LBRT: Humanity Should Establish a Space Colony by 2050. Content: 1

LBRT: Humanity Should Establish a Space Colony by 2050. Content: 1

LBRT: Humanity should establish a space colony by 2050. Content: 1. Background Information 2. Pro and Con Arguments 3. Timeline 4. Key Articles 5. Additional Resources LearningLeaders – All Rights Reserved - 9/14/17 1 BACKGROUND INFORMATION LearningLeaders – All Rights Reserved - 9/14/17 2 LearningLeaders – All Rights Reserved - 9/14/17 3 LearningLeaders – All Rights Reserved - 9/14/17 4 LearningLeaders – All Rights Reserved - 9/14/17 5 SOURCE: https://www.space.com/22228-space-station-colony-concepts- explained-infographic.html LearningLeaders – All Rights Reserved - 9/14/17 6 SOURCE: http://www.homospaciens.org/extrasolar-colony.html LearningLeaders – All Rights Reserved - 9/14/17 7 LearningLeaders – All Rights Reserved - 9/14/17 8 LearningLeaders – All Rights Reserved - 9/14/17 9 LearningLeaders – All Rights Reserved - 9/14/17 10 SOURCE: https://i.pinimg.com/736x/f1/05/5a/f1055a6de089b3f8abed8d81dd4a3 552--space-law-lunar-moon.jpg LearningLeaders – All Rights Reserved - 9/14/17 11 SPACE SETTLEMENT BASICS Who? You. Or at least people a lot like you. Space settlements will be a place for ordinary people. Presently, with few exceptions, only highly trained and carefully selected astronauts go to space. Space settlement needs inexpensive, safe launch systems to deliver thousands, perhaps millions, of people into orbit. If this seems unrealistic, note that a hundred and fifty years ago nobody had ever flown in an airplane, but today nearly 500 million people fly each year. Some special groups might find space settlement particularly attractive: The handicapped could keep a settlement at zero-g to make wheelchairs and walkers unnecessary. Penal colonies might be created in orbit as they should be fairly escape proof. People who wish to experiment with very different social and political forms could get away from restrictive social norms. Although some colonies may follow this model, it's reasonable to expect that the vast majority of space colonists will be ordinary people. Indeed, eventually most people in space settlements will be born there, and some day they may vastly exceed Earth's population. Based on the materials available, the human population in orbit could one day exceed ten trillion living in millions of space colonies with a combined living space hundreds of times the surface of the Earth. What? A space settlement is a home in orbit. Rather than live on the outside of a planet, settlers will live on the inside of gigantic spacecraft. Typical space settlement designs are roughly one half to a few kilometers across. A few designs are much larger. Settlements must be air tight to hold a breathable atmosphere, and must rotate to provide psuedo-gravity. Thus, people stand on the inside of the hull. LearningLeaders – All Rights Reserved - 9/14/17 12 Enormous amounts of matter, probably lunar soil at first, must cover the settlements to protect inhabitants from radiation. On Earth our atmosphere does this job, but space settlements need about five tons of matter covering every square meter of a colony's hull to protect space settlers from cosmic rays and solar flares. Each settlement must be an independent biosphere. All oxygen, water, wastes, and other materials must be recycled endlessly. Where? In orbit, not on a planet or moon. Why should we live in orbit rather than on a planet or moon? Because orbit is far superior to the Moon and Mars for colonization, and other planets and moons are too hot, too far away, and/or have no solid surface. For an alternate view, see Robert Zubrin's powerful case for Mars exploration and colonization. Mars' biggest advantage is that all the materials necessary for life may be found on Mars. While materials for orbital colonies must be imported from the Moon or Near Earth Objects (NEO's -- asteroids and comets), there are many advantages to orbital colonies. Advantages include: Earth-normal 'gravity'. The Moon and Mars have a surface gravity much less than Earth normal (which called 1g - the g stands for 'gravity'). The lunar surface is at roughly 1/6g and Mars is a 1/3g planet. Children raised in low-g cannot be expected to develop bones and muscles strong enough to visit Earth except in desperation -- it will be too painful and exhausting. For example, this author weighs 73kg (160 pounds). If I went to a 3g planet, the equivalent of moving from Mars to Earth, I would weigh 225 kg (almost 500 pounds) and would have great difficulty getting out of bed. For children raised on the Moon or Mars, attending college on Earth will be out of the question. By contrast, orbital colonies can rotate to provide any g level desired, although it's not true gravity. Spinning the colony creates a force called pseudo-gravity, that feels a lot like gravity. Pseudo- gravity is much like what you feel when a car takes a sharp turn at high speed. Your body is pressed up against the door. Simillarly, as an orbital space colony turns, the inside of the colony pushes on the inhabitants forcing them to go around. The amount of this force can be controlled and for reasonable colony sizes and LearningLeaders – All Rights Reserved - 9/14/17 13 rotation rates the force can be about 1g. For example, a colony with an 895 meter (a bit less than 1000 yards) radius rotating at one rpm (rotations per minute) provides 1g at the hull. Children raised on orbital colonies should have no trouble visiting Earth for extended periods. Rapid resupply from Earth. The Moon is a few days away from Earth, and trips to Mars take many months. Early colonies in Earth orbit will be only hours away. This is a huge logistical advantage for a large project like building space settlements. Continuous, ample, reliable solar energy. In orbit there is no night. Solar power is available 24/7. Most places on the Moon or Mars are in darkness half of the time (the only exception is the lunar poles). Mars, in addition, is much farther from the Sun and so receives about half the solar power available at Earth orbit. Mars also has dust storms which interfere with solar power. Great views from Earth (and eventually other planets). Space colonization is, at its core, a real estate business. The value of real estate is determined by many things, including "the view." Any space settlement will have a magnificient view of the stars at night. Any settlement on the Moon or Mars will also have a view of unchanging, starkly beautiful, dead-as-a-doornail, rock strewn surface. However, settlements in earth orbit will have one of the most stunning views in our solar system - the living, ever- changing Earth. Weightless recreation. Although space colonies will have 1g at the hull, in the center you will experience weightlessness. If you've ever jumped off a diving board, you've been weightless. It's the feeling you have after jumping and before you hit the water. The difference in a space colony is that the feeling will last for as long as you like. If you've ever seen videos of astronauts playing in 0g you know weightlessness is fun. Acrobatics, sports and dance go to a new level when constraints of gravity are removed. It's not going to be easy to keep the kids in 1g areas enough to satisfy Mom and Dad that their bones will be strong enough for a visit to Disneyland. Zero-g construction means bigger colonies. Space colonists will spend almost all of their time indoors. It is impossible for an unprotected human to survive outside for more than few seconds. In this situation, obviously bigger colonies are better. Colonies on LearningLeaders – All Rights Reserved - 9/14/17 14 the Moon or Mars won't be much bigger than buildings on Earth, especially at first. However, in orbit astronauts can easily move spacecraft weighing many tons by hand. Everything is weightless and this makes large scale construction much easier. Colonies can be made so large that, even though you are really inside, it feels like the out-of-doors. Much greater growth potential. The Moon and Mars together have a surface area roughly the size of Earth. But if the single largest asteroid (Ceres) were to be used to build orbital space colonies, the total living area created would be approximately 150 times the surface area of the Earth. Since much of the Earth is ocean or sparsely inhabited, settlements built from Ceres alone could provide uncrowded homes for more than a trillion people. Economics. Near-Earth orbital colonies can service Earth's tourist, energy, and materials markets more easily than the Moon. Mars is too far away to easily trade with Earth. Space colonies, wherever they are built, will be very expensive. Supplying Earth with valuable goods and services will be critical to paying for colonization. The best place to live on Mars is not nearly as nice as the most miserable part of Siberia. Mars is far colder, you can't go outside without a space suit, and it's a months-long rocket ride if you want a Hawaiin vacation. The Moon is even colder at night, and it's literally boiling during the day. By contrast, orbital colonies have unique and desirable properties, particularly 0g recreation and great views. Building and maintaining orbital colonies should be quite a bit easier than similar sized homesteads on the Moon and Mars. Colonies in orbit are better positioned to provide goods and services to Earth. For these reasons, orbital colonies will almost certainly come first, with lunar and martian colonization later. Mars and the Moon have one big advantage over most orbits: there's plenty of materials.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    86 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us