Luís Manuel Zambujal Chícharo Assistente Da
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Marine Research, Sears Foundation For
The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Species densities of macrobenthos associated with seagrass: A field experimental study of predation by David K. Young1, Martin A. Buzas2, and Martha W. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
Tampa Bay Benthic Monitoring Program Interpretive Report
Tampa Bay Benthic Monitoring Program Interpretive Report: 1993-2004 David J. Karlen, Thomas Dix, Ph.D., Barbara K. Goetting, Sara E. Markham Environmental Protection Commission of Hillsborough County Cynthia Meyer, Mark Flock Pinellas County Department of Environmental Management Greg Blanchard Manatee County Department of Environmental Management Corresponding author: David J. Karlen, EPC-HC [email protected] Prepared for: Tampa Bay Estuary Program September 2008 Executive Summary The Tampa Bay Benthic Monitoring Program was initiated in 1993 by the Tampa Bay National Estuary Program as part of a basin-wide monitoring effort to provide data to area managers and to track long term trends in the Tampa Bay ecosystem. The monitoring program is a cooperative effort between Hillsborough, Manatee and Pinellas Counties, with the Environmental Protection Commission of Hillsborough County handling the biological and sediment contaminant sample processing and data analysis. This report covers the first twelve years of monitoring data (1993- 2004). A total of 1,217 sites were sampled and analyzed for environmental characteristics, sediment chemistry, and benthic community composition. The median sample depth bay-wide was 2.8 meters (range 0 – 13.2 meters) with bottom salinities ranging from 0 to 35.9 psu. The bay-wide median salinity was 26 psu and nearly 80% of the sampling sites were within the polyhaline salinity range (18-30 psu). Salinities were variable between years with the lowest salinities occurring in 1995 and 2003 and highest in 2000. Salinities were significantly different between bay segments with the highest salinities being recorded in Boca Ciega Bay and Lower Tampa Bay and lowest salinities in the Manatee River. -
Hermit Crabs - Paguridae and Diogenidae
Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus -
Guide to Common Tidal Marsh Invertebrates of the Northeastern
- J Mississippi Alabama Sea Grant Consortium MASGP - 79 - 004 Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico by Richard W. Heard University of South Alabama, Mobile, AL 36688 and Gulf Coast Research Laboratory, Ocean Springs, MS 39564* Illustrations by Linda B. Lutz This work is a result of research sponsored in part by the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant Nos. 04-S-MOl-92, NA79AA-D-00049, and NASIAA-D-00050, by the Mississippi-Alabama Sea Gram Consortium, by the University of South Alabama, by the Gulf Coast Research Laboratory, and by the Marine Environmental Sciences Consortium. The U.S. Government is authorized to produce and distribute reprints for govern mental purposes notwithstanding any copyright notation that may appear hereon. • Present address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright© 1982 by Mississippi-Alabama Sea Grant Consortium and R. W. Heard All rights reserved. No part of this book may be reproduced in any manner without permission from the author. CONTENTS PREFACE . ....... .... ......... .... Family Mysidae. .. .. .. .. .. 27 Order Tanaidacea (Tanaids) . ..... .. 28 INTRODUCTION ........................ Family Paratanaidae.. .. .. .. 29 SALTMARSH INVERTEBRATES. .. .. .. 3 Family Apseudidae . .. .. .. .. 30 Order Cumacea. .. .. .. .. 30 Phylum Cnidaria (=Coelenterata) .. .. .. .. 3 Family Nannasticidae. .. .. 31 Class Anthozoa. .. .. .. .. .. .. .. 3 Order Isopoda (Isopods) . .. .. .. 32 Family Edwardsiidae . .. .. .. .. 3 Family Anthuridae (Anthurids) . .. 32 Phylum Annelida (Annelids) . .. .. .. .. .. 3 Family Sphaeromidae (Sphaeromids) 32 Class Oligochaeta (Oligochaetes). .. .. .. 3 Family Munnidae . .. .. .. .. 34 Class Hirudinea (Leeches) . .. .. .. 4 Family Asellidae . .. .. .. .. 34 Class Polychaeta (polychaetes).. .. .. .. .. 4 Family Bopyridae . .. .. .. .. 35 Family Nereidae (Nereids). .. .. .. .. 4 Order Amphipoda (Amphipods) . ... 36 Family Pilargiidae (pilargiids). .. .. .. .. 6 Family Hyalidae . -
Benthic Invertebrate Species Richness & Diversity At
BBEENNTTHHIICC INVVEERTTEEBBRRAATTEE SPPEECCIIEESSRRIICCHHNNEESSSS && DDIIVVEERRSSIITTYYAATT DIIFFFFEERRENNTTHHAABBIITTAATTSS IINN TTHHEEGGRREEAATEERR CCHHAARRLLOOTTTTEE HAARRBBOORRSSYYSSTTEEMM Charlotte Harbor National Estuary Program 1926 Victoria Avenue Fort Myers, Florida 33901 March 2007 Mote Marine Laboratory Technical Report No. 1169 The Charlotte Harbor National Estuary Program is a partnership of citizens, elected officials, resource managers and commercial and recreational resource users working to improve the water quality and ecological integrity of the greater Charlotte Harbor watershed. A cooperative decision-making process is used within the program to address diverse resource management concerns in the 4,400 square mile study area. Many of these partners also financially support the Program, which, in turn, affords the Program opportunities to fund projects such as this. The entities that have financially supported the program include the following: U.S. Environmental Protection Agency Southwest Florida Water Management District South Florida Water Management District Florida Department of Environmental Protection Florida Coastal Zone Management Program Peace River/Manasota Regional Water Supply Authority Polk, Sarasota, Manatee, Lee, Charlotte, DeSoto and Hardee Counties Cities of Sanibel, Cape Coral, Fort Myers, Punta Gorda, North Port, Venice and Fort Myers Beach and the Southwest Florida Regional Planning Council. ACKNOWLEDGMENTS This document was prepared with support from the Charlotte Harbor National Estuary Program with supplemental support from Mote Marine Laboratory. The project was conducted through the Benthic Ecology Program of Mote's Center for Coastal Ecology. Mote staff project participants included: Principal Investigator James K. Culter; Field Biologists and Invertebrate Taxonomists, Jay R. Leverone, Debi Ingrao, Anamari Boyes, Bernadette Hohmann and Lucas Jennings; Data Management, Jay Sprinkel and Janet Gannon; Sediment Analysis, Jon Perry and Ari Nissanka. -
Noaa 13648 DS1.Pdf
r LOAI<CO Qpy N Guide to Gammon Tidal IVlarsh Invertebrates of the Northeastern Gulf of IVlexico by Richard W. Heard UniversityofSouth Alabama, Mobile, AL 36688 and CiulfCoast Research Laboratory, Ocean Springs, MS39564" Illustrations by rimed:tul""'"' ' "=tel' ""'Oo' OR" Iindu B. I utz URt,i',"::.:l'.'.;,',-'-.,":,':::.';..-'",r;»:.",'> i;."<l'IPUS Is,i<'<i":-' "l;~:», li I lb~'ab2 Thisv,ork isa resultofreseaich sponsored inpart by the U.S. Department ofCommerce, NOAA, Office ofSea Grant, underGrani Nos. 04 8 Mol 92,NA79AA D 00049,and NA81AA D 00050, bythe Mississippi Alabama SeaGrant Consortium, byche University ofSouth Alabama, bythe Gulf Coast Research Laboratory, andby the Marine EnvironmentalSciences Consortium. TheU.S. Government isauthorized toproduce anddistribute reprints forgovern- inentalpurposes notwithstanding anycopyright notation that may appear hereon. *Preseitt address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright! 1982by Mississippi hlabama SeaGrant Consortium and R. W. Heard All rightsreserved. No part of thisbook may be reproduced in any manner without permissionfrom the author. Printed by Reinbold Lithographing& PrintingCo., BooneviBe,MS 38829. CONTENTS 27 PREFACE FamilyMysidae OrderTanaidacea Tanaids!,....... 28 INTRODUCTION FamilyParatanaidae........, .. 29 30 SALTMARSH INVERTEBRATES ., FamilyApseudidae,......,... Order Cumacea 30 PhylumCnidaria =Coelenterata!......, . FamilyNannasticidae......,... 31 32 Class Anthozoa OrderIsopoda Isopods! 32 Fainily Edwardsiidae. FamilyAnthuridae -
(Bivalvia: Mytilidae) Reveal Convergent Evolution of Siphon Traits
applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–21. With 7 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa011/5802836 by Iowa State University user on 13 August 2020 Phylogeny and anatomy of marine mussels (Bivalvia: Mytilidae) reveal convergent evolution of siphon traits Jorge A. Audino1*, , Jeanne M. Serb2, , and José Eduardo A. R. Marian1, 1Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, n. 101, 05508-090 São Paulo, São Paulo, Brazil 2Department of Ecology, Evolution & Organismal Biology, Iowa State University, 2200 Osborn Dr., Ames, IA 50011, USA Received 29 November 2019; revised 22 January 2020; accepted for publication 28 January 2020 Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate. -
Habitat Changes Associated with Mangrove Expansion in Coastal Marsh Systems
Habitat Changes Associated with Mangrove Expansion in Coastal Marsh Systems Publication CBBEP – 139 Project Number – 1821 December 2019 Prepared by Kenneth H. Dunton, Principal Investigator University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, Texas 78373 Submitted to: Coastal Bend Bays & Estuaries Program 615 N. Upper Broadway, Suite 1200 Corpus Christi, TX 78401 The views expressed herein are those of the authors and do not necessarily reflect the views of CBBEP or other organizations that may have provided funding for this project. Habitat Changes Associated with Mangrove Expansion in Coastal Marsh Systems Final Report to the Coastal Bend Bays and Estuaries Program Project 1821 31 December 2019 Kenneth H. Dunton Principal Investigator 1 Kenneth H. Dunton University of Texas at Austin Marine Science Institute 750 Channel View Drive, Port Aransas, TX 78373 Phone: (361) 749-6744 Fax: (361) 749-6777 E-mail: [email protected] Final Report Submitted by: Kenneth H. Dunton Daniel Fraser Kim Jackson Susan V. Schonberg 31 December 2019 Submitted to: Rosario Martinez Coastal Bend Bays & Estuaries Program 615 N. Upper Broadway, Suite 1200 Corpus Christi, Texas 78401 2 PROJECT SUMMARY The overall goal of this study was to assess the ecological changes associated with progressive black mangrove (Avicennia germinans) displacement of Spartina alterniflora marshes in the CBBEP study area. This preliminary study is focused on (1) the differences in sediment biogeochemical properties between the two habitats, (2) differences in the composition and abundance of infaunal and epibenthic species, and (3) the ability of fauna to assimilate organic carbon derived from either Avicennia or Spartina using stable isotopic methods. -
Food of the Atlantic Croaker, Micropogonias Undulatus, from Mississippi Sound and the Gulf of Mexico
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1978 Food of the Atlantic Croaker, Micropogonias undulatus, from Mississippi Sound and the Gulf of Mexico Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Richard W. Heard University of Southern Mississippi, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Overstreet, Robin M. and Heard, Richard W., "Food of the Atlantic Croaker, Micropogonias undulatus, from Mississippi Sound and the Gulf of Mexico" (1978). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 485. https://digitalcommons.unl.edu/parasitologyfacpubs/485 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GulfResearch Reports, Vol. 6, No. 2, 145-152, 1978 FOOD OF THE ATLANTIC CROAKER, MICROPOGONIAS UNDULA TUS, FROM MISSISSIPPI SOUND AND THE GULF OF MEXICO’ ROBIN M. OVERSTREET AND RICHARD W. HEARD Parasitology Section, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 ABSTRACT ‘lhe diet of the Atlantic croaker from Mississippi Sound has been examined for the fist time. Over 83 taxa were encountered, or more than were reported from croaker in any other region. We also found 60 taxa, 36 of which over- lapped with the above, in croaker from various offshore stations in the Gulf of Mexico. -
Quantification of Settlement and Recruitment Processes in Bivalve M Ollusks
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1994 Quantification of settlement and ecruitmentr processes in bivalve mollusks Patrick Kelly Baker College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Baker, Patrick Kelly, "Quantification of settlement and ecruitmentr processes in bivalve mollusks" (1994). Dissertations, Theses, and Masters Projects. Paper 1539616555. https://dx.doi.org/doi:10.25773/v5-psh5-eg48 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Status of Old Tampa Bay: 1993-1998
Tampa Bay Benthic Monitoring Program: Status of Old Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Scientist I Thomas Dix Environmental Scientist II Sara Markham Environmental Scientist I 1900 9th Avenue Tampa, Florida 33605 April 2003 i Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph. D. Director Environmental Resources Management Division ii ACKNOWLEDGEMENTS Funding was provided by the Tampa Bay Estuary Program (1993-1998), the Environmental Protection Commission of Hillsborough County, and the Phosphate Severance Tax. The USEPA/Gulf Breeze provided additional laboratory support for the 1993 and 1997 surveys. Tom Ash, Glenn Lockwood, Richard Boler, and Eric Lesnett assisted with field collections and instrument calibration. Sediment chemical analyses were performed by Joseph Barron and Steven Perez. Sediment particle size analysis was provided by Manatee County’s Environmental Management Department. Laboratory assistance was provided by a plethora of temporary employees over the years. D. Camp (Crustacea), R. Heard (Peracarida), S. LeCroy (Amphipoda), W. Lyons (Mollusca), M. Milligan (Oligochaeta), T. Perkins (Polychaeta), W. Price (Mysidacea), K. Strasser (Paguroidea), J.S. Harrison (Pinnotheridae), and H.K. Dean (Sipuncula) verified/identified specimens for us. iii EXECUTIVE SUMMARY The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting sediment samples on an annual (summer) basis in Old Tampa Bay since 1993 as part of a bay-wide monitoring program developed by the Tampa Bay National Estuary Program. These samples are analyzed for the composition and abundance of the animals living in and on the sediments (“benthos”) as well as for chemical contaminants (metals, pesticides etc.).