Summer Distribution and Demography of Antarctic Krill Euphausia Superba Dana, 1852 (Euphausiacea) at the South Orkney Islands, 2011–2015

Total Page:16

File Type:pdf, Size:1020Kb

Summer Distribution and Demography of Antarctic Krill Euphausia Superba Dana, 1852 (Euphausiacea) at the South Orkney Islands, 2011–2015 Downloaded from orbit.dtu.dk on: Oct 23, 2019 Summer distribution and demography of Antarctic krill Euphausia superba Dana, 1852 (Euphausiacea) at the South Orkney Islands, 2011–2015 Krafft, Bjørn A.; Krag, Ludvig Ahm; Knutsen, Tor; Skaret, Georg; Jensen, Knut H. M.; Krakstad, Jens O.; Larsen, Stuart H.; Melle, Webjørn; Iversen, Svein A.; Godø, Olav R. Published in: Journal of Crustacean Biology Link to article, DOI: 10.1093/jcbiol/ruy061 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Krafft, B. A., Krag, L. A., Knutsen, T., Skaret, G., Jensen, K. H. M., Krakstad, J. O., ... Godø, O. R. (2018). Summer distribution and demography of Antarctic krill Euphausia superba Dana, 1852 (Euphausiacea) at the South Orkney Islands, 2011–2015. Journal of Crustacean Biology, 38(6), 682-688. https://doi.org/10.1093/jcbiol/ruy061 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Journal of Crustacean Biology Advance Access published 11 September 2018 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 38(6), 682–688, 2018. doi:10.1093/jcbiol/ruy061 Summer distribution and demography of Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea) at the South Orkney Islands, 2011–2015 Downloaded from https://academic.oup.com/jcb/article-abstract/38/6/682/5095293 by guest on 08 July 2019 Bjørn A. Krafft1, Ludvig A. Krag2, Tor Knutsen1, Georg Skaret1, Knut H.M. Jensen3, Jens O. Krakstad1, Stuart H. Larsen1, Webjørn Melle1, Svein A. Iversen1 and Olav R. Godø1 1Institute of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway; 2Technical University of Denmark, National Institute of Aquatic Resources, Niels Juelsvei 30, DK-9850 Hirtshals, Denmark; and 3University of Bergen, Musèplassen 1, 5007 Bergen, Norway Correspondence: B.A. Krafft; email: [email protected] (Received 4 April 2018; accepted 21 June 2018) ABSTRACT We carried out a survey of Antarctic krill (Euphausia superba Dana, 1850) from 2011 to 2015 to establish a long-term, time-series dataset of distribution, abundance, and demography for this species in the South Orkney Islands sector of the Southern Ocean. This species is abundant in this region and is subjected to high-intensity fishing, but previous assessments of density and population dynamics are few and outdated. Our data for Antarctic krill was collected from trawl stations along survey line transects covering the South Orkney plateau and shelf region during the summers of five consecutive years. We used concurrent data on hydrography, ba- thymetry, and proxies for algal biomass to describe potential spatial patterns of demography and abundance of E. superba. Comparative analysis of the demographic composition showed that 2012 differed from the other years by having a higher proportion of juveniles; otherwise a consistent pattern was found among years and within the study area. The highest biomass during the study period occurred along the northern shelf edge of the South Orkney Islands. Results of the linear mixed-effect model used to evaluate a diverse range of variables revealed that the only predictors for this hotspot were the short distance from land and great bottom depth. No clear differences in demographic composition for the study area were detected, which indicates that the area is highly dynamic and dominated by flux and advection of krill, both to, from, and within the area. Despite this finding, the results demonstrate that the shelf break on the northwest South Orkney Islands is predictable over time as a krill concentration and retention hotspot during the summer season. Key Words: fisheries, maturity stage, Southern Ocean, time series, zooplankton THIRD INTERNATIONAL SYMPOSIUM ON KRILL INTRODUCTION (off South Georgia Islands). It is difficult to describe and quantify how the population dynamics of the Antarctic krill change tem- The western South Atlantic sector of the Southern Ocean con- porally and regionally, especially at somewhat larger spatial scales, tains the highest concentrations of Antarctic krill (Euphausia superba because actual monitoring of the stock has been very limited in Dana, 1850, hereafter krill) (Atkinson et al., 2009). The krill fishery time and space. Nonetheless, the few existing small spatially is regulated by the Commission for the Conservation of Antarctic scaled krill monitoring programmes provide valuable biomass Marine Living Resources (CCAMLR). During the last two decades, and demography data (indices) that answer important questions this fishery has been focused mainly in subareas 48.1 (Bransfield about change in the krill stock. Monitoring of krill during the last Strait and Elephant Island), 48.2 (South Orkney Islands), and 48.3 two decades has been regularly performed by the U.S. Antarctic © The Author(s) 2018. Published by Oxford University Press on behalf of The Crustacean Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] SUMMER DISTRIBUTION OF ANTARCTIC KRILL AT THE SOUTH ORKNEY ISLANDS Marine Living Resources Program in subarea 48.1 (Kinzey et al., Islands. The research platforms employed were two commercial 2015) and the British Antarctic Survey in subarea 48.3 (Fielding Norwegian ramp trawlers: FV Saga Sea (Aker Biomarine AS, Oslo, et al., 2014). Knowledge about the distribution and biology of the Norway) in 2011, 2013, and 2014, and FV Juvel (Rimfrost AS, species in the South Orkney Islands, which has a high abundance Fosnavåg, Norway) in 2012 and 2015. The study area included of krill (Atkinson et al., 2008) and is subjected to particularly high the waters between 59°40’S and 62°00’S and from 44°00’W to fishing activity (Nicol et al., 2012), is fragmented and outdated. 48°30’W. The survey design included trawl stations spaced 37.0– Most fishing in subarea 48.2 occurs in a concentrated area 46.30 km (~20–25 nautical miles) apart along predetermined par- over the shelf break northwest of the South Orkney Islands. The allel north-south oriented transect lines (Fig. 1). Some parts of the area includes two north-south oriented canyons, the Monroe and study area could not always be covered due to drifting pack ice, Coronation Troughs (Dickens et al., 2014), which are described as which prevented ship operations, including trawling. This was par- hotspots for krill (Nicol et al., 2012; Krafft et al., 2015). The area ticularly the case during the 2013 and 2015 surveys. is likely important for retention of krill that are advected along The standard survey trawl used was 42 m long, with a 36 m2 the shelf and slope region from areas further west and southwest mouth opening, constructed of 7 mm (stretched) diamond-shaped or via deeper currents from the Weddell Sea region flowing east mesh from mouth to rear (Fig. 2). The trawl was towed using a and turning north in a counter clockwise direction around the 6 m wide steel beam with 200 kg weights at each lower wing tip South Orkney plateau (Gordon et al., 2001). The South Orkney and 1,500 kg attached to the beam to ensure fast deployment to Downloaded from https://academic.oup.com/jcb/article-abstract/38/6/682/5095293 by guest on 08 July 2019 plateau rises from abyssal depths to an average depth of approxi- depth and the best possible geometric stability of the trawl dur- mately 300 m, with shallower parts closer to the islands. The shelf ing sampling. A different trawl with a codend mesh of 11 mm was is defined as the area that is shallower than 1,000 m deep (Clarke employed during the 2013 survey. Our standard trawl was lost at the & Johnston, 2003). Montevideo, Uruguay warehouse prior to departure, so we made The current fisheries management protocol for the Antarctic a new trawl with the material we had available. A depth sensor region considers large-scale distribution and abundance infor- (Marport™, Reykjavik, Iceland) attached to the headline transferred mation. Overall, 87% of the stock is found over deep oceanic data to the wheelhouse to monitor trawl operations. At each station water (Atkinson et al., 2004). Smaller scale shelf and/or shelf the trawl was lowered vertically from surface to ~200 m depth (or break krill hotspots exist, and the current fishery mainly operates ~20 m above bottom if the water was < 200 m) and then hauled in in these areas. These hotspots represent 13% of the total stock, at 3.7 km hr–2 (~2.0 knots) including vessel and wire speed. and they are significant because they support key ecosystem func- When landed on the trawl deck, the codend was opened and tions, provide resilience for the stock, and are important areas the catch was removed. The towing rig was then hung from a for krill-dependent predators (Santora et al., 2011). Hotspots may crane and flushed on deck to wash out any biological remains offer favourable food availability for krill as well as shelter from stuck in the net.
Recommended publications
  • Bridging the Krill Divide: Understanding Cross-Sector Objectives for Krill Fishing and Conservation
    Bridging the Krill Divide: Understanding Cross-Sector Objectives for Krill Fishing and Conservation Report of an ICED-BAS-WWF workshop on UNDERSTANDING THE OBJECTIVES FOR KRILL FISHING AND CONSERVATION IN THE SCOTIA SEA AND ANTARCTIC PENINSULA REGION held at WWF’s Living Planet Centre, Woking, UK on 9th & 10th June 2014 Report compiled and edited by: Simeon Hill, Rachel Cavanagh, Cheryl Knowland, Susie Grant and Rod Downie Integrating Climate and Ecosystem Dynamics in the Southern Ocean Bridging the Krill Divide: Understanding Cross-Sector Objectives for Krill Fishing and Conservation SUMMARY In June 2014, the ICED programme, the British need to increase catch limits. Participants also agreed Antarctic Survey and WWF co-hosted a two day that the objectives of management must include a workshop entitled “Understanding the objectives for healthy krill stock and a healthy ecosystem. However, krill fishing and conservation in the Scotia Sea and they were not able to define ecosystem states that Antarctic Peninsula region” which involved participants are desirable or healthy. This reflects the gaps in the from the science, conservation, and fishing industry currently available information and the indirect nature sectors. The workshop used structured dialogue, led of the links between the krill-based ecosystem and by an independent facilitator, to explore each sector’s human well being. The workshop produced a range of objectives and information requirements for the krill- recommendations including the need to articulate a based ecosystem and to identify constructive ways for clear research and development strategy to support the three sectors to work together. The issue of krill progress in the management of the krill fishery, and fishing has previously provoked passionate debate but to improve communication between the Commission participants in this workshop showed broad cross- for the Conservation of Antarctic Marine Living sector accord.
    [Show full text]
  • Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
    little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc.
    [Show full text]
  • Improving Monitoring and Control of the Krill Fishery
    CCAMLR-XXV/BG xx October 2006 Original: English Agenda Item 4, 7 & 10 IMPROVING MONITORING AND CONTROL OF THE KRILL FISHERY THE ANTARCTIC AND SOUTHERN OCEAN COALITION (ASOC) _______________ This paper is presented for consideration by CCAMLR and may contain unpublished data, analyses, and/or conclusions subject to change. Data contained in this paper should not be cited or used for purposes other than the work of the CCAMLR Commission, Scientific Committee, or their subsidiary bodies without the permission of the originators/owners of the data. IMPROVING MONITORING AND CONTROL OF THE KRILL FISHERY I. Introduction – CCAMLR and krill Ecosystem management of Antarctic krill (Euphausia superba) is a central task for CCAMLR. The Scientific Committee, through its Working Group on Ecosystem Monitoring and Management (WG- EMM), is developing management procedures on krill aimed at ensuring that ecological relationships between harvested, dependent and related populations are maintained, according to Article II 3 (b) of the Convention. In addition, CCAMLR’s Ecosystem Monitoring Program (CEMP) provides information on the status of the different components of the ecosystem to be incorporated into these management procedures. Regrettably, the quality and magnitude of CCAMLR’s scientific work on krill is rarely matched by action at the Commission level to provide the necessary tools to allow adequate monitoring and control of the fishery. A review of the reports of the Scientific Committee and the Commission from the past thirteen years has been recently conducted in order to assess the profile of krill-related discussions in their respective agendas. Discussions of krill and toothfish (Dissostichus spp.), currently the highest profile species under CCAMLR management, were compared.
    [Show full text]
  • Aker Biomarine Antarctic Krill Fishery
    Food Certification International Ltd Findhorn House Dochfour Business Centre Dochgarroch Inverness, IV3 8GY United Kingdom T: +44(0)1463 223 039 F: +44(0)1463 246 380 www.foodcertint.com MSC SUSTAINABLE FISHERIES CERTIFICATION Aker Biomarine Antarctic Krill Fishery Public Certification Report January 2015 Prepared For: Aker BioMarine Antarctic Prepared By: Food Certification International Ltd Food Certification International Public Certification Report Aker Biomarine Antarctic Krill Fishery Public Certification Report November 2014 Authors: Geir Hønneland, Lucia Revenga and Andrew I. L. Payne Certification Body: Client: Food Certification International Ltd Aker BioMarine Antarctic Address: Address: Findhorn House Aker BioMarine Dochfour Business Centre Oslo Dochgarroch Norway Inverness IV3 8GY Scotland, UK Name: Fisheries Department Name: Sigve Nordrum Tel: +44(0) 1463 223 039 Tel: +47 916 30 188 Email: [email protected] Email: [email protected] Web: www.foodcertint.com i version 2.0 (01/06/13) Food Certification International Public Certification Report Aker Biomarine Antarctic Krill Fishery Contents Glossary ................................................................................................................................................ iv 1. Executive Summary ...................................................................................................................... 5 2. Authorship and Peer Reviewers .................................................................................................
    [Show full text]
  • ANNOUNCEMENTS Breaking News – Postponement of ICWL 2020
    VOLUME THIRTY THREE MARCH 2020 NUMBER ONE ANNOUNCEMENTS Breaking News – Postponement of ICWL 2020 12th International Conference and Workshop on Lobster Biology and Management (ICWL) 18-23 October 2020 in Fremantle, Western Australia The Organising Committee of the 12th ICWL workshop met on the 31 March 2020 and decided to postpone the workshop to next year due to the Covid-19 outbreak around the world. Please check the website (https://icwl2020.com.au/) for updates as we determine the timing of the next conference. The World Fisheries Congress which was planned for 11-15 October 2020 in Adelaide, South Australia (wfc2020.com.au) has also been postponed to 2021. The Department of Primary Industries and Regional Development (DPIRD) and the Western Rock Lobster (WRL) council were looking forward to hosting scientists, managers and industry participants in Western Australia in 2020. However we are committed to having the conference in September / October 2021. Don’t hesitate to contact us or the conference organisers, Arinex, if you have any questions. Please stay safe and we look forward to seeing you in 2021. Co-hosts of the workshop Nick Caputi Nic Sofoulis DPIRD ([email protected]) WRL ([email protected]) The Lobster Newsletter Volume 33, Number 1: March 2020 1 VOLUME THIRTY THREE MARCH 2020 NUMBER ONE The Lobster Newsletter Volume 33, Number 1: March 2020 2 VOLUME THIRTY THREE MARCH 2020 NUMBER ONE The Natural History of the Crustacea 9: Fisheries and Aquaculture Edited by Gustavo Lovrich and Martin Thiel This is the ninth volume of the ten-volume series on The Natural History of the Crustacea published by Oxford University Press.
    [Show full text]
  • Management of the Antarctic Krill: Ensuring the Conservation of the Antarctic Marine Ecosystem
    SC- CCAMLR-XXIII/BG… October 2004 Original: English CC Agenda Item 4 (i) MANAGEMENT OF THE ANTARCTIC KRILL: ENSURING THE CONSERVATION OF THE ANTARCTIC MARINE ECOSYSTEM PRESENTED BY THE ANTARCTIC AND SOUTHERN OCEAN COALITION (ASOC) The Antarctic and Southern Ocean Coalition _______________ This paper is presented for consideration by CCAMLR and may contain unpublished data, analyses, and/or conclusions subject to change. Data contained in this paper should not be cited or used for purposes other than the work of the CCAMLR Commission, Scientific Committee, or their subsidiary bodies without the permission of the originators/owners of the data. 1. Introduction Antarctic krill (Euphausia superba Dana) is central to the Antarctic marine food web, as most organisms are either direct predators of krill or are just one trophic level removed from krill. Traditional, single-species fisheries management principles are not applicable to the Antarctic krill fishery due to the key role of this species in the Southern Ocean food web. A multi-species management approach is necessary to take into account potential impacts on krill dependent predators and the Antarctic marine environment as a whole, in case of an expansion of the krill fishery. The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) has developed an “ecosystem approach” which represents an important step forward with regards to fisheries management, both scientifically and politically. Although krill catches in the Southern Ocean are currently well below CCAMLR catch limits, there is potential for a rapid expansion of the fishery in future years, as krill- processing technology develops and demand for krill products increases.
    [Show full text]
  • Long-Term Observations from Antarctica Demonstrate That
    www.nature.com/scientificreports OPEN Long-term observations from Antarctica demonstrate that mismatched scales of fsheries management and predator-prey interaction lead to erroneous conclusions about precaution George M. Watters *, Jeferson T. Hinke & Christian S. Reiss Low catch limits for forage species are often considered to be precautionary measures that can help conserve marine predators. Difculties measuring the impacts of fsheries removals on dependent predators maintain this perspective, but consideration of the spatio-temporal scales over which forage species, their predators, and fsheries interact can aid assessment of whether low catch limits are as precautionary as presumed. Antarctic krill are targeted by the largest fshery in the Southern Ocean and are key forage for numerous predators. Current krill removals are considered precautionary and have not been previously observed to afect krill-dependent predators, like penguins. Using a hierarchical model and 30+ years of monitoring data, we show that expected penguin performance was reduced when local harvest rates of krill were ≥0.1, and this efect was similar in magnitude to that of poor environmental conditions. With continued climate warming and high local harvest rates, future observations of penguin performance are predicted to be below the long-term mean with a probability of 0.77. Catch limits that are considered precautionary for forage species simply because the limit is a small proportion of the species’ standing biomass may not be precautionary for their predators. To conserve large fshes, seabirds, and marine mammals, many stakeholders advocate precautionary management of fsheries that target forage species (e.g., krill, anchovies, and sardines). One strategy to conserve predators is to reserve some proportion of their prey1, perhaps by establishing a low catch limit for the fsheries that target the forage populations or stocks2.
    [Show full text]
  • Antarctic Krill Euphausia Superba
    Antarctic krill Euphausia superba © Scandinavian Fishing Yearbook/www.scandposters.com Southern Ocean, Antarctic Midwater trawl Fisheries Standard Version 3.1 January 8, 2017 Seafood Watch Consulting Researcher Disclaimer: Seafood Watch strives to ensure that all our Seafood Reports and recommendations contained therein are accurate and reflect the most up-to-date evidence available at the time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or their recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. About Seafood Watch® Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request.
    [Show full text]
  • Chilean Antarctic Krill Fishery (2011-2016)
    Latin American Journal of Aquatic Research, 48(2):Chilean 179-196 Antarctic, 2020 krill fishery 2011-2016 179 DOI: 10.3856/vol48-issue2-fulltext-2408 Review Chilean Antarctic krill fishery (2011-2016) 1 1 1* Patricio M. Arana , Renzo Rolleri & Álvaro De Caso 1Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile *Actual address: Especialistas Pesqueros, Santiago, Chile Corresponding author: Patricio M. Arana ([email protected]) ABSTRACT: Antarctic krill (Euphausia superba) is a key resource in the Antarctic region, as it is the primary food source for fish, whales, seals, flying birds, penguins and cephalopods. The high concentrations of the species and its possible uses -food for human and animal consumption and in the production of industrial, pharmaceutical and dietetic products- generates interest in the fishing industry. Its relevance motivated the implementation of administrative measures and international regulations for this fishery, which are summarized in this review. Chile is the only South American fishing country that has shown interest in participating in Antarctic krill fishery. Thus, between 1983 and 1994, the Fisheries Development Institute and some companies carried out fishing activities mainly aimed at prospecting and researching this species. However, starting in 2011, the factory trawler FV Betanzos began sustained commercial krill fishing aimed at krill meal production. This document analyzes the information collected by said vessel between 2011 and 2016, including areas
    [Show full text]
  • A Licence to Krill
    krilloilfeature_feature.qxp 8/12/13 4:47 PM Page 1 SPECIALITY OILS ............................. s krill oil the new fish oil? Krill oil is growing fish oil. However, “manufacturers say the body Krill are at the heart of the more and more popular in the public eye can absorb the omega-3 fats in krill oil more read- ocean’s food chain, with a total and in the media, as rumours abound that it ily than those in fish oil. That’s because a large has as many – if not more – positive health portion of the DHA and EPA in krill oil is bound to biomass of between 400M and benefits to the human body than fish oil. phospholipids. The physical properties of phos- IBut what are krill? And what makes krill oil dif- pholipids allow them to dissolve in water, allowing 600M tonnes. Krill oil supplements are gaining in ferent, or superior, to fish oil? them to be easily absorbed. The omega-3 fatty Krill are small – up to six centimetres – shrimp- acids in fish oil, on the other hand, are attached to popularity but there are concerns like crustaceans at the base of the ocean’s food triglycerides, which don’t readily dissolve in water. over the impact krill fishery may chain. They are the most prolific species on the The fact that krill oil contains readily absorbed planet with a total estimated biomass of between phospholipids suggests that a smaller dose of have on the ocean’s ecosystem. 400M and 600M tonnes, and include 85 species. A omega-3s from krill oil may be equally effective as Charlotte Niemiec writes large number of ocean creatures rely on them as a a higher concentration found in fish oil.” source of food, including whales, seals, penguins, There is, as yet, very limited research on albatross, and many other birds.
    [Show full text]
  • Krill Meal and Krill Oil How Price and Tonnage Compeɵɵve Are They with Other fishmeals and Oils?
    Page 12 Krill Meal and Krill Oil How price and tonnage compeƟƟve are they with other fishmeals and oils? By Dimitri Sclabos Katevas, General Manager Tharos Ltd., Chile. Krill are swarming pelagic euphausiids, similar in appearance to shrimp, and are an im- portant member of the food chain and polar waters. They are relatively low in the trophic food web and form an essential part of the diet of diverse species such as fish, seabirds and whales. There are currently six krill species that are fished (Nicol and Endo 1997) particularly Antarctic krill Euphausia suberba. The Antarctic krill fishery is the largest extending to annual 10-year avg. of 145,000 tons. This catch represents only 1/50th of the total allowable catch where the standing stock is estimated between 55 and 160 million tons (Nicol and Foster, 2003). The development of the market for krill meal and oil as an aquaculture ingredient is lim- ited by technical difficulties, associated with catching and processing, and issues pertain- ing to its suitability of inclusion in the human food chain. Astaxanthin (Storebakken Page 13 1988), proteins and lipids close to 450 tons per/yr., that are present in high ... krill meal is not triglycerides (TG) and phos- concentrations in krill, de- called to become the pholipids (PL) enriched oils. grade rapidly once captured main relevant protein If current world production meaning that krill must be source, rather one that plans are fully accom- immediately processed once allow vegetable plished, it will increase dried on board. The extreme en- proteins to take a meal tonnage twofold and vironment characteristics of leading share in the krill oils three times in the a majority of oceans where feed.
    [Show full text]
  • Report of the Thirty-Sixth Meeting of the Scientific Committee
    SC-CAMLR-XXXVI SCIENTIFIC COMMITTEE FOR THE CONSERVATION OF ANTARCTIC MARINE LIVING RESOURCES REPORT OF THE THIRTY-SIXTH MEETING OF THE SCIENTIFIC COMMITTEE HOBART, AUSTRALIA 16–20 OCTOBER 2017 CCAMLR PO Box 213 North Hobart 7002 Tasmania Australia _______________________ Telephone: 61 3 6210 1111 Facsimile: 61 3 6224 8766 Email: [email protected] Chair of the Scientific Committee Website: www.ccamlr.org November 2017 ________________________________________________________________________________________ This document is produced in the official languages of the Commission: English, French, Russian and Spanish. Copies are available from the CCAMLR Secretariat at the above address. Abstract This document presents the adopted report of the Thirty-sixth Meeting of the Scientific Committee for the Conservation of Antarctic Marine Living Resources held in Hobart, Australia, from 16 to 20 October 2017. Reports of meetings and intersessional activities of subsidiary bodies of the Scientific Committee, including the Working Groups on Statistics, Assessments and Modelling; Ecosystem Monitoring and Management; Fish Stock Assessment; and the Subgroup on Acoustic Survey and Analysis Methods, are appended. 1031-2889 Contents Page Opening of the meeting ...................................................................... 1 Adoption of the agenda .................................................................... 2 Chair’s report ............................................................................... 2 Scientific Committee’s work in the
    [Show full text]