LBRT: Humanity Should Establish a Space Colony by 2050. Content: 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Documenting Apollo on The
NASA HISTORY DIVISION Office of External Relations volume 27, number 1 Fourth Quarter 2009/First Quarter 2010 FROM HOMESPUN HISTORY: THE CHIEF DOCUMENTING APOLLO HISTORIAN ON THE WEB By David Woods, editor, The Apollo Flight Journal Bearsden, Scotland In 1994 I got access to the Internet via a 0.014 Mbps modem through my One aspect of my job that continues to amaze phone line. As happens with all who access the Web, I immediately gravi- and engage me is the sheer variety of the work tated towards the sites that interested me, and in my case, it was astronomy we do at NASA and in the NASA History and spaceflight. As soon as I stumbled upon Eric Jones’s burgeoning Division. As a former colleague used to say, Apollo Lunar Surface Journal (ALSJ), then hosted by the Los Alamos NASA is engaged not just in human space- National Laboratory, I almost shook with excitement. flight and aeronautics; its employees engage in virtually every engineering and natural Eric was trying to understand what had been learned about working on science discipline in some way and often at the Moon by closely studying the time that 12 Apollo astronauts had spent the cutting edge. This breadth of activities is, there. To achieve this, he took dusty, old transcripts of the air-to-ground of course, reflected in the history we record communication, corrected them, added commentary and, best of all, man- and preserve. Thus it shouldn’t be surprising aged to get most of the men who had explored the surface to sit with him that our books and monographs cover such a and add their recollections. -
Great Mambo Chicken and the Transhuman Condition
Tf Freewheel simply a tour « // o é Z oon" ‘ , c AUS Figas - 3 8 tion = ~ Conds : 8O man | S. | —§R Transhu : QO the Great Mambo Chicken and the Transhuman Condition Science Slightly Over the Edge ED REGIS A VV Addison-Wesley Publishing Company, Inc. - Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo Madrid San Juan Paris Seoul Milan Mexico City Taipei Acknowledgmentof permissions granted to reprint previously published material appears on page 301. Manyofthe designations used by manufacturers andsellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial capital letters (e.g., Silly Putty). .Library of Congress Cataloging-in-Publication Data Regis, Edward, 1944— Great mambo chicken and the transhuman condition : science slightly over the edge / Ed Regis. p- cm. Includes bibliographical references. ISBN 0-201-09258-1 ISBN 0-201-56751-2 (pbk.) 1. Science—Miscellanea. 2. Engineering—Miscellanea. 3. Forecasting—Miscellanea. I. Title. Q173.R44 1990 500—dc20 90-382 CIP Copyright © 1990 by Ed Regis All rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Text design by Joyce C. Weston Set in 11-point Galliard by DEKR Corporation, Woburn, MA - 12345678 9-MW-9594939291 Second printing, October 1990 First paperback printing, August 1991 For William Patrick Contents The Mania.. -
Commercial Orbital Transportation Services
National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter. -
(NTPS): a Key Space Asset for Human Exploration and Commercial Missions to the Moon
NASA/TM—2014-218105 AIAA–2013–5465 The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon Stanley K. Borowski Glenn Research Center, Cleveland, Ohio David R. McCurdy Vantage Partners, LLC, Brook Park, Ohio Laura M. Burke Glenn Research Center, Cleveland, Ohio October 2014 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. -
Deployable Modular Frame for Inflatable Space Habitats
70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,B3,8-GTS.2,4,x48931 DMF: Deployable Modular Frame for Inflatable Space Habitats Vittorio Netti1, * 1University of Houston, [email protected] *Corresponding author Abstract Inflatable Space Modules for space exploration are now a reality. In 2016, Bigelow Aerospace tested the first inflatable module Bigelow Expandable Activity Module (BEAM) on the International Space Station (ISS), achieving success. This technology has higher volume limits than other launchers, substantially changing the previous concepts of construction and life in space. Nevertheless, inflatable modules technology lacks a reliable and functional platform to efficiently use all this space. Due to its limited dimension, the International Standard Payload Rack (ISPR), currently used on ISS, is not suitable for this purpose. The project aims at developing a new standard for payload rack in the inflatable space modules: the Deployable Modular Frame (DMF). The DMF expands itself radially from the center of the module, starting from four structural pylons. It creates a solid infrastructure allowing for the configuration of a variety of spaces, including storage space, laboratories, workstations and living quarters. The DMF consists of two main parts: the Deployable Frame (DF) and the Modular Rack (MR). Once the frame is deployed, it provides four linear slots suitable to install the modular racks. The rack is the basic element that allows for the storage of equipment inside the frame. Once they are installed, the racks can slide on the frame’s rails, dynamically changing the space inside the module. -
To Intercontinental to Interplanetary to Intersolar
Why Editorials? Why some, not all? In compiling the MMM Classics volumes, with precious few exceptions, editorials were not included. Why? Yes, some addressed temporary conditions, and are of no lasting interest. But indeed, many MMM editorials through the years have addressed concerns that remain pertinent today, if indeed they are not timeless. So we have taken another look and here reprint those “In Focus” editorials that, we think, speak to conditions and issues still very relevant today. These pieces represent the editor’s opinions alone, and have never been presented as the opin- ions or policies of the Lunar Reclamation Society, the National Space Society, the Artemis Society, or the Moon Society. There are none for the first year, as we didn’t start writing editorials until MMM #11. The Topics: The relation between the Moon and Mars in Manned Space Exploration Policy is clearly the num- ber one issue addressed. What we mean by “space” difers widely among “space proponents.” This is a critical issue. Space is more than the boundary layer of Earth, a place for space stations and satellites. This is a realm already part of Earth’s “econosphere” and will take care of itself. It is the endless fron- tier, beyond that needs our attention. The endless hiatus between Apollo 17 and what we all want to come next is a key topic. There is much we can do to make the next human lunar opening a stronger and more lasting one. Asteroids, promise and threat, are looked at and put in perspective with a nearer term threat: space debris, which could end up confining humans forever on our home world. -
Cryopreservation Page 3
2nd quarter 2010 • Volume 31:2 funding Your Cryopreservation page 3 Death of Robert Prehoda Page 7 Member Profile: Mark Plus page 8 Non-existence ISSN 1054-4305 is Hard to Do page 14 $9.95 Improve Your Odds of a Good Cryopreservation You have your cryonics funding and contracts in place but have you considered other steps you can take to prevent problems down the road? Keep Alcor up-to-date about personal and medical changes. Update your Alcor paperwork to reflect your current wishes. Execute a cryonics-friendly Living Will and Durable Power of Attorney for Health Care. Wear your bracelet and talk to your friends and family about your desire to be cryopreserved. Ask your relatives to sign Affidavits stating that they will not interfere with your cryopreservation. Attend local cryonics meetings or start a local group yourself. Contribute to Alcor’s operations and research. Contact Alcor (1-877-462-5267) and let us know how we can assist you. Alcor Life Extension Foundation is on Connect with Alcor members and supporters on our official Facebook page: http://www.facebook.com/alcor.life.extension.foundation Become a fan and encourage interested friends, family members, and colleagues to support us too. 2ND QUARTER 2010 • VOLUME 31:2 2nd quarter 2010 • Volume 31:2 Contents COVER STORY: PAGE 3 funding Your Cryopreservation Without bequests and page 3 donations Alcor’s revenue falls 11 Book Review: The short of covering its operating Rational Optimist: How expenses. This means that Prosperity Evolves Alcor should further cut costs Former Alcor President or increase revenue. -
Integrated Fiber Optic Structural Health Sensors for Inflatable Space Habitats Osgar John Ohanian III*A, Naman Garga, Matthew A
Integrated Fiber Optic Structural Health Sensors for Inflatable Space Habitats Osgar John Ohanian III*a, Naman Garga, Matthew A. Castelluccia aLuna Innovations, Incorporated, Blacksburg, VA USA 24060 *[email protected], phone: 540-443-3872 ABSTRACT Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor’s measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures. -
NASA at 50: Interviews with NASA Senior Leadership / Rebecca Wright, Sandra Johnson, Steven J
Library of Congress Cataloging-in-Publication Data NASA at 50: interviews with NASA senior leadership / Rebecca Wright, Sandra Johnson, Steven J. Dick, editors. p. cm. 1. Aerospace engineers—United States—Interviews. 2. United States. National Aeronautics and Space Administration—History—Sources. I. Wright, Rebecca II. Johnson, Sandra L. III. Dick, Steven J. IV. Title: NASA at fifty. NASA SP-2012-4114 TL539.N36 2011 629.40973—dc22 2009054448 ISBN 978-0-16-091447-8 F ro as el t yb eh S epu ir tn e edn tn fo D co mu e tn .U s S G , . evo r emn tn P ir tn i O gn eciff I tn re en :t skoob t ro e . opg . vog enohP : lot l f eer ( 668 ) 215 - 0081 ; D C a er ( a 202 ) 215 - 0081 90000 aF :x ( 202 ) 215 - 4012 aM :li S t I po CCD W , ihsa gn t no D , C 20402 - 1000 ISBN 978-0-16-091447-8 9 780160 914478 ISBN 978-0-16-091447-8 F ro leas b y t eh S pu e ri tn e dn e tn D fo co mu e tn s , .U Svo . e G r mn e tn P ri tn i gn fficeO I tn er en t: koob s t ro e. opg . vog : Plot l nohf ree e ( 668 ) 215 - 0081 ; C Da re a ( 202 ) 215 - 0081 90000 Fa :x ( 202 ) 215 - 4012 il:M S a t po DCI C, W a hs i gn t no , D C 20402 - 1000 ISBN 978-0-16-091447-8 9 780160 914478 Rebecca Wright Sandra Johnson Steven J. -
List of Private Spaceflight Companies - Wikipedia
6/18/2020 List of private spaceflight companies - Wikipedia List of private spaceflight companies This page is a list of non-governmental (privately owned) entities that currently offer—or are planning to offer—equipment and services geared towards spaceflight, both robotic and human. List of abbreviations used in this article Contents Commercial astronauts LEO: Low Earth orbit GTO: Geostationary transfer Manufacturers of space vehicles orbit Cargo transport vehicles VTOL: Vertical take-off and Crew transport vehicles landing Orbital SSTO: Single-stage-to-orbit Suborbital TSTO: Two-stage-to-orbit Launch vehicle manufacturers SSTSO: Single-stage-to-sub- Landers, rovers and orbiters orbit Research craft and tech demonstrators Propulsion manufacturers Satellite launchers Space-based economy Space manufacturing Space mining Space stations Space settlement Spacecraft component developers and manufacturers Spaceliner companies See also References External links Commercial astronauts Association of Spaceflight Professionals[1][2] — Astronaut training, applied research and development, payload testing and integration, mission planning and operations support (Christopher Altman, Soyeon Yi)[1][3] Manufacturers of space vehicles Cargo transport vehicles Dry Launch Return Company Launch Length Payload Diameter Generated Automated Spacecraft mass mass Payload (kg) payload S name system (m) volume (m3) (m) power (W) docking (kg) (kg) (kg) 10.0 (pressurized), 3,310 plus 14 2,500 Falcon 9 pressurized or (unpressurized), Dragon 6.1 4,200[4] 10,200 capsule -
The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C
Journal of Air Law and Commerce Volume 81 | Issue 4 Article 2 2016 The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space C. Brandon Halstead Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation C. Brandon Halstead, The Ultimate High Ground—U.S. Intersector Cooperation in Outer Space, 81 J. Air L. & Com. 595 (2016) https://scholar.smu.edu/jalc/vol81/iss4/2 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. THE ULTIMATE HIGH GROUND—U.S. INTERSECTOR COOPERATION IN OUTER SPACE C. BRANDON HALSTEAD* I. INTRODUCTION PACE, THE FINAL FRONTIER.” Those words opened “Seach episode of the original 1960s’ television series Star Trek.1 In a seemingly relentless effort to dominate this final fron- tier, the second half of the 20th century was marked by a space race of United States and Soviet Union competition to attain superior space capabilities. Those few States2 able to achieve or- bit comprised an exclusive club, with the technology and fi- nances necessary to successfully launch, orbit, and recover space vehicles embodying State prestige and power. Yet as the campy science fiction films and television series of the 1950s and 1960s gave way to blockbuster space movies and television dramas from the 1970s onward, so too has science fiction and space ca- pabilities transformed from the silver screen to reality.