UFRN-Fungos 814 Brazil Acc. N. L. endotephrum (as V. vanderystii) K (M): 19869 Brazil Acc. N. L. endotephrum (as V. curtisii) K (M): 200182 Brazil Acc. N. L. ericaeum MJ 4866 Sweden MJ 4866 L. ericaeum MJ 5395 Sweden DQ112605 L. ericaeum MA-Fungi 63393 USA KX686883 L. ericaeum KA12-0761 South Korea KP340184 L. ericaeum KA13-1463 South Korea KP340185 L. excipuliforme MJ 6467 Sweden DQ112590 L. excipuliforme MC-Fungi 98-10138 Macedonia KX686861 L. excipuliforme MC-Fungi 08-10217 Macedonia KX686862 L. excipuliforme MC-Fungi 06-6224 Macedonia KX686863 L. excipuliforme MC-Fungi 03-2892 Macedonia KX686864 L. excipuliforme MC-Fungi 06-9715 Macedonia KX686865 L. excipuliforme MC-Fungi 08-10049 Macedonia KX686866 L. eximium (as L. spadicieum) HUH 374007 Brazil NP L. eximium (as L. pyriforme) NY 0071978 Venezuela  L. frigidum Lange 901009 Greenland DQ112563 L. frigidum MJ 4088 Iceland DQ112564 L. frigidum MJ 4273 Norway DQ112562 L. frigidum Lange 191 Svalbard DQ112559 L. frigidum MJ 7716 Sweden DQ112561 L. lambinonii Demoulin 4622 Belgium DQ112575 L. lambinonii MJ 5245 Norway DQ112576 L. lambinonii MC-Fungi 05-10226 Macedonia KX686867 L. lividum Dobremez 19740514 Nepal DQ112599 L. lividum MJ 4005 Sweden DQ112600 L. lividum MA-Fungi 19219 Spain KX686873 L. lividum MA-Fungi 68346 Spain KX686871 L. lividum MA-Fungi 68348 Spain KX686874 L. lividum MC-Fungi 05-10007 Macedonia KX686872 L. lividum MC-Fungi 05-5323 Macedonia KX686868 L. lividum MC-Fungi 02-3594 Macedonia KX686869 L. lividum MC-Fungi 08-10040 Macedonia KX686870 L. lividum (as L. fuscum) PACA 13775 Brazil C L. lividum (as L. perlatum) NY 0071655 Colômbia C L. mammiforme MJ 4841 Sweden DQ112567

213

L. mammiforme KA12-1179 South Korea KP340187 L. mammiforme MA-Fungi 24103 Spain KX686831 L. mammiforme MA-Fungi 31251 Spain KX686827 L. mammiforme MC-Fungi 05-773 Macedonia KX686833 L. marginatum Anderson & Parker 750822 USA DQ112632 L. marginatum MA-Fungi 31252 Spain KX686827 L. marginatum MA-Fungi 34063 Spain KX686828 L. marginatum (as L. pampeanum) CORDC 374 (CORD72) Argentina Acc. N. L. marginatum (as L. candidum) NY00398532 Colombia Acc. N. L. marginatum (as L. cruciatumi) NY00398533 Uruguay Acc. N. L. marginatum (as C. cruciata) HUH 00373825 Brazil NP L. marginatum HUH 00373827 Argentina NP L. marginatum (as L. cruciatum) HUH 00373829 Uruguay NP L. marginatum PACA 12527 Brazil NT L. marginatum PACA 12533 Brazil NT L. marginatum PACA 12534 Brazil NT L. marginatum (as L. pulcherrimum) PACA 13779 Brazil NT L. marginatum (as L. stellatum) PACA 13794 Brazil NT L. marginatum PACA 20848 Brazil NT L. marginatum K (M): 200242 Uruguay  L. marginatum (as Lycoperdon sp.) NY 00340572 Ecuador C L. marginatum (as L. texense) HUH 00372120 Argentina NT L. marginatum (as V. pampeanum) CORDC 314 (CORD 272) Argentina C L. marginatum (as L. texense) CORDC 839 (CORD573) Argentina Acc. N. L. marginatum (as V. pampeanum) CORD 756 Argentina C L. mauryanum VDEMOULIN 1570- Guatemala Acc. N. Paratype L. melanesicum NY00795902 - Type Fiji Acc. N. L. molle MJ 4260 Norway DQ122566 L. molle MJ 4557 Sweden DQ112565 L. molle MA-Fungi 73601 Greece KX686853 L. molle MA-Fungi 31259 Spain KX686850 L. molle MA-Fungi 31618 Portugal KX686851 L. molle MA-Fungi 21623 Spain KX686852 L. molle MA-Fungi 21737 Spain KX686854 L. molle MC-Fungi 06-5918 Macedonia KX686844 L. molle MC-Fungi 05-5380 Macedonia KX686845 L. muscorum MJ 7717 Sweden DQ112604 L. nigrescens MJ 5376 Sweden DQ122577 L. nigrescens MA-Fungi 22012 Spain KX686889 L. nigrescens MA-Fungi 31296 Spain KX686891 L. nigrescens MA-Fungi 39587 Spain KX686890 L. nigrescens UFRN-Fungos 2275 Argentina Acc. N. L. nigrescens KA13-1471 South Korea KP340188 L. nigrescens (as L. perlatum) HUH 00373907 Brazil NP L. nigrescens (as L. perlatum) PACA 13774 Brazil C L. nigrescens (as L. spadiceum) PACA 13783 Brazil C L. nigrescens (as L. rimulatum) PACA 13796 Brazil C L. nigrescens (as L. perlatum) BAFC 50177 Argentina  L. nigrescens (as L. foetidum) BAFC 50186 Argentina 

214

L. nigrescens (as L. perlatum) BAFC 51008 Argentina  L. nigrescens (as L. perlatum) NY 0071657 Colombia  L. niveum MJ 4109 Iceland DQ112570 L. niveum MJ 4068 Iceland DQ112571 L. niveum MJ 484 Iceland DQ112568 L. cf. niveum MJ 5594 Sweden DQ112572 L. niveum MJ 5267 Norway DQ112569 L. niveum MA-Fungi 21618 Spain KX686848 L. niveum MA-Fungi 63397 Norway KX686847 L. niveum MC-Fungi 06-5915 Macedonia KX686849 L. niveum MC-Fungi 02-10008 Macedonia KX686846 L. norvegicum MJ 5453 Sweden DQ112631 L. ovoidisporum (as cf. Calvatia) UFRN-Fungos 867 Brazil Acc. N. L. ovoidisporum (as Lycoperdon sp.) VDEMOULIN ex De Brazil Acc. N. Meijer103a L. ovoidisporum (as Lycoperdon sp.) PACA 13771 Brazil C L. ovoidisporum (as L. brasiliense) PACA 13805 Brazil C L. ovoidisporum (as L. gemmatum) CORDC 182 (CORD 510) Argentina  L. perlatum MJ 4684 Sweden DQ112630 L. perlatum MA-Fungi 29732 Spain KX686826 L. perlatum MA-Fungi 31233 Spain KX686825 L. perlatum MA-Fungi 31253 Spain KX686824 L. perlatum MA-Fungi 64953 Spain KX686808 L. perlatum MA-Fungi 32181 Spain Acc. N. L. perlatum MA-Fungi 68352 Spain Acc. N. L. perlatum MC-Fungi 03-10225 Macedonia KX686814 L. perlatum MC-Fungi 06-5917 Macedonia KX686816 L. perlatum MC-Fungi 07-6663 Macedonia KX686822 L. perlatum MC-Fungi 87-7735 Macedonia KX686812 L. perlatum MC-Fungi 02-2389 Macedonia KX686811 L. perlatum MC-Fungi 90-10234 Macedonia KX686813 L. perlatum MC-Fungi 02-2995 Macedonia KX686815 L. perlatum MC-Fungi 08-10055 Macedonia KX686817 L. perlatum MC-Fungi 08-10119 Macedonia KX686820 L. perlatum MC-Fungi 08-10035 Macedonia KX686821 L. perlatum MC-Fungi 07-10144 Macedonia KX686823 L. perlatum MC-Fungi 05-5316 Macedonia KX686809 L. perlatum MC-Fungi 08-10209 Macedonia KX686810 L. perlatum MC-Fungi 07-7207 Macedonia KX686818 L. perlatum MC-Fungi 05-9247 Macedonia KX686819 L. perlatum VDEMOULIN ex Brazil Acc. N. DeMeijer206 L. perlatum UFRN-Fungos 811 Brazil Acc. N. L. perlatum (as L. lambinonii) UFRN-Fungos 2335 Brazil Acc. N. L. perlatum UFRN-Fungos 2273 Argentina Acc. N. L. perlatum UFRN-Fungos 2274 Argentina Acc. N. L. perlatum (as L. ericaeum) KW 200236 Ecuador Acc. N. L. perlatum UFRN-Fungos (2829) Brazil Acc. N. L. perlatum UFRN-Fungos 2272 Argentina Acc. N.

215

L. perlatum VDEMOULIN ex ENCB Mexico Acc. N. 2223 L. perlatum VDEMOULIN ex ENCB Mexico Acc. N. 1533 L. perlatum (as L. pyriforme) VDEMOULIN ex ENCB U87 Mexico Acc. N. L. perlatum KA13-0555 South Korea KP340193 L. perlatum KA12-0871 South Korea KP340190 L. perlatum (as L. gemmatum) PACA 20088 Brazil C L. perlatum PACA 13789 Brazil C L. perlatum BAFC 28012 Argentina C L. perlatum PACA 13795 Uruguay C L. perlatum HUH 00373892 Colombia NP L. perlatum HUH 00373903 Brazil NP L. perlatum (as L. pseudogemmatum) HUH 00373916 Brazil NP L. perlatum BAFC 32162 Argentina  L. perlatum BAFC 34025 Argentina  L. perlatum K(M):200240 Venezuela  L. perlatum (as L. excipuliforme) K (I.M.I 28707) USA  L. perlatum K (M): 200238 Brazil NT L. perlatum K (M): 200239 Venezuela NT L. perlatum (as L. pseudogemmatum) K (M): 200241- Type Paraguay  L. perlatum VDEMOULIN ex ENCB 2633 Mexico  L. perlatum NY 0071656 Colombia  L.perlatum (as L. pseudogemmatum) NY 00793106 Venezuela  L. pratense (as L. hiemale) HUH 00373786 Uruguay NP L. pratense MJ 5880 Czechia DQ112556 L. pratense MJ 4864 Sweden DQ112554 L. pratense SAHanson 20000915 Russia DQ112555 L. pratense MC-Fungi 08-10114 Macedonia KX686830 L. pratense MC-Fungi 03-3040 Macedonia KX686829 L. pratense MA-Fungi 81899 Portugal Acc. N. L. pratense MA-Fungi 53331 Spain Acc. N. L. pratense VDEMOULIN ENCB 7412 Mexico Acc. N. L. pratense (as V. delicatum) VDEMOULIN, ex AGUCH Chile Acc. N. (ET-8) –Isotype L. pratense ICN 154485 Brazil C L. pratense K (M) 200187 Nicaragua  L. pratense K (M) 200229 Mexico  L. pratense (as V. depressum) MA-Fungi 45322 Spain C L. pyriforme MJ 4849 Sweden DQ112558 L. pyriforme MA-Fungi 16908 Spain KX686895 L. pyriforme MA-Fungi 30796 Spain Acc. N. L. pyriforme MC-Fungi 01-745 Macedonia KX686892 L. pyriforme MC-Fungi 05-5074 Macedonia KX686893 L. pyriforme MC-Fungi 08-10196 Australia KX686897 L. pyriforme MC-Fungi 08-10128 Macedonia KX686894 L. pyriforme MC-Fungi 98-3045 Macedonia KX686896 L. pyriforme UFRN-Fungi 2271 Brazil Acc. N. L. pyriforme (as L. perlatum) UFRN-Fungi 2269 Brazil C

216

L. pyriforme (as C. rubroflava) UFRN-Fungi 2268 Brazil Acc. N. L. pyriforme (as L. pyriforme) VDEMOULIN ex ENCB Mexico Acc. N. 5084 L. pyriforme (as L. pyriforme) VDEMOULIN ex ENCB Mexico Acc. N. 1401 L. pyriforme UFRN-Fungos 155 Brazil KU958365 L. pyriforme UFRN-Fungos 2276 Argentina Acc. N. L. pyriforme ICN 177101 Brazil KU958367 L. pyriforme VDEMOULIN 3195 Belgium Acc. N. L. pyriforme (as L. atrum) VDEMOULIN ex Brazil C TNSF226943 L. pyriforme HUH 00373985 Colombia NP L. pyriforme HUH 00373988 Brazil NP L. pyriforme HUH 00373990 Brazil NP L. pyriforme PACA 13780 Brazil C L. pyriforme BAFC 31387 Argentina C L. pyriforme VDEMOULIN 4593 Belgium  L. pyriforme NY 0071971 Colombia  L. pyriforme NY 0071972 Brazil  L. pyriforme NY 0071973 Ecuador  L. pyriforme NY 0071979 Venezuela  L. radicatum Parker 970911 USA DQ112608 L. rupicola MJ 4304 Norway DQ112580 L. rupicola Vetter 407 Sweden DQ112581 L. subperlatum KA12-0918 South Korea KP340208 L. subperlatum KA12-1105 South Korea KP340209 L. subumbrinum MJ 6377 Sweden DQ112602 L. subumbrinum MJ 6394 Sweden DQ112601 L. subumbrinum LO 148-03 Sweden DQ112603 L. subumbrinum MA-Fungi 28449 United KX686884 Kingdom L. subumbrinum MA-Fungi 30564 Spain KX686888 L. subumbrinum MA-Fungi 63391 France KX686885 L. subumbrinum MA-Fungi 31234 Spain KX686887 L. subumbrinum MC-Fungi 87-10137 Macedonia KX686886 L. subumbrinum (as Lycoperdon sp.) MA-Fungi 44458 Spain Acc. N. L. turneri Lange 08-95 Greenland DQ11259 L. turneri MJ 5251 Norway DQ112594 L. turneri MJ 4265 Norway DQ112595 L. atrum MA-Fungi 35530 Spain KX686898 L. umbrinoides (as L. fuligineum) PACA 20659 Brazil  L. umbrinum MJ 4556 Sweden DQ112591 L. umbrinum MJ 4556a Sweden DQ112593 L. umbrinum MJ 4559 Sweden DQ112592 L. umbrinum MA-Fungi 63394 Luxembourg Acc. N. L. umbrinum PACA 20701 Brazil  L. umbrinum BAFC 31601 Argentina C L. umbrinum BAFC 32079 Argentina NT L. umbrinum BAFC 32178 Argentina  L. umbrinum BAFC 32183 Argentina 

217

L. umbrinum VDEMOULIN 4784 USA  L. umbrinum VDEMOULIN 5119 USA  L. utriforme MJ 5388 Sweden DQ112607 L. utriforme (as L. argentinum) K (M): 200230 Chile NP L. utriforme (as L. argentinum) K (M): 200231 Argentina  L. utriforme (as L. argentinum) K (M): 200232 Argentina  Lycoperdon sp. 1 (as L. pratense) ICN 154484 Brazil KX686807 Lycoperdon sp. 1 (L. lambinonii) CORDC 308 (CORD 167) Argentina Acc. N. Lycoperdon sp. 2 (L atropurpureum) MA-Fungi 73250 India KX686858 Lycoperdon sp. 3 (as L. ericaeum) MJ 4285 Norway DQ112573 Lycoperdon sp. 3 (as L. ericaeum) MJ 4277 Norway DQ112574 Lycoperdon sp. 4 (as Vascellum sp.) UFRN-Fungos 164 Brazil Acc. N. Lycoperdon sp. 4 (as V. pratense) UFRN-Fungos 495 Brazil Acc. N. Lycoperdon sp. 4 (as L. pratense) MAF-Fungi 14141 Hungaria Acc. N. Lycoperdon sp. 5 (as Lycoperdon sp.) UFRN-Fungos 152 Brazil Acc. N. Lycoperdon sp. 5 (as L. pratense) UFRN-Fungos 300 Brazil Acc. N. Morganella sp. (as M. afra) ICN177118 Brazil KU958371 M. albostipitata INPA 239563-TYPE Brazil KU958363 M. albostipitata UFRN-Fungos 2249 Brazil KU958361 M. albostipitata UFRN-Fungos 2569 Brazil KU958357 M. albostipitata UFRN-Fungos 2572 Brazil KU958359 M. arenicola UFRN-Fungos 1006-TYPE! Brazil KU958303 M. arenicola UFRN-Fungos 657 Brazil KU958299 M. arenicola UFRN-Fungos 941 Brazil KU958305 M. arenicola UFRN-Fungos 655 Brazil KU958307 M. arenicola UFRN-Fungos 2554 Brazil KU958309 M. fuliginea UFRN-Fungos 1971 Brazil KU958321 M. fuliginea UFRN-Fungos 1972 Brazil KU958323 M. fuliginea TENN59070 Paraguay AF485065 M. nuda UFRN-Fungos 1765-TYPE! Brazil KU958319 M. nuda UFRN-Fungos 1766 Brazil KU958315 M. nuda UFRN-Fungos 2565 Brazil KU958311 M. nuda UFRN-Fungos 2568 Brazil KU958313 M. purpurascens VDEMOULIN ex DeMeijer Brazil Acc. N 340 M. purpurascens CMU55-Ly1 Thailand KC414581 M. purpurascens MEL:2382736 Australia KP012918 M. subincarnata REG106/81 Germany AJ237626 M. subincarnata s/no. USA KM373265 M. subincarnata TNS Kasuya B286 Japan KF551244 M. sulcatostoma ICN177032 Brazil KU958373 M. sulcatostoma ICN177033 Brazil KU958369 M. sosinii RAS:VLA M 15520 Russia KC591769 Outgroup Bovista graveolens Widgren 030816 Sweden DQ112618 Bovista nigrescens S&JJ980905 (MJ7719) Sweden DQ112612 Bovista plumbea MJ4856 Sweden DQ112613

218

Table 6 Distance in percent of all specimens of Lycoperdon perlatum terminal branch based on GenBank sample DQ112630.

Sequence name Distance in % based on Genbank sample DQ112630 Lycoperdon perlatum DQ112630 0 Lycoperdon perlatum MC-Fungi 02-2389 0,1428 Lycoperdon perlatum MC-Fungi 02-2995 0,1428 Lycoperdon perlatum MC-Fungi 05-5316 0,1426 Lycoperdon perlatum MC-Fungi 05-9247 0,1428 Lycoperdon perlatum MC-Fungi 06-5917 0,6228 Lycoperdon perlatum MC-Fungi 07-10144 0,1428 Lycoperdon perlatum MC-Fungi 07-6663 0,1519 Lycoperdon perlatum MC-Fungi 07-7207 0,2859 Lycoperdon perlatum MC-Fungi 08-10035 0,1428 Lycoperdon perlatum MC-Fungi 08-10055 0,1428 Lycoperdon perlatum MC-Fungi 08-10119 0,1428 Lycoperdon perlatum MC-Fungi 08-10209 0,1426 Lycoperdon perlatum MC-Fungi 90-10234 0,1428 Lycoperdon perlatum VDEMOULIN ex DeMeijer206 1,2010 Lycoperdon perlatum VDEMOULIN ex ENCB 1533 0,5757 Lycoperdon perlatum VDEMOULIN ex ENCB 2223 0,4310 Lycoperdon perlatum VDEMOULIN ex ENCB U87 0,6349 Lycoperdon perlatum KP340190 1,1041 Lycoperdon perlatum KP340193 0,6118 Lycoperdon perlatum KW200236 2,2836 Lycoperdon perlatum MA-Fungi 29732 0,3051 Lycoperdon perlatum MA-Fungi 31233 0,1442 Lycoperdon perlatum MA-Fungi 32181 0,4300 Lycoperdon perlatum MA-Fungi 64953 0,1483 Lycoperdon perlatum MA-Fungi 68352 0,5740 Lycoperdon perlatum UFRN-Fungos 2829 1,4525 Lycoperdon perlatum UFRN-Fungos 2272 0,2703 Lycoperdon perlatum UFRN-Fungos 2273 1,0443 Lycoperdon perlatum UFRN-Fungos 2274 1,0412 Lycoperdon perlatum UFRN-Fungos 2335 0,8158 Lycoperdon perlatum UFRN-Fungos 811 1,2100

219

Table 7. Distance in percent of all specimens of Lycoperdon pyriforme terminal branch based on GenBank sample DQ112558.

Sequence name Distance in % based on Genbank sample DQ112558 Lycoperdon pyriforme DQ112558 0 Lycoperdon pyriforme MC-Fungi 01-745 0,6686 Lycoperdon pyriforme MC-Fungi 05-5074 0,7346 Lycoperdon pyriforme MC-Fungi 08-10128 0,8824 Lycoperdon pyriforme MC-Fungi 08-10196 0,5872 Lycoperdon pyriforme MC-Fungi 98-3045 0,8824 Lycoperdon pyriforme VDEMOULIN ex ENCB1401 0,9725 Lycoperdon pyriforme VDEMOULIN ex ENCB5084 0,9725 Lycoperdon pyriforme ICN177101 0,8125 Lycoperdon pyriforme MA-Fungi 16908 1,1806 Lycoperdon pyriforme MA-Fungi 30796 0,8889 Lycoperdon pyriforme VDEMOULIN TNSF226943 2,5851 Lycoperdon pyriforme UFRN-Fungos 155 1,0521 Lycoperdon pyriforme UFRN-Fungos 2268 0 Lycoperdon pyriforme UFRN-Fungos 2269 0 Lycoperdon pyriforme UFRN-Fungos 2271 0 Lycoperdon pyriforme UFRN-Fungos 2276 1,3637 Lycoperdon pyriforme VDEMOUL3195 0,8069 Lycoperdon melanesicum NY00795902 6,2587

220

Supplementary figure 1. Strict consensus tree, of the 100 MPTs trees for ITS nrDNA sequences included in Table 1, obtained from a heuristic search with PAUP* 4.0b10. Parsimony bootstrap support (≥ 50%) indicated above branches. Names and vouchers numbers as mentioned in the text and tables. New sequences in bold. Colours to indicate the geographic origin of the specimens and sequences. Yellow, mainly specimens from Central and South America (it can be some specimens from other part from the Southern Hemisphere); Orange, specimens from the Southern Hemisphere, not from Central or South America; Red, specimens from both Hemispheres; Blue, only specimens from the Northern Hemisphere.

221

Supplementary figure 2. The 50%majority-rule consensus tree of ITS nrDNA sequences included in Table 1 using Bayesian approach. Numbers at the nodes indicate the posterior probabilities from the Bayesian analysis. Names and vouchers numbers as mentioned in the text and tables. New sequences in bold. Colors to indicate the geographic origin of the specimens and sequences. Yellow, mainly specimens from Central and South America (it can be some specimens from other part from the Southern Hemisphere); Orange, specimens from the Southern Hemisphere (not from Central or South America); Red, specimens from both Hemispheres; Blue, only specimens from the Northern Hemisphere.

222

CAPÍTULO 3 / CHAPTER 3

Revision of species previously reported from Brazil under Morganella

223

Abstract

In our study, seventy-two specimens from Brazilian herbaria, New Zealand Fungal and Plant Disease Collection-PDD Herbarium, and the New York Botanical Garden Herbarium under Morganella were analyzed, including the paratype of M. mexicana and holotypes of M. arenicola, M. albostipitata, M. compacta, M. nuda, M. rimosa, and M. velutina. Specimens were studied morphologically following the literature for Morganella genus and for DNA extraction, amplification and molecular analyzes following literature such as Bruns and Gradens, Martín and Winka. New sequences (ITS and LSU nrDNA) were obtained and compared with homologous sequences of GenBank. Because of these analyses, a new Lycoperdon subgenus, two new species and five new combinations are proposed. A key is provided to the species studied in subgenera Arenicola and Morganella.

Key Words gasteroid fungi, Lycoperdaceae, Lycoperdon, nrDNA sequences, phylogenetic analyses, puffballs, taxonomy.

224

1 INTRODUCTION

Brazil has the most extensive tropical forests in the world, a vast territorial extension, geographic and climatic diversity, and hosts a huge biological diversity, all of which makes it leading among mega-diverse countries, sheltering almost 10-20% of the world’s species and 40% of the world’s tropical forests (Lewinsohn and Prado 2005; Mittermeier et al. 2005; Peres 2005). In recent years, several new taxa of gasteroid fungi in the family Lycoperdaceae have been found in Brazilian biomes including six new Morganella species (Cortez et al., 2007; Alfredo et al., 2012; Alves and Cortez, 2013; Alfredo and Baseia, 2014; Alfredo et al., 2014a).

The genus Morganella was first proposed by Zeller (1948), and afterwards emended by Kreisel and Dring (1967). Those authors segregated Morganella from Lycoperdon on the basis of the absence of capillitium, only paracapillitium accompanied by corrugated glebal membranes being present, and a diaphragm being absent. The type species is Morganella mexicana Zeller, a synonym of Lycoperdon fuligineum Berk. et Curt. The genus is recognized by its epigeous, depressed globose to pyriform basidiomata, composed of double peridium (exoperidium and endoperidium), a reduced subgleba, and a gleba with abundant paracapillitium, without any true capillitium, and asperulate to echinulate basidiospores (Kreisel and Dring, 1967; Ponce de León, 1971; Suárez and Wright, 1996). Most of the species in Morganella are lignicolous, except M. stercoraria P. Ponce de León that was found in cow dung (Ponce de León 1971), and M. arenicola Alfredo & Baseia often found in sandy soil (Alfredo et al. 2014a).

Larsson and Jeppson (2008), compared sequences of the internal transcribed spacer (ITS), and the large subunity (LSU) of nuclear ribosomal DNA sequences of a number of Lycorperdaceae, including two Morganella specimens of M. subincarnata (Peck) Kreisel & Dring from Europe (Germany), and M. fuliginea (Berk. & M.A. Curtis) Kreisel & Dring from South America (Paraguay); they showed that these Morganella species were part of a larger Lycoperdon clade, which made Lycoperdon paraphyletic. Larsson and Jeppson (2008) proposed Morganella as a subgenus of Lycoperdon; and the two Morganella species included in their analyses recovered their original names: Lycoperdon fuligineum Berk. & M.A. Curtis and L. subincarnatum Peck. Currently, in the taxonomic databases, Species Fungorum (http://www.speciesfungorum.org/), bibliographic database, Index Fungorum

225

(http://www.indexfungorum.org) and Mycobank (http://www.mycobank.org), 12 species are under Morganella; mainly described from tropical ecosystems (Kirk et al., 2008).

In the light of molecular analyses, based on sequences of the internal transcribed spacer regions (ITS) and large subunit (LSU) of nuclear ribosomal DNA of two Morganella species, the genus Morganella was proposed as a subgenus of Lycoperdon. (ITS and LSU nrDNA markers), the aim of this paper was to reevaluate the Brazilian species described under Morganella, and to review the morphological features to delimitate the species. Because of these analyses, following Larsson and Jeppson (2008) a new subgenus is proposed in Lycoperdon, sister group of the subgenus Morganella; and two new Lycoperdon species and five new combinations are proposed.

226

2 MATERIAL AND METHODS

2.1 Material studied

Specimens were obtained from Brazilian herbaria (including types): Herbário UFRN (Rio Grande do Norte), Herbário Anchieta–PACA (Rio Grande do Sul), Herbário INPA (Amazônia) and Herbário–ICN (Rio Grande do Sul). Also, collections from Herbario del Real Jardín Botánico de Madrid (MA-Fungi) and the New York Botanical Garden (NY) were analyzed. Data of collections studied are included in Table 8.

2.2 Morphological analysis

Specimens were studied and identified following the specific literature for Morganella: Kreisel and Dring (1967) Ponce de León (1971), Morales et al. (1974), Suárez and Wright (1996). Macrostructure analyses were done following Silva et al. (2014); the size of basidioma was measured (length × width), with naked eyes or with aid of stereomicroscopy; the exoperidium ornamentation and endoperidium surface, as well as the texture of the gleba and subgleba were observed.The specimens were studied, photographed and measures as in our previous papers: (Alfredo et al., 2012; Alfredo and Baseia, 2014; Alfredo et al. 2014a,b). Microstructures were mounted in 5% KOH and, also in lactophenol cotton blue to observe paracapillitium, capillitium and basidiospores and examined using light microscopy (Olympus BX41TF); also, the photographs and measures were made using a Nikon Eclipse Ni light microscope coupled with a Nikon DS-Ri camera, supported by NIS-Elements AR 4.00.03 software, to more accuracy. Following Demoulin (1972a), basidiospores pattern ornamentation was classified in: [A] smooth to punctate, [B] slightly verrucose, [C] verrucose and [D] strongly verrucose, the basidiospores measures were done including and excluding ornamentation (table 3), in accordance Demoulin (1972b) the density of basidiospores was found using the follow calculation: number of ornamentation divided by the diameter of the spore multiplied by 3.14, to give a number of warty by a reduced area of 10 µ; spore ornamentation was also analyzed using scanning electron microscopy (SEM), the preparation being as described by Silva et al. (2011). The descriptive terminology of the names of shapes of sphaerocysts and basidiospores follow those adopted by Stearn (2010). The code colors follow Kornerup and Wanscher (1967).

227

2.3 Molecular Analyses

2.3.1 DNA isolation, amplification and sequencing

Total genomic DNA was extracted using DNeasyTM Plant Mini Kit (Qiagen, Valencia, CA) following the instructions of the manufacturers; lysis buffer incubation was done overnight at 55°C. PCR amplifications were done in a 25 μl reaction mix using a master mix (1.0–2.5 units of Invitrogen Taq DNA Polymerase, 1 × PCR Rxn buffer minus MgCl2, 1.5 mM MgCl2, 0.2 mM of each dNTPs, 0.5 mM of each primer) or using illustraTM PureTaqTM Ready-To-GoTM PCR Beads (GE Healthcare, Buckinghamshire, UK) as described in Winka et al. (1998). The internal transcribed spacer of ribosomal nrDNA (ITS) was amplified with the primer pair ITS5/ITS4 (White et al., 1990), following thermal cycling conditions in Martin and Winka (2000), to obtain amplifications of both ITS regions, including the 5.8S of the ribosomal RNA gene cluster and flanking parts of the small subunit (SSU) and large subunit (LSU) nuclear ribosomal genes; when these primers failed, the reverse primer ITS4B (Gardes and Bruns, 1993) was used with ITS5. The partial 5´ end of nuclear ribosomal large subunit RNA gene sequences (nrLSU) including D1-D2 domains was also amplified using primer pair LROR/LR5 (Rehner and Samuels1994), and the cycling conditions indicated in Martín and Winka (2000), except changing the elongation to 1.5 min at 72°C for the extension steps. Negative controls lacking fungal DNA were run for each experiment to check for contamination.

The PCR products were subsequently purified using the QIAquick Gel PCR Purification (Qiagen) according to the manufacturer's instructions or with 8 μl of 1:10 ExoSAP-IT® (USB Corporation, OH, USA). The purified PCR products were sequenced using the same amplification primers by Macrogen Inc. (Seoul, South Korea).

Sequencher 5.2.4 (Gene Codes Corp., USA) was used to obtain the consensus sequence from the two strands, both to the ITS and LSU markers of each isolate. BLAST searches with megablast option were used to compare the sequences obtained against the sequences in the National Center of Biotechnology Information (NCBI) nucleotide databases Rambaut (2002). The new consensus sequences have been lodged in the EMLB-EBI database with the accession numbers indicated in Table 9.

228

2.3.2 Sequence alignment and phylogenetic analyses

The ITS and LSU nrDNA sequences obtained were aligned separately using Se-Al v2.0a11 Carbon Rambault (2002) for multiple sequences. The sequences were compared with homologous sequences of Lycoperdaceae from GenBank (Table 9), mainly published in Larsson and Jeppson (2008) and Jeppson et al. (2012), two sequences of Tulostoma were included as outgroup. Where ambiguities in the alignment occurred, the alignment generating the fewest potentially informative characters was chosen. Alignment gaps were marked "–", unresolved nucleotides and unknown sequences were indicated with "N".

Maximum parsimony analyses (MP) were carried out separately for each alignment; as well as with the combined alignment of the two markers. Minimum length Fitch trees were constructed using heuristic searches with tree-bisection-reconnection (TBR) branch swapping, collapsing branches if maximum length was zero and using the MulTrees option in PAUP*4.0b10 (Swofford, 2002); and a default setting to stop the analysis when reaching 100 trees. Gaps were treated as missing data. Nonparametric bootstrap support (bs) was tested for each clade (Felsenstein, 1985), based on 10,000 replicates using the fast-step option. The consistency index, CI (Kluge and Farris, 1969), retention index, RI (Farris, 1989), and rescaled consistency index, RC (Farris, 1989), were obtained.

Also, to each separate alignment, as well as with the combined ITS/LSU alignment, analyses were done by Bayesian approach (Larget and Simon, 1999; Huelsenbeck and Ronquist, 2001) using MrBayes 3.1 (Ronquist and Huelsenbeck, 2003). These analyses were performed assuming the general time reversible model (Rodríguez et al., 1990) including estimation of invariant sites and assuming a discrete gamma distribution with six categories (GTR+I+G) as selected by MrModelTest v. 2.3 (Nylander, 2004). Two independent and simultaneous analyses starting from different random trees were run for 2,000,000 generations with four parallel chains, and trees and model scores saved every 100th generation. The default priors in MrBayes were used in the analysis. Every 1,000th generation tree from the two runs was sampled to measure the similarities between them and to determine the level of convergence of the two runs. The potential scale reduction factor (PSRF) was used as a convergence diagnostic and the first 25% of the trees were discarded as burn-in before stationary condition was reached. Both the 50%

229 majority-rule consensus tree and the posterior probability (pp) of the nodes were calculated from the remaining trees with MrBayes. The phylogenetic trees were viewed with Figtree v. 1.3.1 (http:// tree.bio.ed.ac.uk/sofware/figtree/) and edited with adobe Illustrator CS3 v. 11.0.2 (adobe Systems).

230

3 RESULTS

3.1 Molecular and morphological analyses

DNA was isolated from seventy-one specimens, first identified as belonging to the genus Morganella (Table 1), including the paratype of M. mexicana and holotypes of M. albostipitata Baseia & Alfredo, M. arenicola, M. compacta (G. Cunn.) Kreisel & Dring, M. nuda Alfredo & Baseia, M. rimosa Baseia & Alfredo and M. velutina (Berk. & M.A. Curtis) Kreisel & Dring. Unfortunately, the sequences obtained from the types of M. compacta, M. mexicana, M. rimosa and M. velutina, after blast search, were identified as belonging to Ascomycota. Finally, forty-six new ITS and LSU sequences related to Lycoperdaceae were generated and included in the alignments (Table 9).

From the ITS alignment, the final dataset has 787 unambiguously aligned nucleotide positions (455 constant, 97 parsimony-uninformative, and 235 parsimony- informative). The 100 most parsimonious trees gave a length of 1.006 steps, CI = 0.5089, HI = 0.4911, and RI = 0.8483. The trees obtained from the MP (strict consensus tree) and Bayesian analyses show similar topologies (data not shown).

From the LSU alignment, the final dataset has 926 unambiguously aligned nucleotide positions (772 constant, 69 parsimony-uninformative, and 85 parsimony- informative). The 100 most parsimonious trees gave a length of 320 steps, CI = 0.5719, HI = 0.4281, and RI = 0.8743. The trees obtained from the MP (strict consensus tree) and Bayesian analyses show similar topologies (data not shown).

Since the ITS and LSU trees showed essentially the same topology, a combined analysis ITS/LSU was done. Final ITS/LSU dataset has 1713 unambiguously aligned nucleotide positions (1227 constant, 166 parsimony-uninformative, and 320 parsimony- informative). The 100 parsimonious trees gave a length of 1268 steps, CI = 0.5080, HI = 0.4920, and RI = 0.8451. The topology of the parsimony strict consensus tree (Fig. 25 and Fig. S1) was essentially the same as the 50% majority rule combined consensus tree (not shown).

According to Figure 25, all specimens under Morganella grouped in the Lycoperdon clade. The two sequences under M. sulcatostoma C.R. Alves & Cortez grouped close to the clades formed by specimens of the subgen. Vascellum and subgen.

231

Lycoperdon; the revision of morphological features (Table 8) confirmed the presence of capillitium in M. sulcatostoma. The new combination L. sulcatostomum is proposed.

The majority of the specimens under Morganella grouped together (bs = 89 %, pp = 1.0), distributed in two sister clades (A and B in Fig. 25). Clade A (top of the tree) includes 13 specimens under M. arenicola and one specimen under M. afra Kreisel & Dring; this relationship is not highly supported (bs = 84 %, pp = 0.61). In all specimens, the presence of cellular subgleba, exoperidium ornamentation that falls off, capillitium and paracapillitium (table 1), exoperidium composed of sphaerocysts and mycosclerids are present. Since in this clade specimens show features that distinguish these species from those of the subgenus Morganella, the new subgenus Arenicola is proposed.

Moreover, in clade A, the M. arenicola specimens appeared distributed in two subgroups; the relationship between these two subgroups has very high support (bs = 100%, pp = 1.0). One subgroup is formed by 11 specimens from Brazil, including the type of M. arenicola (bs = 100%, pp = 0.96), characterized by well-developed subgleba, verrucose exoperidium ornamentation, verrucae < 0.5 mm length, smooth endoperidium surface, punctate basidiospores, and the presence of capillitium and paracapillitium (Table 1), mycosclerids found at the apical pore hyphae; the new combination L. arenicola is proposed and a synoptic updated description provided. The other subgroup (bs = 100%, pp = 1.0) is represented by two specimens from Brazil; although first identified as M. arenicola, UFRN-Fungos 655 and UFRN-Fungos 2554, they have unique morphological characters, such as the well-developed subgleba; the exoperidium ornamentation composed of deciduous spines 0.5–1 mm in length, leaving the endoperidium surface areolate from scars of the spines; punctate basidiospores; abundant capillitium and occasional paracapillitium (table 1); and mycosclerids found at the apical pore hyphae. We find reasons as well-developed subgleba, capillitium present in contrast to M. compacta that has an absence capillitium and reduced subgleba, to describe URFN- Fungos 655 and UFRN-Fungos 2554 as belonging to a new species: Lycoperdon demoulinii.

In clade B, Lycoperdon subgen. Morganella, three main groups were recognized, and a singleton (UFRN-Fungos 2570). From up to down, the clade B1 (bs = 99 %, pp = 1.0), included 22 specimens with granulose exoperidium, and large aculeate basidiospores (up to 7.5 µm diam). From them, 17 specimens appeared in a well- supported subgroup (bs = 100 %, pp = 0.87), characterized by a persistent exoperidium. 232

Five specimens under M. nuda (ephemeral exoperidium), including the holotype UFRN- Fungos 1765, grouped together with the sequence under M. fuliginea (AF485065) from Paraguay (Krüger and Kreisel (2003). Even though we were not able to study the specimen from which sequence AF485065 was obtained, the molecular data suggest that the specimen that produced sequence AF485065 belongs to M. nuda instead of M. fuliginea. Based on morphological features and molecular analyses, two species are clearly differentiated in clade B1: L. fuligineum, and L. nudum comb. nov.; a synoptic updated description is provided for each species.

In clade B2 (bs = 100 %, pp = 1.0), four sequences obtained from M. abostipitata specimens, including the type (INPA239563), appeared together. These specimens show persistent exoperidium composed of chained subglobose to setoid sphaerocysts mixed with elongated hyphae, and medium aculeate spores (5–6 µm diam.) (Table 8). The new combination L. albostipitatum is proposed, and a synoptic updated description provided.

In clade B3, three sequences under M. subincarnata, including the sequence from GenBank AJ237626, grouped together (bs = 90 %, pp = 1.0), as the sister group of a clade formed by two sequences from GenBank, one under M. purpurascens (Berk. & M.A. Curtis) Kreisel & Dring (KP012918), and other under M. sosinii Yu. Rebriev & E. Bulakh (KG591769). Kreisel and Dring (1967) made the combination M. purpurascens (basyonym L. purpurascens Berk. & M.A. Curtis), and M. sosinii as a new species recently described in Rebriev and Bulakh (2015). The collection UFRN-Fungos 2570 appeared basal in this group. Specimens under M. subincarnata show tuberculose to spinulose persistent exoperidium composed of isodiametric to pyriform sphaerocysts, and small aculeate spores (3.5–4.5(6.5) µm diam.). Larsson and Jeppson (2008) treat this taxon as Lycoperdon subincarnatum Peck. On the other hand, according to Kreisel and Dring (1967) and Ponce de León (1971), M. purpurascens is characterized by warty exoperidium ornamentation, surface-pitted endoperidium, with basidiospores smooth to minutely spiny; we adopted the name L. purpurascens Berk. & M.A. Curtis. In Rebriev and Bulakh (2015), M. sosinii have been described as a new species with an exoperidium ornamentation composed of granules and spines (0.1–0.2 mm length), endoperidium surface with “incomplete areolate pattern”, basidiospores echinulate, differing from M. purpurascens through the cellular subgleba; the new combination L. sosinii is proposed.

In clade B3, collection UFRN-Fungos 2570 grouped separately from the other species. The basidiomata show persistent exoperidium, composed of two kinds of 233 elements: chained isodiametric to digitaliform sphaerocysts, and unchained elongated and thick-walled elements up to almost 200 µm; and large aculeate basidiospores (up to 7 µm diam.). Their unique morphological characters lead us to describe a new species: L. exoelongatum.

Figure 25 Phylogenetic tree obtained from parsimony analysis of ITS and LSU combined alignment. Clades and subclades as described in the text. Numbers above branches are parsimony bootstrap (bs) and posterior probability (pp) values. Bovista, Calvatia, Disciseda, Mycenastrum and Tulostoma as outgroups. Vouchers numbers are indicated as in Table 1 and 2.

234

3.2 Taxonomy

Lycoperdon subgen. Arenicola Alfredo, M.P. Martín & Baseia, subgen. nov. Mycobank: MB 818186

Etymology: Name refers to the basidiomata growth in sandy soil and the exoperidium encrusted with sand grains.

Holotype: Brazil, Rio Grande do Norte, Natal, Parque Estadual Dunas de Natal “Jornalista Luiz Maria Alves”, 05º48’38,7’’S, 035º11’39,9’’W in sand dunes, 22 Jun 2005, leg. B.D.B. Silva & J.S. Oliveira s.n. (UFRN-Fungos 1006!).

Type species: Lycoperdon

Diagnosis: This subgenus differs from subgenus Morganella by basidiomata growing in sandy soil; subgleba can be reduced (< ⅓ of basidiome) or well developed (> ⅓ of basidiome); exoperidium granulose to spiny (0.3–1.0 mm length); dehiscence hyphae composed of mycosclerids and interwoven hyphae with inflated terminations; capillitium and paracapillitium can be present and basidiospores punctate to slightly verrucose [A– B].

Description: Basidiomata immature, depressed globose, subglobose, pyriform to turbinate; subgleba well developed, cellular, occupying more than ⅓ of basidiome, cream (4A3); exoperidium surface velvety to spiny, incrusted with grains of sand, dark lilaceous (14F8) to black (14F4). Basidiomata mature, pyriform to turbinate, exoperidium incrusted with grains of sand, ornamentation of verrucae dark pink (14F6) or black (14F4) spines; the apical spines falling off with the age, leaving a smooth to scared surface of the endoperidium; endoperidium cream (4A3) to grayish yellow (4A3); gleba powdery, white when young, becoming light brown (5D5) to brown (6E8) with age.

Exoperidium base composed of chains of globose, subglobose sphaerocysts at the spine base and arranged in regular chains of cells in the spines (like in L. perlatum); apical exoperidium composed of mycosclerids with irregular form, apical dehiscence composed of interwoven hyphae with inflated terminations; basidiospores globose, punctate to slightly verrucose [A–B] in light microscope, and minute verrucae in SEM; capillitium aseptate and branched; paracapillitium septate and incrusted with amorphous hyaline glebal membrane. Species included:

235

Synonym: Morganella afra Kreisel & Dring, Feddes Reppert. 74: 117 (1967). Lycoperdon arenicola (Alfredo & Baseia) Baseia, Alfredo & M.P. Martín comb. nov. Synonym: Morganella arenicola Alfredo & Baseia, Turkish Journal of Botany 38: 595-596 (2014). Lycoperdon demoulinii Baseia, Alfredo & M.P. Martín sp. nov.

Lycoperdon albostipitatum (Baseia & Alfredo) Baseia, Alfredo & M.P. Martín comb. nov. –Mycobank: MB 818188. Fig. 26

Holotype: BRAZIL, Amazonas, Manaus, Reserva Florestal Adolpho Ducke, 60º01’30’’W, 03º06’07’’S, Amazon rainforest on decaying wood, 14 Nov 2010, leg. J.M.F. Araújo, GF23 (INPA 239563!).

Basyonym: Morganella albostipitata Baseia & Alfredo, Mycosphere, 3: 67 (2012) MycoBank: MB 564373.

Basidiomata depressed globose to pyriform; subgleba reduced (< ⅓ of basidiome) up to 2 mm in length, sustained by a white elongated subgleba (2–4 mm length). Exoperidium granulose, cracked, forming persistent tufts; endoperidium surface smooth. Gleba powdery. Exoperidium composed of chains of sphaerocysts that are globose to subglobose, mixed with elongated hyphae weakly to strongly dextrinoid. Apical endoperidium without mycosclerids, and dehiscence hyphae aseptate and without inflated termination. Capillitium absent. Paracapillitium abundant. Basidiospores globose, 5–6 µm, strongly verrucose [D] in LM, and aculeate in SEM. Complete description in Alfredo et al. (2012).

Specimens examined: BRAZIL, Amazonas, Manaus, Reserva Florestal Adolpho Ducke, 60º01’30’’W, 03º06’07’’S, Amazon rainforest on decaying wood, 22.01.2013, leg. T. Accioly, N.K. Ishikawa and R.V-Isla, TA0042b (UFRN-Fungos 2249); Ibidem, 18.01.2013, leg. T. Accioly and N.K. Ishikawa (UFRN-Fungos 2269); Ibidem, 19.02.2013, leg. T. Accioly, T.S. Cabral and N.K. Ishikawa (UFRN-Fungos 2572).

Notes: Lycoperdon albostipitatum was originally described from an Amazon rain forest on decaying wood (Alfredo et al. 2012). It is characterized by its large, white elongated subgleba (up to 4 mm length), the persistent exoperidium composed of sphaerocyst chains mixed with elongated hyphae (like in L. velutinum), and globose basidiospores (5–6 µm), strongly verrucose [D]. As showed in the figures 2a of Kreisel

236

and Dring (1967) and figures 14, 18 of Suárez and Wright (1996), L. velutinum have a mixed exoperidium cells, however, in our morphological analyzes the specimens under name Morganella velutina (NY00398807 – type, and NY00398809) have not mixed cells, only elongated cells, may be this fact is because the type specimens of L. fuligineum (= M. mexicana, Ellis no. 5013) have a mixed specimens of M. velutina and M. fuliginea. The other specimens under name M. velutina (NY00398806 and NY00398808) have exoperidium with cells non-elongated. The morphological and molecular analyses allowed us to confirm this species as belonging to the subgenus Morganella clade, jointly with the species: L. exoelongatum sp. nov., L. fuligineum, L. nudum, L. purpurascens and L. subincarnatum. Due to its elongated subgleba (2–4 mm high) and unique sphaerocysts, L. albostipitatum can be separated from these five species. The features shared among all these species are the strongly verrucose [D] basidiospores and abundant paracapillitium (table 1): moreover, all species grow on decaying wood.

237

Figure 26 Lycoperdon albostipitatum (Holotype INPA 239563). a. Dry specimen. b. Detail of apical pore. c. Detail of exoperidium ornamentation. d. Elongated dextrinoid hyphae from exoperidium ornamentation. e. Basidiospores strongly verrucose [D] in LM. f. Scanning electron microscopy of basidiospores. Bars (a) 10 mm; (b) 1 mm; (c) 0.2 mm; (d) 50 µm; (e) 5 µm; (f) 2 µm.

238

Lycoperdon arenicola (Alfredo & Baseia) Baseia, Alfredo & M.P. Martín comb. nov. – MycoBank: MB 818189. Fig. 27.

Holotype: BRAZIL, Rio Grande do Norte, Natal, Parque Estadual Dunas de Natal, 05º50’35’’S, 35º11’35’’W, in dunes growing on sandy soil, 22 Jun 2005, leg. B.D.B. Silva and J.S. Oliveira. (UFRN-Fungos 1006!).

Basionym: Morganella arenicola Alfredo & Baseia, Turkish Journal of Botany, 38: 596, 2014 – Mycobank: MB 805081

Basidiomata pyriform to turbinate. Subgleba well developed (> ⅓ of basidiome) cellular, cream-colored (4A3). Exoperidium ornamentation composed of minute spines (< 0.3 mm length) becoming wart-like or granulose with the age, brown (6E8), incrusted with grains of sand, ornamentation falling off from the apex to halfway down the stem of the basidioma at complete maturity. Endoperidium surface smooth, greyish brown (6D3). Gleba powdery brown (6E8).

Exoperidium composed of globose to pyriform sphaerocysts. Apical endoperidium composed of mycosclerids and hyphae with inflated terminations. Capillitium without pores and septa, paracapillitium abundant. Basidiospores globose, 3– 5 µm, punctate [A–B] often [A] in LM, minute aculeus (< 0.5 µm) in SEM, acyanophilous and without reaction in Melzer’s reagent.

Specimens examined: BRAZIL, Rio Grande do Norte, Natal, Parque Estadual Dunas de Natal, 06º18’18’’S, 35º21’40’’W, in dunes growing on sandy soil, 01 May 2008, leg. B.D.B. Silva, A.G. Leite and J.J.S. Oliveira (UFRN-Fungos 941); ibidem, 12 Jul 2012, leg. J.O. Sousa, R.H.S.F. Cruz, J.C. Bezerra, T. Accioly and N.M. Assis (UFRN-Fungos 2581); ibidem,17 Jul 2004, leg. M.M.B. Barbosa, I.G. Baseia and P.P.T. Lacerda (UFRN-Fungos 657); ibidem, 10 Sep 2005, leg. M.M.B. Barbosa and I.G. Baseia (UFRN-Fungos 649, duplicate MA-Fungi); ibidem, 26 Apr 2008, leg. B.D.B. Silva and E.P. Fazolino (UFRN-Fungos 729); ibidem, 08 Jun 2006, leg. B.D.B. Silva, A.G. Leite, I.G. Baseia and T.B.S. Ottoni (UFRN-Fungos 864); ibidem, 01 Jul 2006, leg. M.M.B. Barbosa, I.G. Baseia and P.P.T. Lacerda (UFRN-Fungos 656); ibidem, 26 May 2011, leg. I.G. Baseia and M.A. Sulzbacher (UFRN-Fungos 1510, duplicate MA-Fungi); ibidem, 06º23’07’’S, 35º00’58’’W, 16.06.2010, leg. B.D.B. Silva, D.S. Alfredo and I.G. Baseia (UFRN-Fungos 1367, duplicate MA-Fungi); ibidem, 14 May 2014, leg. D.S. Alfredo (UFRN-Fungos 2567).

239

Notes: Lycoperdon arenicola was originally described in dune ecosystems in northern Brazil and, despite its occurrence in sandy soil and the presence of capillitium without pores and septa, both uncommon characteristics for this genus, it was described as a Morganella species by Alfredo et al. (2014a). However, revision of the morphological characters revealed the presence of a developed cellular subgleba and capillitium (Fig.3), typical characters of the genus Lycoperdon, which accords with the molecular data.

Figure 27 Lycoperdon arenicola (Holotype UFRN-Fungos 1006). a. Basidiomata in situ. b. Dry specimen in cross section. c. Sphaerocysts from exoperidium ornamentation. d. Detail of capillitium and paracapillitium mixed. e. Basidiospores punctate [A] in LM. f. Scanning electron microscopy of basidiospores. Bars (a–b) 10 mm; (c) 50 µm; (d) 20 µm; (e) 5 µm; (f) 2 µm.

240

Lycoperdon compactum G. Cunn., Trans. New Zeal. Inst., 57: 195 (1926) – Mycobank: MB261548.

Holotype: NEW ZEALAND, York Bay, growing on decaying wood, 01.02.1923, leg. E.H. Atkinson. (PDD 10140!).

Synonym: Morganella compacta (G. Cunn.) Kreisel & Dring, Feddes Repertorium 74: 116 (1967). Mycobank: MB334487.

Basidiomata depressed globose to pyriform, subgleba reduced (<⅓ of basidiome), composed of compacted cells. Exoperidium ornamentation spiny (0.5–2 mm length), dark pyramidal spines (6F8) with the tips converging, falling off with age, sometimes remaining at the top of the basidiome. Endoperidium surface areolate, areoles 0.5–1 mm width; gleba powdery, brown (6E8).

Exoperidium composed of chains of sphaerocysts; at the base of spines the sphaerocystes are globose to subglobose, 11–17 × 11–19 µm, and at the apex of spines are oval with oblong truncate to obtuse apices, 6–12 × 12–42 µm. Endoperidium apex without mycosclerids, dehiscence without hyphae with inflated terminations. Capillitium absent. Paracapillitium abundant. Basidiospores globose, 3.5–4 µm, punctate [B] in LM, minute spines < 0.5 µm long in SEM.

Specimens examined: NEW ZEALAND, York Bay, growing on decaying wood, 03 Dec 1922, leg. G.H. Cunningham (PDD 1102); ibidem, 06 Dec 1930, leg. M. Hodgkins (PDD 16721); ibidem, 07 Dec 1930, leg. M. Hodgkins, (PDD 8525); ibidem, 08 Dec 1932, leg. E.E. Chamberlain. (PDD 4008); ibidem, 06 Dec 1945, leg. J.M. Dingley (PDD 4530); ibidem, 07 Dec 1946, leg. G.H. Cunningham. (PDD 5607); ibidem, 06 Dec 1948, leg. P.M. Ambler (PDD 11111); ibidem, 06 Dec 1951, leg. G.H. Cunningham (PDD 11565); ibidem, 03 Dec 1952, leg. J.M. Dingley (PDD 12039); 05 Dec 1955, leg. G.H. Cunningham (PDD16058); ibidem, 05 Dec 1997, leg. R.E. Beever (PDD 68943).

Notes: Lycoperdon compactum was described by Cunningham (1926) from New Zealand. The peculiar habit, growing on decaying wood, spines up to 2 mm length in the exoperidium, the areolate endoperidium surface, and the punctate basidiospores are the main features of L. compactum. Since this species has only paracapillitium, Kreisel and Dring (1967) transferred it to the genus Morganella.

241

Although mainly cited from New Zealand, L. compactum has also been reported from Costa Rica (Calonge et al. 2005), and from Brazil (Barbosa et al. 2011); however, Brazilian specimens were misidentified. Alfredo et al. (2014a), reviewed the collection of L. compactum (including the holotype PDD 10140) and compared it with the Brazilian specimens (UFRN-Fungos 1006, UFRN-Fungos 649, UFRN-Fungos 650, UFRN-Fungos 651, UFRN-Fungos 657, UFRN-Fungos 864, UFRN-Fungos 941, UFRN-Fungos 656, UFRN-Fungos 729, UFRN-Fungos 1367, UFRN-Fungos 1510); no Brazil specimens belong to L. compactum. During our molecular analyses, although exhaustive attempts were made to amplify the type or paratype of L. compactum, we were unsuccessful. For this reason, leave L. compactum as incertae sedis, although due to the absence of paracapillitum, probably it belongs to subgenus Morganella; moreover, this species has morphological features like L. purpurascens, L. sosinii and L. subincarnatum.

Lycoperdon demoulinii Baseia, Alfredo, & M.P. Martín sp. nov. – MycoBank: MB 816279. Fig. 28.

Etymology: In honor of to Dr. Vincent Demoulin, for his august contribution to the study of the genus Lycoperdon.

Diagnosis: This species is characterized by its exoperidium with black spines (14F4) 0.6– 1.0 mm in length, leaving the endoperidium surface areolate, basidiospores globose 4.0– 4.5 µm. Lycoperdon demoulinii can be differentiated from L. arenicola by its areolate endoperidium surface, and it is different from L. compactum (=Morganella compacta) due to the presence of capillitium and mycosclerids in the apical endoperidium.

Holotype: BRAZIL, Rio Grande do Norte, Natal, Parque Estadual Dunas de Natal, 35º21’40’’S, 06º 18’18’’W, in dunes growing on sandy soil, 24 Jun 2006, leg. M.M.B. Barbosa and I.G. Baseia (UFRN-Fungos 655!).

Basidiomata immature, epigeous, pyriform to turbinate 9 width × 12 mm length; subgleba well-developed, cellular, cream-colored (4A3); exoperidium with spine ornamentations 0.6–1.0 long., incrusted with grains of sand, black (14F4). Basidiomata mature, epigeous 16–20 width × 11–21 mm in length, pyriform to turbinate. Exoperidium incrusted with grains of sand, ornamentation of black spines (14F4) 0.6–1.0 mm length at the apical portion and black verrucae (14F3) at the basal portion; the apical spines falling off with the age. Endoperidium yellowish white (3A2) to yellowish gray (3A3), surface marked by areoles format. Gleba powdery brown.

242

Exoperidium basal composed of sphaerocysts globose to subglobose, 20–39 × 19– 27 µm, disposed in non- regular chain at the base of the spines, which remains on endoperidium surface after the spines fallen off, walls 1–2.2 µm thick, while the spines are formed by regular chains of sphaerocysts (like in L. perlatum), globose to pyriform, 21–28 × 14–18 µm < 1.5 µm thick. Apical endoperidium composed of hyphae interwoven with inflated terminations, 8–17 µm diam., walls 1.3–2.2 µm thick, mixed with mycosclerids, irregular shape, 40–75 × 10–34 µm weakly dextrinoid, wall 2–3.7 µm thick. Capillitium 3–5 µm diam., without pores and septa, walls 1–1.8 µm thick. Paracapillitium absent. Basidiospores globose, 4–4.5 µm, punctate [A-B] often A in LM.

Specimens examined: BRAZIL, Rio Grande do Norte, Natal, Parque Estadual Dunas de Natal, 35º21’40’’S, 06º 18’18’’W, 11 May 2011, leg. B.D.B. Silva, A.G. Leite and J.J.S. Oliveira (UFRN-Fungos 2554).

Habitat: Atlantic rainforest growing on sand dune.

Notes: After molecular analyses, and the revision of the morphological features, Lycoperdon demoulinii can be clearly distinguished from L. arenicola: in L. demoulinii the exoperidium ornamentation is formed by big spines (0.6–1.0 mm long) that fall off leaving an endoperidium surface marked by areoles; while in L. arenicola these features are not present. Lycoperdon americanum Demoulin and L. echinatum Pers. are species morphologically closest to L. demoulinii by they have exoperidium ornamentation of spines and endoperidium surface areolate, being L. demoulinii has the smaller ones spines than L. americanum (3 mm long) (Demoulin 1972a) and L. echinatum (3–6 mm long) (Demoulin 1983; Calonge 1998); also, the basidiospores are distinctive between them, the Brazilian species are mostly punctate [A] (although B can be found) versus the basidiospores verrucose [C] in these two species (Demoulin 1972a; 1983).

243

Figure 28 Lycoperdon demoulinii (Holotype UFRN-Fungos 655). a. Dry specimen; b. Detail of exoperidium ornamentation; c. Detail of endoperidium surface areolate; d. Details of spines from exoperidium; e. sphaerocysts forming the spines; f. Mycosclerids from apical endoperidium; g. Capillitium and basidiospores punctate in LM. Bars (a) 10 mm; (b) 2 mm; (c) 2 mm; (d) 50 µm; (e–f) 20 µm; (g) 5 µm.

244

Lycoperdon exoelongatum Accioly, Baseia & M.P. Martín, sp. nov. – MycoBank: MB 816241. Fig. 29.

Etymology: Name refers to the elongated unchained elements of the exoperidium.

Holotype: BRAZIL, Amazonas, Manaus, Reserva Florestal Adolpho Ducke, at Manaus Botanical Garden area, Amazon rainforest, growing on decaying wood, 19.01.2013, leg. T. Accioly, N.K. Ishikawa and R. Vargas-Isla 020 (UFRN-Fungos 2570!).

Diagnosis: Epigeous basidiome with a white and cottony subgleba. Exoperidium with tiny tufts when young, becoming velutinous in aged specimens, composed of chained spherocysts, and also by unchained thick walled elongated elements up to almost 200 µm; basidiospores up to 7 µm, with aculeate ornamentation.

Basidiomata epigeous, depressed globose to subglobose, slightly umbonate, 15.5 mm (wide) × 10 mm (high). Subgleba white, cottony, up to 3 mm length. Rhizomorphs white, slender. Exoperidium not persistent, formed by a tomentum organized in tufts, light yellow to light orange (4A5 to 5A4) mainly apparent at the base of basidiomata, wearing out and giving a rugose aspect with a felted texture, greyish brown (6D3) towards the apex, finally, giving a velutinous aspect and orange (6A2) color in old specimens; endoperidium smooth, cream (4A3) and dehiscence by a lacerated apical pore. Subgleba elongated, 2.5 mm high, composed of compacted cells, cream to pale orange (4A3 to 5A3). Gleba cottony, furfuraceous, greyish orange to brownish orange (5B3 to 5C3).

Exoperidium composed of branched chains of sphaerocysts 18.8–27.3 µm × 4.5– 8.8 µm, irregularly cylindrical, short or elongated, to digitiform at the terminal portions, mixed with setoid to claviform unchained hyphal elements 49.3–198.9 µm × 7.4–12.4 µm, with thickened walls up to 4 µm. Endoperidium composed of hyphae (3.3)3.6–5(5.6) µm wide interwoven, branched, septate, with pores, hyaline in 5% KOH. Paracapillitium 3.2–6.3 µm (diam.), branched, densely covered with glebal membranes. Basidiospores globose (4.7)5.4–6.6(7) µm diam., aculeate, with spiny projections up to 1 µm in length and width, some spines with rounded or recurved apex. Specimens examined: BRAZIL, Amazonas, Manaus, Reserva Florestal Adolpho Ducke, 03º05’42’S, 59º59’13’’W, growing on decaying wood, 19.01.2013, T. Accioly, N.K. Ishikawa & R. Vargas-Isla 020 (UFRN-Fungos 2570).

245

Notes: Several Lycoperdon species first described under Morganella present basidiospores with similar dimensions and aculeate ornamentations, similar to those of L. exoelongatum, such as L. albostipitatum, L. fuligineum, and L. velutinum (Ponce de León 1971; Suárez and Wright, 1996; Trierveiler-Pereira et al. 2010; Alfredo et al. 2012). However, some authors, such as Kreisel and Dring (1967), and Ponce de León (1971), did not include the spore ornamentation in basidiospore measurements. In our morphological revision (Table. 2), the basidiospores sizes of L. fuligineum (= M. fuliginea) and L. velutinum (=M. velutina), are up to 6.5 µm diameter, including ornamentation. Apart from the velvety exoperidium, L. velutinum can be easily confused with L. exoelongatum, since both species have non-chained elongated elements in the exoperidium; however, holotype and published descriptions of Lycoperdon velutinum (=Morganella velutina, =mexicana) differs macroscopically from L. exoelongatum in the absence of a white proeminent elongated subgleba and in the velvety exoperidium, which is rougher, felted, in L. exoelongatum. Microscopically, at the exoperidium, L. exoelongatum differs from L. velutinum by presenting its elongated unchained elements always setose, while L. velutinum exhibits most commonly paraphisoid or clavate elements, rarely setose. At the spores, L. velutinum have smaller ones (3.8–5.5 µm). Although are both aculeate, under electron microscope is observed that the swallows at the basis of each aculeous is striated in L. velutinum, being theses swallows smooth in L. exoelongatum. Furthermore, basidiospores of L. velutinum presents confluent cristae between some aculei, which are always independent in L. exoelongatum (Kreisel and Dring 1967; Ponce de Leon, 1971; Morales et al. 1974; Suárez and Wright 1996).

On the other hand, older specimens of L. fuligineum and L. albostipitatum can also present a velvety exoperidium, due to the wear and tear of the conic-pyramidal ornamentations exhibited in the younger basidiomata. Despite this, neither L. albostipitatum or L. pyriforme presents unchained elongated elements in the exoperidium. Beyond this, L. albostipitatum presents a more conspicuous elongated subgleba in relation to that of L. exoelongatum and, also, presents striate basal swallow on basidiospores aculeo which some are confluent (Alfredo et al. 2012). Lycoperdon subincarnatum has also been reported as presenting a velvety exoperidium, but this is formed by sparse spines up to 1 mm in length, and the velvety character is probably due to the wear and tear of the exoperidium ornamentations; L. subincarnatum also presents

246

smaller basidiospores (3.5–5 µm) and echinulate ornamentation (Coker and Couch 1928; Cunningham 1944; Ponce de León 1971), instead of aculeate ones as in L. exoelongatum.

Lycoperdon fuligineum Berk. & M. Curtis, in Berkeley, J. Linn. Soc. Bot. 10(46): 345 (1868) – MycoBank: MB216221. Fig. 30

Synonym: Morganella fuliginea (Berk. & Curt.) Kreisel & Dring, Feddes Repert. 74:113 (1967) – MycoBank: MB 334488.

Synonym: Morganella mexicana Zeller, Mycologia 40 (6): 650 (1948) – MycoBank: MB 288452.

Holotype: Mexico, , near Guaymas, leg. Thomas H. Mcbride (NY00839021).

Basidiomata depressed globose, subglobose to pyriform, growing on decaying wood. Subgleba reduced (< ⅓ of basidiome) composed of compacted cells. Exoperidium minute warts or spines (< 0.5 mm in long.), persistent, brown (6E6) to dark brown (6F8) with age. Endoperidium surface smooth, cream (4A3). Gleba powdery, brown (6E8).

Exoperidium base like the apex, composed of chains of sphaerocysts (like in L. perlatum) that are globose, subglobose, ellipsoid, with truncate apices, except at the top of the chain where they are pyriform. Endoperidium composed of interwoven hyphae that are hyaline and with wall <0.5 µm. Mycosclerids and inflated terminations absent. Capillitium absent. Paracapillitium abundant. Basidiospores globose, 4.5–7 µm, strongly verrucose [D] in LM, aculeate in SEM; spines 0.5–1.5 µm long; the density of ornamentation is of 7–15.9 (mean = 10.84) warts by a reduced area of 10 µm.

247

Figure 29 Lycoperdon exoelongatum. a. Basidiome in situ; b. Dry specimen; c. Detail of tufts in exoperidium of young basidiome; d. Detail of exoperidial surface in aged basidiome; e. Paracapillitium covered with glebal membrane; f. Basidiospores strongly verrucose [D] in LM; g. Scanning electron microscopy of basidiospores; h. Exoperidial elements. Bars: (a, b, d) bar = 5 mm.; (c) bar = 0.5 mm; (e) bar = 20 µm; (f) bar = 10 µm; (g) bar = 1 µm; (h) bar = 50 µm (Photos: Accioly, T.). Specimens examined: BRAZIL, Amazonas, Manaus, Reserva Florestal Adolpho Ducke, 59º58'07"W, 2º55'41"S, Amazon rainforest, growing on decaying wood, 25 Dec 2010, leg. R. Braga-Neto, GF38 (INPA 239561); ibidem, 17 Feb 2013, leg. T. Accioly, T.S. Cabral, N.K. Ishikawa and I.G. Baseia. (UFRN-Fungos 2571); ibidem (UFRN-

248

Fungos 2578); ibidem, 16 Jan 2013, leg. T. Accioly (UFRN-Fungos 2579); Reserva Florestal do Cuieiras, ZF-2, 60º11'W, 02º38' S, 20 Feb 2013, leg. T. Accioly, T.S. Cabral and N.K. Ishikawa (UFRN-Fungos 2575); Ceará, Tianguá, APA Serra de Ibiapaba, 40º59'30"W, 3º43'56"S, remnant of Atlantic rainforest, growing on decaying wood, 19 Apr 2012, leg. D.S. Alfredo, DSA73 (UFRN-Fungos 1768); Pará, Belém, Floresta Nacional de Caxuanã, 51º27'20"W, 1º42'15"S, Amazon rainforest, growing on decaying wood, 10 Aug 2007, leg. T.B. Gibertoni (UFRN-Fungos 606); Paraíba, Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, remnant of Atlantic rainforest, growing on rainforest, 35º42’15"W, 6º58’12"S, 22 Jul 2014, leg. D.S. Alfredo, DSA 240 (UFRN- Fungos 2560); Ibidem, DSA 241 (UFRN-Fungos 2561); ibidem, DSA 242 (UFRN- Fungos 2562); ibidem, DSA 243 (UFRN-Fungos 2563); ibidem, DSA 247 (UFRN- Fungos 2566); Mamanguape, Reserva Biológica Guaribas, 39º39.811’W, 07º05.993’S, Atlantic rainforest, growing on decaying wood, 28 Jul 2012, leg. B.D.B. Silva, J.O. Sousa and M.A. Sulzbacher (UFRN-Fungos 1971); ibidem (UFRN-Fungos 1972); Rio Grande do Sul, São Leopoldo, 51º08'50"W, 29º45'37"S, Atlantic rainforest, growing on decaying wood, 01 Jan 1929, leg. Rick (PACA 13802); ibidem, 51º08'50"W, 29º45'37"S, 01 Jan 1940, leg. Rick (PACA13765); Rio Grande do Norte, Baía Formosa, R.P.P.N. Mata Estrela, 35º02'15"W, 6º37'47"S, Atlantic rainforest, growing on decaying wood, 18 Mar 2006, leg. I.G. Baseia, P.P.T. Lacerda and M.M.B. Barbosa (UFRN-Fungos 371); ibidem (UFRN-Fungos 2582); ibidem (UFRN-Fungos 2586). VENEZUELA, Cerro de la Neblina, Rio Yatua in Amazon territory, growing on decaying wood, (NY00398806, as M. velutina); Aragua, 1.5 km up the trail on mountain behind the hotel at Rancho Grande, growing on wood, 13 Jun 1968, leg. K.P. Dumont (NY00398808, as M. velutina); Yaracuy, Nirgua, in mountain, rotted wood, 07 Jul 1971, leg. K.P. Dumont, J.H. Haines, G.J. Samuels and G.S. Buting (NY00398727); Bolivar, El Portachuelo, growing on decaying wood, 22 Jul 1971, leg. K.P. Dumont, J.H. Haines and E. Moreno (NY00398728).

Other specimens examined: USA, New Jersey, Newfield, growing on decaying wood, 08.1887, leg. J.B. Ellis n. 5013 (NY00839022! Morganella mexicana paratype designated in Zeller 1948; pro parte!); idem (NY00839023 pro parte!).

Notes: The type of Morganella mexicana Zeller was designated by Zeller (1948) from a Mexican collection located in the Morgan Herbarium at the University of Iowa (Mexico, Sonora, near Guaymas, leg. Thomas H. Mcbride); moreover, Zeller (1948)

249 included other collections under M. mexicana, as paratypes. One of these collections is B. Ellis 5013 from New Jersey (USA); different authors (as indicated in the revision labels) have studied this collection and noted that specimens belong at least to two species: M. mexicana and M. velutina. Specimens of B. Ellis 5013 are distributed in NY00839022 and NY00839023. In agreement with the revision done in 1991 by Suarez, specimens in NY00839022 belong not only to M. velutina, but also to M. mexicana; also NY00839023 is a mixed collection of M. mexicana and M. velutina. The specimens of M. mexicana have exoperidium ornamentation composed by a chain of sphaerocysts, such as the exoperidium perlatum-type mentioned in Kreisel (1973: 96) of M. fuliginea; Kreisel and Dring (1967) consider M. mexicana synonymous to M. fuliginea.

In the L. fuligineum protologue, Berkeley and Curtis (1868) did not indicate a voucher, nor a specific locality; they just wrote that all collections in the paper Berkely and Curtis (1868) are from Cuba. Kreisel and Dring (1967) indicate that the type of L. fuligineum is deposited in K; however, it has not been located. The authors labelled the “type” in exsiccate NY00839021 under name Morganella mexicana. This one was asked for us under loans, but it is not possible, and I agreed for that, because the specimens are a little part of a basidioma. In determination by Dring 1966 (as indicate in the exsiccate) wrote “this seems to be all that is left of the type collection, the material at Iowa has been lost” and his assigned D.M. Dring. Photos these exsiccate is available in C. V. Starr Virtual Herbarium website (http://sweetgum.nybg.org/science/vh/specimen_details.php?irn=946535).

On the other hand, the GenBank sequence AJ485065 under L. fuligineum grouped in our analyses inside L. nudum; however, the persistent exoperidium clearly distinguishes L. fuligineum from L. nudum (exoperidium ephemeral), and probably the voucher from which AJ485065 sequence was obtained is misidentified.

250

Figure 30 Lycoperdon fuligineum. a. Paratype of Morganella mexicana (NY00839022, J.B. Ellis 5013), dried specimens; b. Dry specimens of Morganella mexicana mixed with M. velutina (NY00839023, J.B. Ellis 5013); c. Detail of exoperidium ornamentation; d. Sphaerocysts from exoperidium ornamentation; e. Basidiospores strongly verrucose [D] in LM; f. Scanning electron microscope of basidiospores. Bars: (a– b) 10 mm; (c) 0.2 mm; (d) 50 µm; (e) 5 µm; (f) 2 µm.

251

Lycoperdon nudum (Alfredo & Baseia) Baseia, Alfredo & M.P. Martín comb. nov. – MycoBank: MB 818190. Fig. 31.

Holotype: BRAZIL, Paraíba, Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 35º42’15"W, 6º58’12"S, remnant of Atlantic rainforest, growing on decaying wood, 17 Jun 2012, leg. D.S. Alfredo DSA105 (UFRN-Fungos 1765!). Basionym: Morganella nuda Alfredo & Baseia, Nova Hedwigia 98: 460 (2014). MycoBank: MB 801797.

Basidiomata depressed globose to pyriform; reduced subgleba (< ⅓ of basidiome), composed of compacted cells, cream (4A3). Exoperidium ornamentation granulose, composed of hyphae aggregated in small tufts, falling off partially or completely with the age. Endoperidium orange when young (5A2) to yellowish brown (5D8), surface smooth, occasionally some exoperidium remnants remain at the base. Gleba powdery, brown (6E8).

Exoperidium base similar to the apex, composed by a chain of sphaerocysts globose, subglobose, lageniform, from the base to the top of the chain; and oval to ovoid some with acute apexs. Endoperidium composed of interwoven hyphae, hyaline, with wall < 0.5 µm. Mycosclerids and inflated terminations absent. Capillitium absent. Paracapillitium abundant. Basidiospores globose, 5.5–7.5 µm, strongly verrucose [D] in LM, aculeate in SEM, spines 0.5–1 µm long; the density of ornamentation is of 11.9–15.7 (mean = 13.61) warts by a reduced area of 10 µm.

Specimens examined: BRAZIL, Paraíba, Areia, Reserva Ecológica Estadual Mata do Pau-Ferro, 35º42’15"W, 6º58’12"S, remnant of Atlantic rainforest, growing on decaying wood, 18 Jun 2012, leg. D.S. Alfredo (UFRN-Fungos 1766); ibidem, 35º44’24’’W, 6º58’23’’S, 22 Jul 2014, leg. D.S. Alfredo DSA 245 (UFRN-Fungos 2565); ibidem, 21 Jul 2014, 35º44’13’W, 06º58’26’’S, leg. D.S. Alfredo DSA 238b (UFRN- Fungos 2568); Rio Grande do Sul, Santa Maria, Três Barras, 53º48'25"W, 29º41'03"S, Atlantic rainforest, growing on decaying wood, 14 Mar 2008, leg. V.G. Cortez n. 056/08 (ICN 154541 as M. fuliginea). Notes: Lycoperdon nudum was firstly reported from areas of “Brejos”, in accordance with Veloso et al. (1991) and Tabarelli and Santos (2004), these are areas of high altitude (up to 1.100 m) with an average annual rainfall of 1200 mm of Atlantic Forest surrounded by typical xerophilic vegetation (Caatinga). Yet, the “Brejos” are

252

considered ecological disjunctions of Atlantic Forest with high biodiversity, considered as a refuge ecological due its different and unique phytophysiognomy being an important center of endemism (Santos et al. 2007). The ephemeral exoperidium distinguishes L. nudum from L. fuligineum. All the specimens under L. fuligineum analyzed in this work showed persistent exoperidium, and all them grouped together in the same clade (Fig. 25). In general, specimens of L. nudum have bigger spores, 5.5–7.5 µm including ornamentation, with the spines 0.6–1 µm in long (Table 8), compared to those of L. fuligineum. Suárez and Wright (1996), in the revision of Morganella from South America, mention basidiospores of 3.2–4.7(5.4) µm, but they did not include the ornamentation (spines 0.4–2.2 µm long). Moreover, the density of number of wart by a reduced circumference of 10 µm is of 11.9–15.7 (mean = 13.61) versus the found in L. fuligineum (7–15.9 (mean = 10.84)). The fact of L. nudum to be found in same areas that some specimens of L. fuligineum (UFRN-Fungos 1768, UFRN-Fungos 2560, Fungos 2561, UFRN-Fungos 2562, UFRN-Fungos 2563, UFRN-Fungos 2566) bring to us a question: why the specimens of L. nudum have an ephemeral exoperidium while the specimens of L. fuligineum is a persistent one under the same climatic conditions? This question yet is difficult to answer, but the molecular data show us that we have atleast a little difference between these two species and maybe they are a complex species. More DNA markers are needed to clarify it, so by now we prefer to treat them as two distinct species.

253

Figure 31 Lycoperdon nudum (Holotype UFRN-Fungos 1765). a. Dried specimen; b. Detail of exoperidium falls off; c. Detail chain of exoperidium ornamentation; d. Basidiospores strongly verrucose [D] and paracapillitium in LM; e. Scanning electron microscope of basidiospores. Bars (a) 2 mm; (b) 2 mm; (c) 50 µm; (d) 5 µm; (f) 2 µm.

254

Lycoperdon purpurascens Berk & M.A. Curtis, Proceedings of the American Academy of Arts and Sciences 4: 124 (1858). (Figure 4 in Ponce de León, 1971) – MycoBank: MB 166087.

Holotype: Bonin Island, U.S.N. Pacific Exped. 1853 – 1856, leg. C. Wright (Type).

Synonym: Morganella purpurascens (Berk. & M.A. Curtis) Kreisel & Dring, Feddes Repertorium 74:115 (1967) – MycoBank: MB 334490.

Complete description: Ponce de León (1971).

Habitat: tropical deciduous forest, tropical zones, growing on decaying wood, on rotting wood.

Notes: This Indo-Pacific species is characterized by a low basidiospores ornamentation, weakly developed exoperidium, often pitted endoperidium, and compact subgleba. The endoperidium surface pitted like a thimble, and basidiospores slightly verrucose are the most characteristic of L. purpurascens. Others species have an endoperidium surface marked with areoles left by exoperidium ornamentation: L. afrum, L. subincarnatum and L. demoulinii. However, the scars in those species are larger than those found in L. purpurascens (Kreisel and Dring, 1967; Ponce de León, 1971). Moreover, L. subincarnatum has reduced subgleba and verrucose basidiospores [C] (Ponce de León, 1971), while L. demoulinii has well-developed subgleba and punctate basidiospores [A]. The species M. costaricensis M.I. Morales, described by Morales et al. (1974), is morphologically similar to L. purpurascens; however, M. costarincensis has cellular subgleba, and smooth basidiospores [A], slightly ovate. In our molecular analyses.

Lycoperdon sulcatostomum (C.R. Alves & Cortez) Baseia, Alfredo & M.P. Martín comb. nov. – Mycobank: MB 818191

Holotype: BRAZIL, Paraná, Palotina, Parque Estadual de São Camilo, growing on rotting fallen leaves of Brazilian Queen Palm, Syagrus romanzoffiana, 17 Jan 2011, leg. A.J. Ferreira and V.G. Cortez 17–18 (UPCB 72893).

Basionym: Morganella sulcatostoma C.R. Alves & Cortez, Nova Hedwigia, 96: 410 (2013) – MycoBank: MB 564889

255

Specimens examined: BRAZIL, Paraná, Foz do Iguaçu, Parque Nacional do Iguaçu, 54º35'11"W, 25º32'49"S, on rotting fallen leaves, 13 Dec 2010, leg. L.Trierveiler- Pereira LTP140 (ICN 177032); ibidem (ICN 177033).

Notes: In our analyses, this species did not group in any of the subgenera described by Larsson and Jeppson (2008), nor in the new subgenus described in this paper. Lycoperdon sulcatostomum is characterized by its sulcate apical pore, exoperidium ornamentation falling off, surface endoperidium cover by mycosclerids, velutinous, basidiospores slightly verrucose [B], and presence of capillitium with rare septa, without pores and paracapillitium (Table 8).

Lycoperdon velutinum Berk. ex Massee, Monograph of the Myxogastres, 18(1892) – Mycobank: MB 197111. Fig. 32.

Holotype: Venezuela, Colonia Tover, Amazon rainforest, growing on decaying wood, leg. Fendler (NY00398807!).

Synonym: Morganella velutina (Berk. ex Massee) Kreisel & Dring, Feddes Repertorium, 74: 114 (1967). Mycobank: 334492

Basidiomata depressed globose. Subgleba none or when present, reduced (<⅓ of basidiome) and composed of compacted cells. Exoperidium ornamentation persistent, velutineous (carpet-like) up to 0.15 mm in long. Endoperidium smooth, without scars on surface. Gleba powdery, brown (6E8).

Exoperidium composed of elongated hyphae, some clavate at the top, dextrinoid, up to 140 µm long. Endoperidium apex without mycosclerids, dehiscence without hyphae with inflated terminations. Capillitium absent. Paracapillitium abundant. Basidiospores globose, strongly verrucose [D] in LM, aculeate in SEM.

Specimens examined: USA, New Jersey, Newfield, growing on decaying wood, Aug 1887, leg. J.B. Ellis, n. 5013 (NY00839022 as M. mexicana, pro parte!); ibidem, (NY00839023 as M. mexicana, pro parte!); VENEZUELA, Colonia Tover, Amazon rainforest, growing on decaying wood, leg. Fendler (NY00398809).

Notes: Lycoperdon velutinum is mostly characterized by its velutineous, carpet- like exoperidium ornamentation, composed of dextrinoid elongated hyphae, and strongly verrucose [D]. basidiospores. Kreisel and Dring (1967), transferred L. velutinum to Morganella genus, due to the absence of capillitium and abundant paracapillitium. As 256

indicated above, L. fuligineum and L. velutinumare close enough to have been often confused as with the mixed collection J. B. Ellis 5013. However, these species are easily separated by the exoperidium that is totally different (Figs. 30 and 32).

Figure 32 Lycoperdon velutinum. a. Dried specimens of type (NY00398807); b. Dried specimens of the mixed basidiomes with L. fuligineum (NY00839022); c. Exoperidium ornamentation; d. Elongated hyphae from exoperidium; e. Basidiospores strongly verrucose [D] in LM (type); f. Scanning electron microscope of basidiospores (type). Bars: (a) 10 mm; (b) 5 mm; (c) 0.2 mm: (d) 50 µm; (e) 5 µm; (f) 2 µm.

257

Lycoperdon sp. ICN 177118 Previously identified as Morganella afra Kreisel & Dring, Feddes Reppert. 74: 117 (1967).

Basidiomata mature depressed globose; subgleba reduced cellular. Exoperidium ornamentation minute verrucae, falling off with the age, leaving the endoperidium surface with tiny areoles. Gleba powdery.

Exoperidium composed of sphaerocysts that are globose or subglobose to ovoid. Endoperidium apex composed of mycosclerids of irregular forms; dehiscence hyphae aseptate and without inflated termination. Capillitium absent. Paracapillitium abundant. Basidiospores globose, 4–5 µm, slightly verrucose [B] in LM.

Specimens examined: BRAZIL, Rio Grande do Sul, Porto Alegre, Morro Santana, 30º01’58’’W, 51º13’48’’S, Atlantic rainforest on decaying woody, 26.03.2012, leg. L. Trierveiler-Pereira, LTP296 (ICN177118, ITS sequence GenBank KU958371, LSU sequence GenBank KU958372).

Notes: Previously identified as Morganella afra this specimen is characterized by its reduced and cellular subgleba, the tiny areolate surface of the endoperidium, and basidiospores slightly verrucose [B]. More analyzes including the type of M. afra are needed to clearly identify this specimen. This species differs from its sister species in the Arenicola clade, because L. arenicola and L. demoulinii show well developed subgleba and punctate basidiospores [A]; moreover, L. arenicola does not have an areolate surface, and L. demoulinii has a surface well marked by scars in areolate format. The ICN177118 specimen differs from L. subincarnatum (=M. subincarnata), because the last one has reduced subgleba composed of compacted cells, areolate endoperidium surface and verrucose basidiospores [C] (Kreisel and Dring 1967; Ponce de Léon1971). In our comparative analyses based on a specimen collected by C. G. Lloyd from USA (MA- Fungi 31310), the morphological features that distinguish Lycoperdon sp. ICN177118 from L. subincarnatum are mainly the tiny areoles in L. afrum vs the well-areolated endoperidium surface in L. subincarnatum; as well as the punctate basidiospores in Lycoperdon sp. ICN177118 vs the verrucose basidiospores in L. subincarnatum.

258

Excluded taxon

Lycogalopsis solmsii E. Fisch., Berichte der Deutschen Botanischen Gesellschaft 4: 197 (1886) – MycoBank: MB 209949.

Synonym: Morganella rimosa Baseia & Alfredo, Mycosphere 3: 68 (2012) – MycoBank: MB 564371.

According to Agerer (2002), the rhizomorphs of lycoperdaceous fungi are composed of two kinds of hyphae: the thinner outer part has hyphae that are aseptate, hyaline in 5% KOH, dextrinoid in Melzer’s reagent; and the other thicker inner (vessel-like) hyphae are septate or with dissolving septa, hyaline in 5% KOH and weakly dextrinoid with characteristic dissolving septa. All specimens included in this study of subgenera Arenicola and Morganella, have the same rhizomorph features described in Agerer (2002) for lycoperdaceous fungi; and, similar to those described for Calvatia nodulata Alfredo & Baseia in Alfredo et al. (2014b). However, in M. rimosa the rhizomoprhs are formed by one kind of , septate, with clamp connections, hyaline, and with the occurrence of oleoacanthocystidia; these features are similar to those in the members of the gomphoid-phalloid clade described in Agerer (2006). We have compared the type of M. rimosa (UFRN-Fungos 1680) and specimens of Lycogalopsis solmsii (NY00792715); there are no morphological differences in the rhizomorphs, or in the rest of the characters:

259

4 DISCUSSION

Kreisel and Dring (1967) segregated Morganella from Lycoperdon due to the absence of the capillitium and association of the paracapillitium with corrugated glebal membranes. However, some species within Lycoperdon can develop in wood, such as L. pyriforme (Larsson and Jeppson 2008); and, Lycoperdon species may present paracapillitium, such as in L. foetidum and L. perlatum (Demoulin 1972b). Demoulin (1972b), based only morphological features, already have been treated the genus Lycoperdon as paraphyletic one, which showed Morganella is related to the L. cokeri, and L. follicolum (a Brazilian species) could occupy an intermediary one position. Unfortunately, we have not received the specimens of L. follicola to our study. Yet, the author draws attention to the occurrence of abundant paracapillitium being a more derivative character than capillitium (with or none pores). Based on molecular analyses of ITS and LSU markers, Larsson and Jeppson (2008) treated Morganella as a subgenus of Lycoperdon. With a broader sampling than the previous study, we state the position of seven species in Lycoperdon subgen. Morganella; the absence of capillitium and the reduced (<⅓ of basidioma) compact cellular subgleba are autapomorphies in this subgenus.

Three species are included in the new subgenus Arenicola, delimitated by subgleba reduced to well developed, cellular gleba with capillitium and paracapillitium, peridium composed of mycosclerids and/or hyphae with inflated terminations.

Following the concept of synapomorphy and autapomorphy adopted by Assis and Rieppel (2011) and Hörandl and Stuessy (2010), the subgleba cellular, the glebal membrane which can disappear with the age in Lycoperdon, and the occurrence of paracapillitium can be considered synapomorphies of Lycoperdon and the subgenera Arenicola and Morganella.

260

REFERENCES

AGERER, R. 2002. Rhizomorporh structures confirm the relationship between Lycoperdales and Agaricaceae (Hymenomycetes, Basidiomycota). Nova Hedwigia 75: 367–385.

AGERER, R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5: 67–107.

ALFREDO, D.S., T. ACCIOLY, and I.G. BASEIA. 2014a. Morganella arenicola, a new species record from North and Northeast Brazil. Turkish Journal of Botany 38: 595–599.

ALFREDO, D.S., and I.G. BASEIA. 2014. Morganella nuda, a new puffball (Agaricaceae, Basidiomycota) in the upland forests of the Brazilian semi-arid region. Nova Hedwigia 98: 459–466.

ALFREDO, D.S., A.G. LEITE, R. BRAGA-NETO, and I.G. BASEIA. 2012. Two new Morganella species from the Brazilian Amazon rainforest. Mycosphere 3: 66–71.

ALFREDO, D.S., A.C.M. RODRIGUES, and I.G. BASEIA. 2014b. Calvatia nodulata, a New Gasteroid Fungus from Brazilian Semiarid Region. Journal of Mycology 2014: 1– 7.

ALVES, C.R., and V.G. CORTEZ. 2014. Gasteroid Agaricomycetidae (Basidiomycota) from Parque Estadual São Camilo, Paraná, Brazil. Revista Brasileira de Biociências 12: 27–41.

ALVES, C.R., and V.G. CORTEZ. 2013. Morganella sulcatostoma sp. nov. (Agaricales, Basidiomycota) from Paraná State, Brazil. Nova Hedwigia 96: 409–417.

ASSIS, L.C.S., and O. RIEPPEL. Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics 27: 94– 102.

BARBOSA, M.M.B., SILVA, M.A., CRUZ, R.H.S.F., CALONGE, F.D., and I.G. BASEIA. First report of Morganella compacta (Agaricales, Lycoperdaceae) from South America. Mycotaxon 116: 381–386.

CALONGE, F.D. 1998. Gasteromycetes, I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica.

CALONGE, F.D., M. MATA, and J. CARRANZA. 2005. Contribución al catálogo de los Gasteromycetes (Basidiomycotina, Fungi) de Costa Rica. Anales del Jardin Botánico de Madrid 62: 23–45.

261

COKER, W.C., and J.N. COUCH. 1928. The Gasteromycetes of the Eastern United States and Canada. The University of North Carolina Press, Chapel Hill.

CORTEZ, V.G., F.D. CALONGE, and I.G. BASEIA. 2007. Rick´s species revision 2: Lycoperdon benjaminii recombined in Morganella. Mycotaxon 102: 425–429.

CUNNINGHAM, G.H. 1926. Lycoperdaceae of New Zealand. Transactions of the New Zealand Institute 57: 187–217.

CUNNINGHAM, G.H. 1944. The Gasteromycetes of Australia and new Zealand. John McIndoe, Dunedin, N.Z.

DEMOULIN, V. 1972a. Espèces nouvelles ou méconnues du genre Lycoperdon (Gastéromycètes). Lejeunia 62: 1–27.

DEMOULIN, V. 1972b. Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique.

DEMOULIN, V. 1983. Clé de Détermination des espèces du genre Lycoperdon présentes dans le Sud de l’Europe. Revista fr Biologia 12: 65–70.

FARRIS, J.S. 1989. The Retention Index and the Rescaled Consistency Index. Cladistics 5: 417–419.

FELSENSTEIN, J. 1985. Use of Bootstrap in phylogenetic calculations. Evolution 39: 783–791.

GARDES, M., and T.D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.

HÖRANDL, E., and T.F. STUESSEY.2010. Paraphyletic groups as natural units of biological classification. Taxon 59: 1641–1653.

HUELSENBECK, J.P., and F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17: 754–5.

JEPPSON, M., E. LARSSON, and M.P. MARTÍN. 2012. Lycoperdon rupicola and L. subumbrinum: Two new puffballs from Europe. Mycological Progress 11: 887– 897.

KIRK, P.M., P.F. CANNON, D.W. MINTER, and J.A. STALPERS. 2008. Dictionary of The Fungi. 10th editi. P. M. Kirk, P. F. Cannon, D. W. Minter, and J. A. Stalpers [eds.],. CABI Europe, Wallingford.

KLUGE, A.G., and J.S. FARRIS. 1969. Quantitative phyletics and theevolution of anurans. Systematic Zoology 18: 1–32.

KORNERUP, A., and J.H. WANSCHER. 1967. Methuen handbook of colour. 3 rd. Eyre

262

Methuen, London.

KREISEL, H. 1973. Die Lycoperdaceae der DDR. Bibliotheca Mycologica 36: 1–197.

KREISEL, H., and D.M. DRING. 1967. An emendation of the genus Morganella Zeller (Lycoperdaceae). Feddes Repertorium 74: 109–122.

KRÜGER, D., and H. KREISEL. 2003. Proposing Morganella subgen Apioperdon subgen nov for the puffball Lycoperdon pyriforme.pdf. Mycotaxon 86: 169–177.

KUMLA, J., N. SUWANNARACH, B. BUSSABAN, and S. LUMYONG. 2013. New report of Morganella purpurascens in Thailand. Mycoscience1–4.

LARGET, B., and L. SIMON. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees Markov chain Monte Carlo. Mol. Biol./ Evol. 16: 750–759.

LARSSON, E., and M. JEPPSON. 2008. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycological Research 112: 4–22.

LEWINSOHN, T.M., and P.I. PRADO. 2005. Quantas espécies há no Brasil? Megadiversidade 1: 36–42.

MARTIN, M.P., and K. WINKA. 2000. Alternatice methods of extracting and amplifyngo DNA from Lichens. Lichenologist 32: 189–196.

MITTERMEIER, R.A., FONSECA, G.A.B., RYLANDS, A.B., and K. BRANDON. 2005. Uma breve história da conservação da biodiversidade no Brasil. Megadiversidade 1: 14– 21.

MORALES, M.I., M. NASSAR, and J.A. SAÉNZ. 1974. Lycoperdaceae of Costa Rica. I. The genus Morganella. Revista de Biología Tropical 21: 221–227.

NILSSON, R.H., E. KRISTIANSSON, M. RYBERG, N. HALLENBERG, and K.H. LARSSON. 2008. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 2008: 193–201.

NYLANDER, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Uppsala University.

PERES, C.A. 2005. Porque precisamos de megareservas na Amazônia. Megadiversidade 1: 174–180.

PONCE DE LEÓN, P. 1971. Revision of the genus Morganella (Lycoperdaceae). Fieldiana: Botany 31: 27–44.

RAMBAUT, A. 2002. “Se-Al v2. 0a11 Carbon.” University of Oxford.

263

REBRIEV, Y.A., and E.M. BULAKH. 2015. Morganella sosinii sp. nov. (Agaricales) from the Russian far East. Micology and Plant Pathology 49: 293–296.

REHNER, S.A., and G.J. SAMUELS. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634.

RODRÍGUEZ, F., J.L. OLIVER, A. MARÍN, and J.R. MEDINA. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

RONQUIST, F., and J.P. HUELSENBECK. 2003. MRBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

SANTOS, A.M., CAVALCANTI, D.R., SILVA, J.M.C., and M. TABARELLI. 2007. Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography 34: 437–446.

SILVA, B.D.B., J.O. SOUSA, and I.G. BASEIA. 2011. Discovery of Geastrum xerophilum from the Neotropic. Sciences-New York 118: 355–359.

SILVA, B.D.B., M.A. SULZBACHER, and I.G. BASEIA. 2014. Metodologia. In I.G.

BASEIA, B. D.B. SILVA, and R.H.S.F. CRUZ [eds.], Fungos Gasteroides no Semiárido do Nordeste Brasileiro, 132. Print Mídia, Feira de Santana.

STEARN, W.T. 2010. Botanical Latin. Fourth. W. T. Stearn [ed.],. Timber Press, Portland.

SUÁREZ, V.L., and J.E. WRIGHT. 1996. South American Gasteromycetes V : The genus Morganella. Mycologia 88: 655–661.

SWOFFORD, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other methods). Sinauer Associates, Massachsetts.

TABARELLI, M., and A.M.M. SANTOS. 2004. Uma breve descrição sobre a história

natural dos Brejos Nordestinos. In K.C. PÔRTO, CABRAL, J.J.P., M. TABARELLI

[eds.] Brejos de Altitude em Pernambuco e Paraíba - História Natural, Ecología e Conservação. Brasília, Ministério do Meio Ambiente, Série Biodiversidade, 9.

TRIERVEILER-PEREIRA, L., H. KREISEL, and I.G. BASEIA. 2010. New data on puffballs (, Basidiomycota) from the Northeast Region of Brazil. Mycotaxon 111: 411–421.

VELOSO, H.P., FILHO, A.L.R.R., and J.C.A. LIMA. 1991. Classificação da vegetação Brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro.

WHITE, T.J., S. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A

264

Guide to Methods and Applications315–322.

ZELLER, S.M. 1948. Notes on certain Gasteromycetes, including two new Orders. Mycologia 40: 639–668.

Supplementary figure 1. The 100 most parsimonious strict consensus tree with all specimens analysed of Lycoperdon and Morganella that have obtained the ITS and LSU regions.

265

Table 8 Specimens studied in this work with voucher numbers, country, and the main morphological features considered. Collections which ITS and LSU sequences were obtained are indicated with (+), sequences were not obtained (-), sequences were not attempt (0). Species Specimens Country ITS/LSU Subgleba Exoperidium Endoperidium Capillitium Paracapillitium Spores Spores size (µ) sequences ornamentation surface ornamentation

Lycoperdon afrum ICN177118 Brazil + Reduced and Minute Minute areole Absent Present B 4–5×4–5 compact verrucae, not persistent Lycoperdum INPA 239563, Brazil + Reduced and Spiny, persistent Smooth Absent Present D 5.2– 6×5–6 albostipitatum holotype compact UFRN-Fungos Brazil + Reduced and Spiny, persistent Smooth Absent Present D 5.1–5.8×5.1–5.9 2249 compact UFRN-Fungos Brazil + Reduced and Spiny, persistent Smooth Absent Present D 5.2– 5.8×5–5.7 2569 compact UFRN-Fungos Brazil + Reduced and Spiny, persistent Smooth Absent Present D 5.1–5.8×5.1–5.9 2572 compact Lycoperdon arenicola UFRN-Fungos Brazil + Well developed Verrucose, not Smooth Present Present A 3–4×3–4 1006, holotype and cellular persistent UFRN-Fungos 649 Brazil + Well developed Verrucose, not Smooth Present Present A 3.8–4.5×3.8–4.5 and cellular persistent UFRN-Fungos 656 Brazil + Well developed Verrucose, not Smooth Present Present A 4–4.5×4–4.5 and cellular persistent UFRN-Fungos 657 Brazil + Well developed Verrucose, not Smooth Present Present A 4–4.5×4 – 4.5 and cellular persistent UFRN-Fungos 729 Brazil + Well developed Verrucose, not Smooth Present Present A 4–4.5×4–4.5 and cellular persistent UFRN-Fungos 864 Brazil + Well developed Verrucose, not Smooth Present Present A 4–4.5×4–4.5 and cellular persistent UFRN-Fungos 941 Brazil + Well developed Verrucose, not Smooth Present Present A 3–4×3–4 and cellular persistent UFRN-Fungos Brazil + Well developed Verrucose, not Smooth Present Present A 3.5–4.5×3.5–4.5 1367 and cellular persistent UFRN-Fungos Brazil Well developed Verrucose, not Smooth Present Present A 4 – 4.5×4–4.5 + 1510 and cellular persistent UFRN-Fungos Brazil + Well developed Verrucose, not Smooth Present Present A 4–4.5×4–4.5 2567 and cellular persistent UFRN-Fungos Brazil + Well developed Verrucose, not Smooth Present Present A 3–4×3–4 2581 and cellular persistent Lycoperdon compactum PDD 10140, New Zealand - Reduced and Spiny not Areolate Absent Present D 3.5–4.0 holotype compact persistent PDD 1102 New Zealand - Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD 16721 New Zealand 0 Reduced Spiny not Areolate Absent Present D 3.5–4.0 compact persistent

266

PDD 4530 New Zealand 0 Reduced Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD 8525 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD 4008 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–3.8 compact persistent PDD 5607 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–3.8 compact persistent PDD 11111 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD 11565 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD 12039 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent PDD16058 New Zealand 0 Reduced and Spiny not Areolate Absent Present D 3.5–4.0 compact persistent Lycoperdon demoulinii UFRN-Fungos 655, Brazil + Well developed Spiny, not Areolate Present Present A 4–5×4–5 Holotype and cellular persistent UFRN-Fungos Brazil + Well developed Spiny, not Areolate Present Present A 4–4.5×4–4.5 2554 and cellular persistent Lycoperdon UFRN-Fungos Brazil + Reduced and Spiny, not Smooth Absent Present D 4–4.5×4–4.5 exoelongatum 2570, Holotype compact persistent Lycoperdon fuligineum Brazi + Reduced and Warty, Smooth Absent Present D INPA 239561 5–6.8×5–6.8 compact persistent Brazi + Reduced and Warty, Smooth Absent Present D UFRN-Fungos 606 5.5–7.0×5.1–6.8 compact persistent UFRN-Fungos 371 Brazil + Reduced and Warty, Smooth Absent Present D 5.8– 6.4×5.5– compact persistent 6.3 UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 6–6×4.6–6.3 1768 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.3– 6.1×5–5.9 1971 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 4.8–5.6×4.8–5.5 1972 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.8–6.4×5.5–6.3 2560 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5–6.5×5–7 2561 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5–6×5–5.9 2562 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 6–7×6–7 2563 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.3–5.8×5.1–5.9 2566 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.5–7×5.1–6.8 2571 compact persistent

267

UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.3–6.1×5–5.9 2575 compact persistent UFRN-Fungos Brazil + Reduced Warty, Smooth Absent Present D 5.3–5.8×5.1–5.9 2578 persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5.3–6.1×5–5.9 2579 compact persistent UFRN-Fungos Brazil + Reduced and Warty, Smooth Absent Present D 5–6×5–5.9 2582 compact persistent UFRN-Fungos2586 Brazil + Reduced and Warty, Smooth Absent Present D 5.5– 7×5.1–6.8 compact persistent NY00839022 (pro USA - Reduced and Warty, Smooth Absent Present D parte, M. mexicana, compact persistent 4.4–5.6×4.2–5.4 paratype) NY00839023 (pro USA - Reduced and Warty, Smooth Absent Present D 4.5–5.5×4.5–5.5 parte, M. mexicana) compact persistent Venezuela - Reduced and Warty, Smooth Absent Present D NY00398806 5.4–6.7×5.2–6.5 compact persistent Venezuela - Reduced and Warty, Smooth Absent Present D NY00398808 52–6.5×5.1–6.5 compact persistent Venezuela - Reduced and Warty, Smooth Absent Present D 5.1–6.1 ×5.1– NY00398727 compact persistent 6.1 Venezuela - Reduced and Warty, Smooth Absent Present D NY00398728 4.9–5.9×4.9–5.8 compact persistent Brazil Reduced and Warty, Smooth Absent Present D PACA13765 - 5.1–5.9×5.1–5.7 compact persistent Brazil Reduced and Warty, Smooth Absent Present D PACA13802 - 5.1–5.7×4.8–5.6 compact persistent Lycoperdon nudum ICN 154541 Brazil + Reduced and Spiny, not Smooth Absent Present D 4.8–5.6×4.8–5.5 compact persistent UFRN-Fungos Brazil + Reduced and Spiny, not Smooth Absent Present D 5.6–7.5×5.4–7.5 1765, Type compact persistent UFRN-Fungos Brazil + Reduced and Spiny, not Smooth Absent Present D 5.6–6.6×5.4–6.6 1766 compact persistent UFRN-Fungos Brazil + Reduced and Spiny, not Smooth Absent Present D 5.6–6.6×5.4–6.6 2565 compact persistent UFRN-Fungos Brazil + Reduced and Spiny, anot Smooth Absent Present D 5.6– 7.5×5.7– 2568 compact persistent 7.5 Lycoperdon ICN177032 Brazil + Reduced and Spiny, not Surface Present Present B 5–6×5–6 sulcastotomum compact persistent velutineous ICN177033 Brazil + Reduced and Spiny, not Surface Present Present B 5–6×5–6 compact persistent velutineous Lycoperdon velutinum NY00398807, Venezuela - Reduced and Velutineous, Absent Present D 5.1–5.6×4.9–6.1 Smooth holotype compact persistent NY00398809 Venezuela Reduced and Velutineous, Absent Present D 4.5-6.3×4.5-6.1 - Smooth compact persistent

268

NY00839022 (pro USA - Absent Velutineous, Absent Present D 4.9–6.2×5–6.1 Smooth parte) persistent NY00839023 (pro USA - Absent Velutineous, Smooth Absent Present D 5.7–6.5×5.6–6.5 parte) persistent

269

Table 9 All the specimens used in the molecular phylogenetic analyses with voucher number and GenBank Accession Numbers. When ITS and LSU have different numbers, the first number corresponds to ITS and the second to LSU. In black are indicated the new sequences generated in this study. Species Herbarium voucher GenBank Accession Number ITS/LSU Lycoperdon afrum ICN177118 KU958371, KU958372 Lycoperdon albostipitatum INPA 239563-TYPE! KU958363, KU958364 Lycoperdon albostipitatum UFRN-Fungos 2249 KU958361, KU958362 Lycoperdon albostipitatum UFRN-Fungos 2569 KU958357, KU958358 Lycoperdon albostipitatum UFRN-Fungos 2572 KU958359, KU958360 Lycoperdon altimontanum MJ4270 DQ112588 Lycoperdon arenicola UFRN-Fungos 1006- KU958303, KU958304 TYPE! Lycoperdon arenicola UFRN-Fungos 649 KU958297, KU958298 Lycoperdon arenicola UFRN-Fungos 656 KU958291, KU958292 Lycoperdon arenicola UFRN-Fungos 657 KU958299, KU958300 Lycoperdon arenicola UFRN-Fungos 729 KU958295, KU958296 Lycoperdon arenicola UFRN-Fungos 864 KU958293, KU958294 Lycoperdon arenicola UFRN-Fungos 941 KU958305, KU958306 Lycoperdon arenicola UFRN-Fungos 1367 KU958287, KU958288 Lycoperdon arenicola UFRN-Fungos 1510 KU958289, KU958290 Lycoperdon arenicola UFRN-Fungos 2567 KU958285, KU958286 Lycoperdon arenicola UFRN-Fungos 2581 KU958301, KU958302 Lycoperdon atropurpureum MJ3269 DQ112586 Lycoperdon atropurpureum MJ6150 DQ112587 Lycoperdon caudatum RGC920818 DQ112633 Lycoperdon cretaceum MJ4105 DQ112597 Lycoperdon cretaceum MJ4302 DQ112598 Lycoperdon decipiens MJ4330 DQ112582 Lycoperdon decipiens MJ7715 DQ112583 Lycoperdon demoulinii UFRN-Fungos 655-TYPE! KU958307, KU958308 Lycoperdon demoulinii UFRN-Fungos 2554 KU958309, KU958310 Lycoperdon dermoxanthum MJ4856 DQ112579 Lycoperdon echinatum MJ6498 DQ112578 Lycoperdon ericaeum MJ5395 DQ112605 Lycoperdon ericaeum MJ4866 DQ112606 Lycoperdon excipuliforme MJ6467 DQ112590 Lycoperdon exoelongatum UFRN-Fungos 2570- KU958355, KU958356 TYPE! Lycoperdon frigidum Eckblad151507 DQ112560 Lycoperdon frigidum MJ7716 DQ112561 Lycoperdon frigidum MJ4273 DQ112562 Lycoperdon frigidum MJ4088 DQ112564 Lycoperdon frigidum Lange901009 DQ112563 Lycoperdon frigidum Lange191 DQ112559 Lycoperdon fuligineum TENN59070 AF485065 Lycoperdon fuligineum INPA 239561 KU958351, KU958352 Lycoperdon fuligineum UFRN-Fungos 606 KU958347, KU958348 Lycoperdon fuligineum UFRN-Fungos 371 KU958353, KU958354 Lycoperdon fuligineum UFRN-Fungos 1768 KU958327, KU958328 Lycoperdon fuligineum UFRN-Fungos 1971 KU958321, KU958322 Lycoperdon fuligineum UFRN-Fungos 1972 KU958323, KU958324 Lycoperdon fuligineum UFRN-Fungos 2560 KU958333, KU958334 Lycoperdon fuligineum UFRN-Fungos 2561 KU958335, KU958336 Lycoperdon fuligineum UFRN-Fungos 2562 KU958337, KU958338 Lycoperdon fuligineum UFRN-Fungos 2563 KU958345, KU958346 Lycoperdon fuligineum UFRN-Fungos 2566 KU958341, KU958342 Lycoperdon fuligineum UFRN-Fungos 2571 KU958329, KU958330 Lycoperdon fuligineum UFRN-Fungos 2575 KU958325, KU958326 Lycoperdon fuligineum UFRN-Fungos 2578 KU958331, KU958332

270

Lycoperdon fuligineum UFRN-Fungos 2579 KU958349, KU958350 Lycoperdon fuligineum UFRN-Fungos 2582 KU958339, KU958340 Lycoperdon fuligineum UFRN-Fungos 2586 KU958343, KU958344 Lycoperdon lambinonii Demoulin4622 DQ112575 Lycoperdon lambinonii MJ5245 DQ112576 Lycoperdon lividum Dobremez19740514 DQ112599 Lycoperdon lividum MJ4005 DQ112600 Lycoperdon mammiforme MJ4841 DQ112567 Lycoperdon molle MJ4557 DQ112565 Lycoperdon molle MJ4260 DQ122566 Lycoperdon muscorum MJ7717 DQ112604 Lycoperdon nigrescens MJ5376 DQ122577 Lycoperdon niveum MJ484 DQ112568 Lycoperdon niveum MJ5267 DQ112569 Lycoperdon niveum MJ4068 DQ112571 Lycoperdon niveum MJ4109 DQ112570 Lycoperdon niveum MJ5594 DQ112572 Lycoperdon norvegicum MJ5453 DQ112631 Lycoperdon nudum ICN 154541 KU958317, KU958318 Lycoperdon nudum UFRN-Fungos 1765- KU958319, KU958320 TYPE Lycoperdon nudum UFRN-Fungos 1766 KU958315, KU958316 Lycoperdon nudum UFRN-Fungos 2565 KU958311, KU958312 Lycoperdon nudum UFRN-Fungos 2568 KU958313, KU958314 Lycoperdon perlatum MJ4684 DQ112630 Lycoperdon pratense MJ4864 DQ112554 Lycoperdon pratense MJ5880 DQ112556 Lycoperdon pratense SAH20000915 DQ112555 Lycoperdon purpurascens MEL:2382736 KP012918 Lycoperdon pyriforme MJ4849 DQ112558 Lycoperdon pyriforme ICN177101 KU958367, KU958368 Lycoperdon pyriforme UFRN-Fungos 155 KU958365, KU958366 Lycoperdon radicatum Parker970911 DQ112608 Lycoperdon rupicola MJ4304 DQ112580 Lycoperdon rupicola Vetter407 DQ112581 Lycoperdon sosinii VLA 15520 KC591769 Lycoperdon subincarnatum TNS Kasuya B286 KF551244 Morganella subincarnata REG106/81 AJ237626 Morganella subincarnata – KM373265 Lycoperdon sp. 4 MJ4285 DQ112573 Lycoperdon sp. 4 MJ4277 DQ112574 Lycoperdon subumbrinum MJ6394 DQ112601 Lycoperdon subumbrinum MJ6377 DQ112602 Lycoperdon turneri MJ5251 DQ112594 Lycoperdon turneri Lange0895 DQ112596 Lycoperdon umbrinum MJ4556 DQ112591 Lycoperdon umbrinum MJ4556a DQ112593 Lycoperdon umbrinum MJ4559 DQ112592 Lycoperdon utriforme MJ5388 DQ112607 Lycoperdon sp. 02 UFRN-Fungos 814 KU958375, KU958376 Lycoperdon sulcatostomum ICN177032 KU958373, KU958374 Lycoperdon sulcatostomum ICN177033 KU958369, KU958370

Outgroup MJ1122 DQ112620 Bovista cretacea MJ4301 DQ112610 Bovista cretacea ANMH11622 DQ112611 Bovista furfuraceae MJ5435 DQ112622 Bovista graveolens Widegren030816 DQ112618 Bovista limosa AMJ5226 DQ112615

271

Bovista limosa BMJ3971 DQ112614 Bovista nigrescens S&JJ980905 DQ112612 MJ5207 DQ112609 Bovista plumbea MJ4856 DQ112613 Bovista promotorii MJ7770 DQ112621 Bovista tomentosa MJ5433 DQ112616 Bovista tomentosa Steike951015 DQ112617 Calvatia candida MJ3514 DQ112624 Calvatia craniformis Steinke001017 DQ112625 MJ3566 DQ112623 Disciseda bovista MJ5078 DQ112627 Disciseda candida MJ3588 DQ112626 Mycenastrum corium MJ5467 DQ112628 Tulostoma kotlabae Mrazek1300 DQ112629 Tulostoma squamosum MJ5467 DQ415732

272

CAPÍTULO 4 / CHAPTER 4

Updated check-list of Lycoperdon from South America

273

Abstract Based on literature survey, as well as morphological and molecular analyses performed in previous works (Chapter 1–3), a revised check-list to the Lycoperdon species for South America is provided. From some species, new combinations are proposed. Forty-seven Lycoperdon species are reported in South America, six species are new records: L. calvescens, L. demoulinii, L. eximium, L. endotephrum, L. umbrinum and L. utriforme; four species remain under Lycoperdon sp.

KeyWords: Basidiomycota, DNA barcode, Calvatia, Morganella, Vascellum, Neotropics

274

1 INTRODUCTION

The species of Lycoperdon (Agaricales) are mainly distinguished by their subglobose to pyriform and closed basidiomata (Bottomley, 1948), with a cellular subgleba, and a single opening in the apex through which basidiospores are discharged (Demoulin, 1972a; Calonge, 1998). In the taxonomic databases IndexFungorum (http://www.indexfungorum.org/) and Mycobank (http://www.mycobank.org) approximately 786 names (including synonyms) are listed. In Kirk et al. (2008), 50 Lycoperdon species are recorded, many of these species have been described only from the Northern Hemisphere (Bowerman, 1961; Demoulin, 1971, 1972b; Kreisel, 1976), with very few works describing new species from the Southern Hemisphere (Spegazzini, 1898; Hennings, 1904b; Rick, 1961; Cortez et al., 2011). From the Southern Hemisphere, 44 species (including Morganella and Vascellum) have been recorded, although some are considered synonymous e.g. L. gemmatum Batsch (current name L. perlatum Pers.), or transferred to another genus such as L. acuminatum Bosc (current name Bovista acuminata (Bosc) Kreisel). In the last decades there are a small number of works from South America that include Lycoperdon. Baseia (2005), Trierveiler-Pereira and Baseia (2009), López- Quintero et al. (2011), Cortez et al. (2013) and Hernádez-Caffot et al. (2013) reported Lycoperdon species from Argentina, Brazil and Colombia. Based on the literature survey done during the elaboration of Chapters 1–3, as well as morphological and/or molecular analyses of 334 collections studied (888 basidiomes) the main aim of this paper was to provide an updated check-list to the Lycoperdon species from South America. Also, to some species new combinations are provided.

275

2 MATERIAL AND METHODS

As indicated in Chapters 1–3, specimens from ICN, FH/HUH, NY, K, UFRN-Fungos, PACA, MA-Fungi, LG e VDEMOULIN (personal herbarium) have been studied. The South American specimens were compared mainly with the European specimens, type species reported in Kreisel (1973), as well as with types from other continents, such as L. compactum from New Zealand or L. melanesicum Demoulin from Fiji, as mentioned in Chapter 2–3. The specimens were previously analyzed and identified by morphological features in accordance with Kreisel and Dring (1967), Ponce de León (1970, 1971), Demoulin (1972a, 1983), Calonge and Demoulin (1975), Demoulin and Dring (1975), Homrich and Wright (1988), Pegler et al. (1995), Suárez and Wright (1996) and Calonge (1998). As indicated in previous chapters, ten basidiospores were measured per basidioma, including the ornamentation; when it was necessary, the diameter without ornamentations was given; the basidiospore ornamentation was classified in A–D, being smooth/punctate to strongly verrucose. The other microstructures such as capillitium and mycosclerids were measured giving the extremes. Molecular analyses performed based in ITS barcode (Chapter 1–2) and ITS/LSU sequences (Chapter 3), allowed confirmation of the species identification, by comparison with Northern Hemisphere specimen sequences discussed in Chapter 1.

276

3 RESULTS The check-list to Lycoperdon species includes 46 species in South America; one is a new species and six species are new records (L. calvescens, L. demoulinii, L. eximium, L. endotephrum, L. umbrinum and L. utriforme). Four species are indicated under Lycoperdon sp., since more specimens should be examined to confirm the taxonomic position. Eleven new combinations are provided to species under Morganella and Vascellum.

For each species, we include country and references. Species confirmed through our studies in Chapter 1–3 are in bold. First records for South America are marked with *.

3.1 List of species

1. Lycoperdon abscissum R.E. Fr.

Countries: BOL, BRA. References: Ponce de León (1970); Rocabado et al (2007).

2. Lycoperdon albostipitatum (Baseia & Alfredo) Baseia, Alfredo & M.P. Martín comb. nov. (Alfredo et al. submitted; Chapter 3).

Countries: BRA. References: Alfredo et al. (2012), under Morganella albostipitata; Alfredo et al. submitted (Chapter 3).

3. Lycoperdon arenicola Alfredo & Baseia) Baseia, Alfredo & M.P. Martín comb. nov. (Alfredo et al. submitted; Chapter 3)

Countries: BRA. References: Alfredo et al. (2014), under Morganella arenicola; Alfredo et al. submitted (Chapter 3).

4. Lycoperdon atrum Pat.

Countries: ARG, BRA, URY. References: Rick (1961); Cortez et al. (2013).

277

5. Lycoperdon benjaminii Rick

Countries: BRA. References: Cortez et al. (2007).

6. Lycoperdon brasiliense Fr.

Countries: BRA. References: Rick (1961).

7. *Lycoperdon calvescens Berk. & M.A. Curtis

Countries: ARG, URY.

References: Alfredo et al. unpublished (Chapter 2).

8. Lycoperdon cepiforme Batsch

Countries: BRA. References: Rick (1961).

9. Lycoperdon cingulatum (Homrich) M.P. Martín, Alfredo & Baseia comb. nov. (here proposed)

Countries: ARG. References: Domínguez de Toledo (1989).

10. Lycoperdon costaricensis (M.I. Morales) M.P. Martín, Alfredo & Baseia comb. nov. (here proposed)

Countries: ARG. References: Suárez and Wright (1996); Rocabado et al. (2007).

11. Lycoperdon cupricum Bonord.

Countries: BRA. References: Rick (1961).

12. Lycoperdon curtisii Berk.

Countries: BRA.

278

References: Homrich and Wright (1988).

13. *Lycoperdon demoulinii Baseia, Alfredo, & M.P. Martín sp. nov. (Alfredo et al. submitted; Chapter 3)

Countries: BRA. References: Alfredo et al. submitted (Chapter 3).

14. *Lycoperdon endotephrum Pat.

Countries: BRA. References: Alfredo et al. unpublished (Chapter 2.).

15. Lycoperdon excipuliforme (Scop) Pers.

Countries: BRA. References: (Bononi et al., 1981; Baseia, 2003)

16. *Lycoperdon eximium Morgan Countries: BRA, VEN. References: Alfredo et al. unpublished (Chapter 3).

17. Lycoperdon exoelongatum Accioly, Baseia & M.P. Martín, sp. nov., Alfredo et al. submitted (Chapter 3)

Countries: BRA. References: Alfredo et al. submitted (Chapter 3).

18. Lycoperdon foliicola Lloyd

Countries: BRA.

References: Rick (1961).

19. Lycoperdon fuligineum Berk. & M. Curtis

Countries: ARG, BOL, BRA, PER, PRY, VEN.

279

References: Dennis (1953), Rick (1961); as Morganella fuliginea: Kreisel and Dring (1967), Ponce de León (1971), Bononi et al. (1984) and Suárez and Wright (1996); Alfredo et al. submitted (Chapter 3).

20. Lycoperdon fuscum Bonord.

Countries: BRA. References: Rick (1961).

21. Lycoperdon hyalinum (Homrich) M.P. Martín, Alfredo & Baseia comb. nov. (here proposed)

Countries: ARG, BRA. References: under Vascellum hyalinum: Homrich and Wright (1988), Domínguez de Toledo (1989), Cortez et al. (2013); Alfredo et al. unpublished (Chapter 2).

22. Lycoperdon intermedium (A.H. Smith) M.P. Martín, Alfredo & Baseia comb. nov. (here proposed)

Countries: ARG, BRA. References: under Vascellum intermedium: Bononi et al. (1984) and Kuhar et al. (2012).

23. Lycoperdon lambinonii Demoulin

Countries: ARG. References: Domínguez de Toledo (1989).

24. Lycoperdon lividum Pers.

Countries: BRA.

References: Cortez et al. (2013); Alfredo et al unpublished (Chapter 2).

25. Lycoperdon marginatum Vittad.

Countries: ARG, BRA, COL, ECU, URY. References: Domínguez de Toledo (1989); Cortez et al. (2013); Hernádez-Caffot et al. (2013); Alfredo et al unpublished (Chapter 2).

26. Lycoperdon nigrescens Pers.

280

Countries: ARG, BRA, COL, URY. References: Baseia (2005) and Alfredo et al. unpublished (Chapter 2).

27. Lycoperdon nudum (Alfredo & Baseia) Baseia, Alfredo & M.P. Martín comb. nov. (Alfredo et al. submitted; Chapter 3)

Countries: BRA. References: Alfredo and Baseia (2014) under Morganella nuda; Alfredo et al. submitted (Chapter 3).

28. Lycoperdon ovoidisporum Cortez, Baseia & R.M.B. Silveira

Countries: ARG, BRA. References: Cortez et al. (2011, 2013).

29. Lycoperdon pampeanum Speg.

Countries: ARG, BOL. References: Homrich and Wright (1988); Domínguez de Toledo (1989); Rocabado et al. (2007); Hernádez-Caffot et al. (2013).

30. Lycoperdon perlatum Pers.

Countries: ARG, BOL, BRA, COL, ECU, PRY, VEN. References: Bononi et al. (1981); Baseia, (2005); Rocabado et al. (2007); Cortez et al. (2008); Cortez et al. (2013); Alfredo et al. unpublished (Chapter 2).

31. Lycoperdon pratense Pers. Countries: BRA, VEN. References: Bononi et al. (1984) under Vascellum pratense; Cortez et al., (2013) under Vascellum pratense; Alfredo et al. unpublished (Chapter 2).

32. Lycoperdon proximum Rick

Countries: BRA. References: Rick (1961).

33. Lycoperdon pyriforme Schaeff.

Countries: ARG, BOL, BRA, COL, ECU, VNZ.

281

References: Massee (1887), Sydow and Sydow (1907), Rick (1961), Baseia (2005), Rocabado et al. (2007) and Hernádez-Caffot et al. (2013); Alfredo et al. unpublished (Chapter 2).

34. Lycoperdon rarum Rick. Countries: BRA. References: Rick (1961).

35. Lycoperdon rimulatum Peck

Countries: BRA. References: Rick (1961). 36. Lycoperdon subincarnatum Peck

Countries: BRA. References: Rick (1961). 37. Lycoperdon sulcatostomum (C.R. Alves & Cortez) Baseia, Alfredo & M.P. Martín comb. nov. (Alfredo et al. submitted; Chapter 3).

Countries: BRA. References: under Morganella sulcatostoma: Alves and Cortez (2013) and Papinutti (2014); Alfredo et al. submitted (Chapter 3).

38. Lycoperdon texense (Speg.) M.P. Martín, Alfredo & Baseia comb. nov. (here proposed).

Countries: ARG. References: Domínguez de Toledo (1989) under Vascellum texense. 39. Lycoperdon tropicale Speg.

Countries: BRA. References: Rick (1961). 40. *Lycoperdon umbrinum Pers.

Countries: ARG, BRA. References: Alfredo et al. unpublished (Chapter 2).

41. *Lycoperdon utriforme Bull.

282

Countries: ARG, CHL. References: Alfredo et al. unpublished (Chapter 2).

42. Lycoperdon velutinum Berk & M.A. Curtis

Countries: BRA, VNZ. References: Ponce de León (1971) and Suárez and Wright (1996).

43. Lycoperdon sp. 1

Countries: ARG, BRA References: Alfredo et al. unpublished (Chapter 2) under Lycoperdon sp. ICN154484 in Alfredo et al. unpublished (Chapter 1).

44. Lycoperdon sp. 4

Countries: BRA References: Alfredo et al. unpublished (Chapter 2).

45. Lycoperdon sp. 5

Countries: BRA References: Alfredo et al. unpublished (Chapter 2).

46. Lycoperdon sp. ICN 177118

Countries: BRA References: Alfredo et al. submitted (Chapter 3).

283

Excluded taxa

1. Bovista aestivalis (Bonord) Demoulin

Countries: ARG, PER

References: Dios et al. (2011), under Lycoperdon acuminatum; Massee (1882) under Lycoperdon pusillum.

2. Bovista acuminata (Bosc) Kreisel

Countries: BRA

References: Sydow and Sydow (1907), under Lycoperdon acuminatum; Rick (1961) under Lycoperdon acuminatum.

3. Calvatia gardneri (Berk.) Lloyd

Countries: VNZ.

References: Massee (1887), under Lycoperdon gardneri.

4. Lycogalopsis solmsii E. Fisch.

Countries: BRA. References: Massee (1887); Ponce de León (1971) under Lycoperdon albinumVelen.

284

4 DISCUSSION

According to our data 46 Lycoperdon species are present in South America. Among the most frequent species are: L. atrum, L. fuligineum, L. marginatum, L. nigrescens, L. perlatum, L. pyriforme, that represent 11% of the total; they occur in three or more countries. According to the literature, and specimens examined, 27 species (59%) are present only in one country; mainly in Brazil and Argentina with 83% and 39% respectively. Thirteen species (28%) are reported in up to two countries. Comparing tthese species with those from North America and Europe in Coker & Couch (1928) and Demoulin (1972b), just 11 species (24%) match; and two species match with those reported from Trinidad and Tobago (American Caribbean) in Reid (1977). In the same way, of 14 species reported from Australia and New Zealand (Cunningham, 1926, 1944), only three species are also found in South America: L. perlatum, L. pyriforme and L. subincarnatum.

To South Africa of 14 species reported there (Bottomley, 1948; Demoulin and Dring, 1975), only three species were found in South America: L. endotephum, L. perlatum and L. subincarnatum. Also, compared with West Africa (Dring, 1964) and Congo (Dissing and Lange, 1962), 5 species were found: L.endoteprum, L. fuligineum, L. perlatum, L. pratense and L. pyriforme. To India of eight species reported there (Dennis, 1953), seven species are found in our results: L. atrum, L. endotephum, L. fuligineum, L. nigrescens, L. perlatum, L. pratense and L. pyriforme.

Compared with previous works in South America, Domínguez de Toledo (1989) and Hernádez-Caffot et al. (2013), reported six species (including Vascellum) from Argentina; here 18 species are listed for this country. Brazil is the country with the largest number of species recorded (18). Together, Brazil and Argentina showed higher diversity of species than the other countries in South America; however, in those other countries there has not been a specific work about the Lycoperdon species. In the dictionary of fungi Kirk et al. (2008), estimated that the number of Lycoperdon species around the world is about 50; here it is shown that South America has a greater diversity of Lycoperdon species than that estimated by Kirk and colleagues.

Although a greater effort is needed to inventory Lycoperdon species in other countries, for example, Bolivia, Paraguay and Uruguay, etc., based on our results, South America appears to have a greater diversity of Lycoperdon species than other continents 285 that have had much Lycoperdon species described. Currently, the inventories have used the new molecular approaches such as ITS barcode help the taxonomist to access the diversity for a number of organisms, as discussed by Janzen et al. (2005), who had success in an inventory of Lepidoptera species.

286

5 CONCLUSIONS

- The diversity of Lycoperdon species from South America is greater than in other continents. - Argentina and Brazil together have the greatest reported diversity of Lycoperdon species in South America, and the greatest number of studies focused on this genus. - The similarity of Lycoperdon species in South America with the species found in Europe and North America was lower than expected.

287

REFERENCES

ALFREDO, D.S., T. ACCIOLY, and I.G. BASEIA. 2014. Morganella arenicola, a new species record from North and Northeast Brazil. Turkish Journal of Botany 38: 595–599.

ALFREDO, D.S., and I.G. BASEIA. 2014. Morganella nuda, a new puffball (Agaricaceae, Basidiomycota) in the upland forests of the Brazilian semi-arid region. Nova Hedwigia 98: 459–466.

ALFREDO, D.S., A.G. LEITE, R. BRAGA-NETO, and I.G. BASEIA. 2012. Two new Morganella species from the Brazilian Amazon rainforest. Mycosphere 3: 66–71.

ALVES, C.R., and V.G. CORTEZ. 2013. Morganella sulcatostoma sp. nov. (Agaricales, Basidiomycota) from Paraná State, Brazil. Nova Hedwigia 96: 409–417.

BASEIA, I.G. 2003. Contribution to study of the genus Calvatia (Lycoperdaceae) in Brazil. Mycotaxon 88: 107–112.

BASEIA, I.G. 2005. Some notes on the genera Bovista and Lycoperdon (Lycoperdaceae) in Brazil. Mycotaxon 91: 81–86.

BONONI, V.L.R., G. GUZMÁN, and M. CAPELARI. 1984. Basidiomicetos do Parque Estadual da Ilha do Cardoso, V: Gasteromicetos. Rickia 11: 91–97.

BONONI, V.L.R., S.F.B. TRUFEM, and R. A. P. GRANDI. 1981. Fungos macroscópicos do Parque Estadual das Fontes do Ipiranga, São Paulo, Brasil, depositados no Herbário do Instituto de Botânica. Rickia 9: 37–53.

BOTTOMLEY, A.M. 1948. Gasteromycetes of South Africa. Bothalia 4: 473–810.

BOWERMAN, C. 1961. Lycoperdon in Eastern Canada With Special Reference To The Ottawa District. Canadian Journal of Botanyof Botany 39: 353–383.

CALONGE, F.D. 1998. Gasteromycetes, I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica.

CALONGE, F.D., and V. DEMOULIN. 1975. Les Gastéromycètes D’Espagne. Bulletin de la Sociéé Mycologique de France 91: 247–292.

COKER, W.C., and J.N. COUCH. 1928. The Gasteromycetes of the Eastern United States

288

and Canada. The University of North Carolina Press, Chapel Hill.

CORTEZ, V.C., I.G. BASEIA, and R.M.B. SILVEIRA. 2008. Gasteromicetos (Basidiomycota) no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6: 291–299.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2013. Gasteroid mycobiota of Rio Grande do Sul, Brazil: Lycoperdon and Vascellum. Mycosphere 4: 745–758.

CORTEZ, V.G., I.G. BASEIA, and R.M.B. SILVEIRA. 2011. Lycoperdon ovoidisporum sp. nov. from Brazil. Sydowia 63: 1–7.

CORTEZ, V.G., F.D. CALONGE, and I.G. BASEIA. 2007. Rick´s species revision 2: Lycoperdon benjaminii recombined in Morganella. Mycotaxon 102: 425–429.

CUNNINGHAM, G.H. 1926. Lycoperdaceae of New Zealand. Transactions of the New Zealand Institute 57: 187–217.

CUNNINGHAM, G.H. 1944. The Gasteromycetes of Australia and new Zealand. John McIndoe, Dunedin, N.Z.

DEMOULIN, V. 1971. Lycoperdon norvegicum Demoulin sp. nov. A new Gasteromycete with Boreo-Continental Distribution in Europe and North America. Norw. J. Bot. 18: 161–167.

DEMOULIN, V. 1972a. Le genre Lycoperdon en Europe et en Amérique du Nord Étude taxonomique et phytogéographique.

DEMOULIN, V. 1972b. Espèces nouvelles ou méconnues du genre Lycoperdon (Gastéromycètes). Lejeunia 62: 1–27.

DEMOULIN, V. 1973a. Definition and typification of genus Lycoperdon Tourn. per Pers. (Gasteromycdetes). Persoonia 7: 151–154.

DEMOULIN, V., and D.M. DRING. 1975. Gasteromycetes of Kivu (Zaire), Rwanda and Burundi. Bulletin du Jardin botanique national de Belgique 45: 339–372.

DEMOULIN, V. 1983. Clé de Détermination des espèces du genre Lycoperdon présentes dans le Sud de l’Europe. Revista fr Biologia 12: 65–70.

DENNIS, R.W. 1953. Some West Indian Gasteromycetes. Kew Bulletin 8: 307–328.

289

DIOS, M.M., E. ALBERTÓ, and G. MORENO. 2011. Catálogo de hongos gasteroides (Basidiomycota) de Catamarca, Argentina. Boletín de la Sociedad Argentina de Botánica 46: 5–11.

DISSING, H., and M. LANGE. 1962. Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’État a Bruxelles 32: 325–416.

DOMÍNGUEZ DE TOLEDO, L.S. 1989. Contribucion al conocimiento de gasteromvcetes del centro de argentina. Universidad Nacional de Córdoba.

DRING, D.M. 1964. Gasteromycetes of West Tropical Africa. Mycological Papers 98: 1–60.

HENNINGS, V.P. 1904. Fungi paulenses III. a cl. Puttemans collecti. Hedwigia 43: 197– 209.

HERNÁDEZ-CAFFOT, M.L., G. ROBLEDO, and L.S. DOMÍNGUEZ. 2013. Gasteroid mycobiota (Basidiomycota) from Polylepis australis woodlands of central Argentica. Mycotaxon 123: 491.

HOMRICH, M.H., and J.E. WRIGHT. 1988. South American Gasteromycetes. II. The Genus Vascellum Šmarda. Canadian Journal of Botany 66: 1285–1307.

JANZEN, D.H., HAJIBABAEI, M., BURNS, J.M., HALLWACHS, W., REMIGIO, E., and D.N.

HEBERT. 2005. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Phil. Trans. R. Soc. B. 360: 1835–1845.

KIRK, P.M., P.F. CANNON, D.W. MINTER, and J.A. STALPERS. 2008. Dictionary of The Fungi. 10th editi. P. M. Kirk, P. F. Cannon, D. W. Minter, and J. A. Stalpers [eds.],. CABI Europe, Wallingford.

KREISEL, H. 1973. Die Lycoperdaceae der DDR. Bibliotheca Mycologica 36: 1–197.

KREISEL, H. 1976. Gasteromyzeten aus Nepal II. Feddes Repertorium 87: 83–107.

KREISEL, H., and D.M. DRING. 1967. An emendation of the genus Morganella Zeller (Lycoperdaceae). Feddes Repertorium 74: 109–122.

KUHAR, F., V. CASTIGLIA, J.C. ZAMORA, and L. PAPINUTTI. 2012. New records and notes on gasteroid fungi of arid regions in Argentina. Sydowia 64: 233–244.

LÓPEZ-QUINTERO, C.A., A.M. VASCO-PALACIOS, and A.E. FRANCO-MOLANO. 2011.

290

Macromicetes recolectados en zonas urbanas de medellín (antioquia). Actual Biol 33: 261–274.

MASSEE, G. 1887. A Monography of the genus Lycoperdon (Tournef.) Fr. Transactions of the Society 7: 701–727.

PAPINUTTI, L. 2014. Morganella sulcatostoma (Agaricales, Basidiomycota): Primer hallazgo en Argentina. Boletín de la Sociedad Argentina de Botánica 49: 173–176.

PEGLER, D.N., T. LAESSOE, and B.M. SPOONER. 1995. British puffballs, earthstars and stinkhorns. An account of the British gasteroid fungi. 1 st. Royal Botanic Gardens, Kew.

PONCE DE LEÓN, P. 1971. Revision of the genus Morganella (Lycoperdaceae). Fieldiana: Botany 31: 27–44.

PONCE DE LEÓN, P. 1970. Revision of the genus Vascellum. Fieldiana: Botany 32: 109– 125. REID, D.A. 1977. Some Gasteromycetes from Trinidad and Tobago. Kew Bulletin 31: 657–690.

RICK, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasilia. Iheringia, Sér. Bot. 9: 451–480.

RICK, J. 1930. Lycoperdineas riograndenses. Egateae 15: 19–30.

ROCABADO, D., J.E. WRIGHT, O.Z. MAILLARD, and N.F. MUCHENIK. 2007. Catalogo de los Gasteromycetes (Fungi: Basidiomycota) de Bolivia. Kempffiana 3: 3–13.

SPEGAZZINI, C. 1898. Fungi Argentini novi v. critici. Anales Museum Nacional de Histaria Naturales de Buenos Aires 6: 81–3667.

SUÁREZ, V.L., and J.E. WRIGHT. 1996. South American Gasteromycetes V : The genus Morganella. Mycologia 88: 655–661.

SYDOW, V.H., and P. SYDOW. 1907. Verzeichnis der von Herrn F. Noack in Brasilien gesammelten Pilze. Annales Mycologici 5: 348–363.

TRIERVEILER-PEREIRA, L., and I.G. BASEIA. 2009. A checklist of the Brazilian gasteroid fungi (Basidiomycota). Mycotaxon 108: 441–444.

291

INDEX TAXONÔMICO

Incluímos todos os nomes genéricos e específicos nesta obra. Os números em negritos representam as páginas aonde se ecnontram as descrições das espécies; os números em sublinhado representam as páginas aonde se encontram as tabelas. Os nomes em negritos (excluindo os sinônimos) representam as espécies estudadas na presenta obra. abscissum, Lycoperdon 150, 277 abscissum, Vascellum 150 acuminata, Bovista 31, 86, 275, 284 acuminatum, Lycoperdon 31, 86, 275, 284 aestivalis, Bovista 271, 284 albinum, Lycoperdon 32, 284 albiperidium, Lycoperdon 157, 212 albostipitata, Morganella 34, 218, 224, 231, 236, 277 albostipitatum, Lycoperdon 233, 236, 237, 238, 246, 266, 270, 277 album, Lycoperdon 30 altimontanum, Lycoperdon 80, 94, 95, 98, 101, 102, 108, 118, 119, 120, 122, 125, 138, 139, 157, 212, 270 angulatum, Lycoperdon 147, 150 angulatum, Vascellum 150 arenicola, Lycoperdon 43, 61, 235, 236, 239, 240, 242, 243, 258, 259, 260, 266, 270, 277 arenicola, Morganella 34, 43, 218, 224, 225, 231, 232, 236, 239, 260, 277 argentinum, Lycoperdon 32, 165, 189, 218 asperum, Lycoperdon 32 astrocaryi, Lycoperdon 32 atropurpureum, Lycoperdon 31, 32, 43, 60, 86, 94, 95, 97, 101, 102, 108, 117, 120, 121, 122, 138, 143, 149, 157, 162, 171, 174, 197, 198, 212, 218, 270 atrum, Lycoperdon 39, 41, 42, 43, 148, 158, 159, 162, 163, 175, 184, 186, 212, 217, 277, 285 aurantium, Lycoperdon 29 benjaminii, Lycoperdon 34, 278 benjaminii, Morganella 34 bonariense, Lycoperdon 32 bovista, Disciseda 272

292

bovista, Lycoperdon 29, 30 brasiliense, Lycoperdon 30, 32, 148, 215, 278 brumale, Tulostoma 29 caelatum, Lycoperdon 30 calcareum, Lycoperdon 170 calvescens, Lycoperdon 145, 163, 164, 173, 175, 184, 197, 212, 274, 277, 278 candida, Calvatia 272 candida, Disciseda 272 candidum, Lycoperdon 29, 172, 173, 214 carpobulus, Lycoperdon 29 caudatum, Lycoperdon 94, 99, 138, 157, 212, 270 cepiforme, Lycoperdon 146, 278 cingulatum, Lycoperdon 278 compacta, Morganella 37, 43, 150, 224, 231, 232, 241, 242, 250 compactum, Lycoperdon 150, 241, 242, 266, 276 constellatum, Lycoperdon 30 corium, Mycenastrum 272 coronatum, Geastrum 29 costaricensis, Lycoperdon 278 costaricensis, Morganella 150, 255 craniformis, Calvatia 272 cretacea, Bovista 281 cretaceum, Lycoperdon 94, 138, 157, 212, 270 cruciatum, Lycoperdon 150, 171, 172, 173, 214 cruciatum, Vascellum 150, 171 cupricum, Lycoperdon 278 curtisii, Lycoperdon 35, 148, 159, 164, 165, 166, 167, 175, 189, 212, 278 curtisii, Vascellum 150, 165, 167, 189, 213 darjeelingense, Lycoperdon 178 decipiens, Lycoperdon 32, 42, 86, 94, 95, 96, 97, 101, 103, 108, 120, 121, 122, 138, 149, 157, 197, 198, 212, 213, 270 demoulinii, Lycoperdon 232, 236, 242, 243, 244, 255, 258, 267, 270, 274, 277, 279 dermoxanthum, Lycoperdon 94, 138, 157, 213, 270 djurense, Lycoperdon 166

293 djurensis, Lycoperdon 150 echinatum, Lycoperdon 29, 38, 79, 86, 94, 95, 96, 98, 99, 101, 104, 108, 120, 123, 124, 138, 157, 213, 243, 270 endotephrum, Lycoperdon 35, 145, 158, 159, 166, 167, 175, 191, 193, 195, 197, 213, 274, 277, 279 endotephrum, Vascellum 35, 159, 166 epidendrum, Lycogala 29 epidendrum, Lycoperdon 29 ericaeum, Lycoperdon 94, 97, 101, 104, 108, 117, 120, 138, 141, 143, 157, 171, 176, 180, 198, 213, 215, 218, 270 esculentum, Lycoperdon 30 excipuliforme, Lycoperdon 29, 30, 31, 60, 80, 94, 95, 98, 101, 105, 108, 118, 119, 120, 122, 123, 125, 138, 139, 143, 146, 148, 149, 157, 189, 196, 213, 216, 270, 279 excipuliformis, Calvatia 32, 86, 122, 146, 147, 149 eximium, Lycoperdon 31, 42, 145, 167, 168, 169, 175, 178, 184, 213, 274, 277, 279 exoelongatum, Lycoperdon 234, 237, 245, 246, 247, 248, 267, 270, 279 foetidum, Lycoperdon 174, 176, 214, 260 foliicola, Lycoperdon 279 frigidum, Lycoperdon 94, 121, 139, 143, 157, 213, 270 fuliginea, Morganella 36, 43, 94, 141, 149, 218, 225, 233, 237, 246, 247, 250, 252, 280 fuligineum, Lycoperdon 37, 43, 149, 217, 225, 233, 237, 246, 247, 250, 251, 253, 257, 267, 270, 271, 279, 285 furfuraceae, Bovista 271 fuscum, Lycoperdon 170, 213, 280 gardneri, Calvatia 284 gardneri, Lycoperdon 32, 284 gemmatum, Lycoperdon 30, 86, 177, 178, 179, 215, 216, 275 gigantea, Calvatia 272 gigateum, Lycoperdon 29 gossypinum, Lycoperdon 29, 30 graveolens, Bovista 218, 271 hyalinum, Lycoperdon 159, 169, 170, 175, 280 hyalinum, Vascellum 167, 169, 170, 182, 213, 280 hyemale, Lycoperdon 197

294

intermedium, Lycoperdon 280 intermedium, Vascellum 280 juruense, Lycoperdon 162, 163, 212 kotlabae, Tulostoma 272 lambinonii, Lycoperdon 32, 80, 94, 95, 98, 101, 105, 118, 120, 123, 125, 139, 157, 159, 180, 196, 213, 215, 218, 271, 280 laxum, Lycoperdon 30 limosa, Bovista 271, 272 lividum, Lycoperdon 94, 95, 98, 101, 106, 108, 117, 120, 122, 139, 143, 145, 147,148, 157, 170, 171, 175, 181, 213, 271, 280 longispora, Bovista 31 mammiforme, Lycoperdon 30, 37, 94, 95, 96, 97, 101, 106, 108, 117, 120, 121, 139, 157, 213, 214, 271 marginatum, Lycoperdon 37, 38, 41, 42, 43, 94, 96, 101, 107, 108, 117, 119, 120, 139, 145, 148, 158, 164, 166, 171, 173, 175, 186, 191, 197, 214, 280, 285 mauryanum, Lycoperdon 43, 148, 173, 174,175, 186, 214 melanesicum, Lycoperdon 160, 161, 184, 185, 214, 220, 276 mexicana, Morganella 224, 225, 231, 237, 246, 247, 249, 250, 251, 256, 268 molle, Lycoperdon 30, 31, 32, 60, 62, 79, 80, 86, 94, 95, 97, 101, 109, 116, 118, 119, 120, 121, 122, 123, 125, 138, 139, 140, 143, 149, 157, 174, 188, 196, 197, 198, 214, 271 mundula, Lycoperdon 30 muscorum, Lycoperdon 31, 32, 94, 140, 214, 271 nigrescens, Bovista 142, 218, 272 nigrescens, Lycoperdon 94, 95, 98, 99, 101, 109, 116, 117, 120, 123, 124, 140, 145, 148, 158, 159, 163, 174, 176, 177, 179, 181, 186, 194, 198, 214, 215, 271, 280, 285 niveum, Lycoperdon 94, 95, 97, 101, 110, 116, 120, 121, 122, 140, 143, 157, 215, 271 norvegicum, Lycoperdon 94, 119, 120, 140, 143, 157, 197, 215, 271 nuda, Morganella 34, 38, 42, 218, 224, 231, 233, 252, 281 nudum, Lycoperdon 233, 237, 250, 252, 253, 254, 268, 271, 281 oblongisporum, Lycoperdon 30 ovalicaudatum, Lycoperdon 178 ovoidisporum, Lycoperdon 36, 148, 158, 159, 177, 178, 186, 194, 215, 281 paludosa, Bovista 272 pampeanum, Lycoperdon 214, 281

295 pampeanum, Vascellum 158, 241 pedunculatum, Lycoperdon 29 perlatum, Lycoperdon 30, 31, 34, 37, 41, 42, 43, 79, 86, 94, 96, 101, 105, 110, 116, 117, 119, 124, 140, 141, 143, 145, 146, 148, 149, 158, 161, 171, 174, 176, 178, 179, 180, 181, 186, 192, 194, 196, 197, 213, 214, 215, 216, 219, 235, 243, 247, 250, 260, 271, 275, 281, 285 pisiforme, Lycoperdon 34 pistiliforme, Lycoperdon 30 plumbea, Bovista 142, 218, 272 polymorpha, Bovista 30, 147 polymorphum, Lycoperdon 30, 147 pratense, Lycoperdon 30, 37, 94, 96, 97, 101, 111, 116, 120, 141, 158, 159, 166, 181,182, 183, 186, 191, 192, 193, 194, 195, 216, 218, 271, 281, 285 pratense, Vascellum 32, 86, 147, 150, 158, 181, 192, 218, 281 promotorii, Bovista 272 proximum, Lycoperdon 281 puiggarii, Bovista 150 puiggarii, Morganella 150 pusilla, Bovista 30 pusillum, Lycoperdon 30, 32, 284 pyriforme, Lycoperdon 30, 32, 33, 34, 36, 37, 41, 42, 43, 94, 96, 99, 101, 112, 116, 124, 140, 141, 145, 148, 149, 158, 160, 161, 164, 168, 169, 180, 183, 184, 185, 186, 193, 194, 196, 212, 213, 216, 217, 220, 246, 260, 271, 281, 285 pyriformis, Morganella 183 qudenii, Lycoperdon 147, 150 qudenii, Vascellum 150 quercinum, Lycoperdon 30 radicatum, Lycoperdon 94, 95, 98, 123, 141, 143, 157, 217, 271 rarum, Lycoperdon 282 rhodesianum, Lycoperdon 150 rhodesianum, Vascellum 150 rimosa, Morganella 34, 224, 231, 259 rimulatum, Lycoperdon 176, 214, 282 rupicola, Lycoperdon 94, 96, 141, 143, 157, 217, 271

296

rusticum, Lycoperdon 30 saccatum, Lycoperdon 30 sculpta, Calvatia 30 sculptum, Lycoperdon 30 serotinum, Lycoperdon 30 solmsii, Lycogalopsis 34, 259, 284 sosinii, Lycoperdon 233, 242, 271 sosinii, Morganella 34, 218, 233 squamosum, Tulostoma 272 stellatum, Lycoperdon 29, 214 stellatus, Sphaerobulus 29 subincarnata, Morganella 86, 94, 142, 147, 150, 218, 225, 233, 258, 271 subincarnatum, Lycoperdon 150, 225, 233, 237, 242, 246, 255, 258, 271, 282, 285 subperlatum, Lycoperdon 217 subpratense, Vascellum 150 subumbrinum, Lycoperdon 94, 97, 101, 112, 116, 117, 118, 120, 125, 141, 158, 217, 271 sulcatostoma, Morganella 34, 218, 231, 232, 255, 282 sulcatostomum, Lycoperdon 232, 255, 256, 271, 282 texense, Lycoperdon 214, 282 texense, Vascellum 158, 282 todayense, Lycoperdon 166 tomentosa, Bovista 272 tropicale, Lycoperdon 86, 282 turneri, Lycoperdon 95, 98, 123, 158, 217, 271 umbrinoides, Lycoperdon 38, 94, 96, 99, 113, 116,124, 141, 147, 159, 163, 217 umbrinum, Lycoperdon 30, 31, 32, 41, 42, 60, 62, 80, 86, 94, 95, 97, 98, 101, 102, 113, 116, 117, 118, 119, 120, 121, 123, 125, 141, 143, 145, 146, 158, 170, 171, 174, 187, 188, 194, 196, 197, 198, 217, 218, 271, 274, 277, 282 utriforme, Lycoperdon 30, 37, 94, 95, 98, 123, 141, 143, 145, 158, 188, 189, 194, 218, 271, 274, 277, 282 utriformis, Handkea 188 utriformis, Calvatia 32, 188 vanderystii, Lycoperdon 166, 212 vanderystii, Vascellum 213

297 velutina, Morganella 42, 149, 224, 231, 237, 246, 249, 250, 251, 256 velutinum, Lycoperdon 32, 149, 236, 237, 246, 256, 257, 268, 283 wrightii, Lycoperdon 148, 165, 166, 171, 212

298