The Future Is Bright for CCD Sensors TELEDYNE IMAGING

Total Page:16

File Type:pdf, Size:1020Kb

The Future Is Bright for CCD Sensors TELEDYNE IMAGING The Future is Bright for CCD Sensors TELEDYNE IMAGING CCDs will Continue to Provide a Crucial Imaging Capability for Science omplementary metal-oxide- CMOS technology accounts for the semiconductor (CMOS) image majority of the visible wavelengths market, sensors now dominate the by revenue as highlighted by Yole Dévelop- Cimaging detector market, but pement Status of the CMOS Image Sensor there are industrial and scientific imaging (CIS) Industry 2018 report. applications where charge-coupled device However, while the economies of scale (CCD) imager sensors is still the preferred and sheer momentum behind CMOS sensor choice, from both technical and commer- development are huge — predominantly in cial perspectives. consumer applications — it is far too early According to market research company, to write off CCD sensors. Research and Markets, the global image As technologies and markets evolve, sensors market is expected to reach $23.2 what is technically feasible and what is billion by 2023 (as of April 2018). commercially viable also evolve, and many Continued market growth is mainly imaging applications in spectroscopy, driven by rising demand for dual-camera microscopy, medium to large ground mobile phones, the development of telescopes and space science will continue low-power and compact image sensors, to be better served by CCDs. and the increased use of image sensing devices in biometric applications. Teledyne e2v CCD Bruyères detector in handling jig for the ESA PLATO mission. 2 teledyneimaging.com THE FUTURE IS BRIGHT FOR CCD SENSORS Scientific applications include optical electron microscopy. 3 TELEDYNE IMAGING Teledyne e2v CIS120 Invented in 1969, Charge-coupled devices CCD AND CMOS BASICS CMOS general purpose where originally designed as a memory CCD and CMOS are both silicon based image sensor for space storage device in the United States at AT&T detector arrays: applications. Bell Labs by Willard Boyle and George E. » Large-format, back thinning is possible Smith, with their potential as imaging de- for both tectors realized shortly afterwards. Notably » Detection efficiency is the same CCD devices became the work-horse detector in ESA and NASA missions for the CMOS have some advantages over CCDs: last thirty years. » Higher readout speed and greater CCD detectors are made from silicon, flexibility which defines their spectral sensitivity. Most » Less prone to some radiation effects often used in UV, Visible or NIR applications, » Simpler interfacing they can also be used for soft-X-ray detection. However, many aspects of CCDs remain Notably Teledyne e2v, in the UK, continues superior to CMOS: to maintain a vertically integrated dedicated » Dynamic Range CCD fab, make technology developments » Longer wavelength (NIR) performance to the design and production of CCDs, » Time Delay and Integration (the Gaia and is committed to the provision of high space telescope would not be practical performance and customized CCD detec- with CMOS) tors and packages on a longterm basis. » Electron Multiplication » Deep understanding of performance and It is worth noting that the ability to reliability through decades of study customize the CCD design is one of the key enabling factors of high-performance Based on the above, it is clear that CMOS imaging. Comparing the merits of both and CCDs have similar performance for CMOS and CCD technology highlights that many parameters but there will always one will not satisfy all requirements over remain critical aspects for which CCDs are the other. the only solution. 4 teledyneimaging.com THE FUTURE IS BRIGHT FOR CCD SENSORS “Teledyne is at the forefront of CMOS sensor design for scientific and space applications, and is the industry standard for CCD imaging, that is how we know when to use CCD and when to use CMOS.” Both CCD and CMOS imagers convert For Time Delay Integration (TDI) applica- light energy into an electric voltage and tions CMOS has developed to a level that process this into an electronic signal. will likely prevent future CCD TDI develop- In CCD sensors, every pixel’s charge is ments. The summing operation in Teledyne transferred through a very limited number CMOS TDI sensors are now noiseless and of output nodes (often just one) to be can also have CCD type operation embed- converted to voltage, buffered, and sent ded in the CMOS chip giving cost effective off-chip as an analog signal. All of the pixel charge domain operation. can be devoted to light capture, and the Electron multiplication CCDs (EMCCDs) output’s uniformity (a key factor in image multiply the signal charge packet, resulting quality) is high. in a net signal-to-noise ratio (SNR) gain. In CMOS sensors, each pixel has its own EMCCDs can detect signals in applications charge-to-voltage conversion, and the where the signal is so faint that it would sensor often also includes amplifiers, noise- not normally be above the imager noise correction, and digitization circuits, so that floor. This means that EMCCDs are widely the chip outputs digital bits. With each pixel used for the very lowest signal scientific doing its own conversion, uniformity is applications especially where counting of lower, but it is also massively parallel, individual photons is required. allowing high total bandwidth for high speed. INDUSTRIAL IMAGING ADVANTAGES In certain industrial and scientific imaging CCD201 EMCCD that applications CCD imagers still offer will be used in the significant advantages over CMOS. Coronagraph Instrument for NASA’s One such application is near-infrared WFIRST mission. imaging (700–1,000 nm). CCDs that are specifically designed to be highly sensitive in the near-infrared are much more sensitive than CMOS imagers. At these wavelengths, imagers need to have a thicker photon absorption region, because infrared photons are absorbed deeper than visible photons in silicon. CCDs can be fabricated with thicker epitaxial layers, while maintaining the ability to resolve fine spatial features. In some near-infrared CCDs, this layer can be more than 100 microns thick, compared with the 5–10 micron epitaxial layer of most CMOS imagers. 5 TELEDYNE IMAGING Contains modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO Based on measurements SPACE IMAGING ADVANTAGES CCD imagers offer better QE at the gathered by the Space imaging has several unique challenges, longest wavelengths, higher dynamic range, Copernicus Sentinel-5P and typically requires highly optimized and better uniformity than CMOS imagers mission between January image sensors. The high cost of launching — all of which are critical for space science and April 2019, the image shows high levels of a camera into space means both perfor- and hyperspectral applications. nitrogen dioxide in the mance and heritage are critical. This is why Space-based astronomy usually requires Po Valley in northern CCDs have continued to dominate the very large, even wafer-scale, devices. Italy. The Sentinel-5P’s space market after they have stopped being Currently, only CCDs have the required TROPOMI instrument used for most terrestrial applications. image quality and TRL maturity for such uses Teledyne e2v’s For most space applications very high missions. Although it should be noted that CCD275 detector. electro-optical performance is critical, Teledyne is producing wafer scale CMOS especially when it comes to quantum sensors for a ground based X-ray efficiency (QE), noise, dynamic range (DR), applications. dark signal (or leakage current), uniformity and performance repeatability. Space applications also require radiation resistance, low power dissipation (CMOS typically performs better in this respect), reliability and longterm stability. It can be said for all these latter parameters CMOS meets or exceeds CCD technology. 6 teledyneimaging.com THE FUTURE IS BRIGHT FOR CCD SENSORS Hubble Space Telescope view of Jupiter, taken on June 27, 2019. The image is a composite of separate exposures acquired by the WFC3 instrument. 7 Credits: NASA, ESA, A. Simon (Goddard Space Flight Center) and M.H. Wong (University of California, Berkeley) of (University Wong NASA, ESA, A. Simon (Goddard Space Flight Center) and M.H. Credits: TELEDYNE IMAGING Silicon wafers entering QUALITY AND PRODUCT intimately optimized over many years. The the furnace as part of a ASSURANCE CCD foundry is used only for CCD production, metalization process. The Teledyne e2v fab facility in the UK offering process stability and repeatability. highlights some unique benefits over the In contrast, CMOS detectors are typically way CMOS foundries operate. The UK facility designed at ‘fab-less’ design houses and includes the CCD semiconductor fabrica- manufactured in commercial semicon- tion line. Silicon wafers enter at one end ductor foundries producing many different and a finished packaged CCD with filters CMOS devices. The main reason being that and mechanical features emerges at the a modern CMOS fabrication plant consti- other. This allows Teledyne e2v to have full tutes a very large investment coupled to knowledge and control over the manufac- a high running cost and hence produce turing processes of the detector, information orders of magnitude higher volumes. that can be shared with strategic partners and This means process and design stability constitutes an essential part of the quality is continuously evolving for CMOS and assurance (QA) and product assurance (PA) presents increased challenges for QA and aspects of using these components in space. PA as well as gaining insight
Recommended publications
  • Invention of Digital Photograph
    Invention of Digital photograph Digital photography uses cameras containing arrays of electronic photodetectors to capture images focused by a lens, as opposed to an exposure on photographic film. The captured images are digitized and stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. Until the advent of such technology, photographs were made by exposing light sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing. The first consumer digital cameras were marketed in the late 1990s.[1] Professionals gravitated to digital slowly, and were won over when their professional work required using digital files to fulfill the demands of employers and/or clients, for faster turn- around than conventional methods would allow.[2] Starting around 2000, digital cameras were incorporated in cell phones and in the following years, cell phone cameras became widespread, particularly due to their connectivity to social media websites and email. Since 2010, the digital point-and-shoot and DSLR formats have also seen competition from the mirrorless digital camera format, which typically provides better image quality than the point-and-shoot or cell phone formats but comes in a smaller size and shape than the typical DSLR. Many mirrorless cameras accept interchangeable lenses and have advanced features through an electronic viewfinder, which replaces the through-the-lens finder image of the SLR format. While digital photography has only relatively recently become mainstream, the late 20th century saw many small developments leading to its creation.
    [Show full text]
  • A High Full Well Capacity CMOS Image Sensor for Space Applications
    sensors Article A High Full Well Capacity CMOS Image Sensor for Space Applications Woo-Tae Kim 1 , Cheonwi Park 1, Hyunkeun Lee 1 , Ilseop Lee 2 and Byung-Geun Lee 1,* 1 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; [email protected] (W.-T.K.); [email protected] (C.P.); [email protected] (H.L.) 2 Korea Aerospace Research Institute, Daejeon 34133, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-715-3231 Received: 24 January 2019; Accepted: 26 March 2019; Published: 28 March 2019 Abstract: This paper presents a high full well capacity (FWC) CMOS image sensor (CIS) for space applications. The proposed pixel design effectively increases the FWC without inducing overflow of photo-generated charge in a limited pixel area. An MOS capacitor is integrated in a pixel and accumulated charges in a photodiode are transferred to the in-pixel capacitor multiple times depending on the maximum incident light intensity. In addition, the modulation transfer function (MTF) and radiation damage effect on the pixel, which are especially important for space applications, are studied and analyzed through fabrication of the CIS. The CIS was fabricated using a 0.11 µm 1-poly 4-metal CIS process to demonstrate the proposed techniques and pixel design. A measured FWC of 103,448 electrons and MTF improvement of 300% are achieved with 6.5 µm pixel pitch. Keywords: CMOS image sensors; wide dynamic range; multiple charge transfer; space applications; radiation damage effects 1. Introduction Imaging devices are essential components in the space environment for a range of applications including earth observation, star trackers on satellites, lander and rover cameras [1].
    [Show full text]
  • Lecture Notes 3 Charge-Coupled Devices (Ccds) – Part II • CCD
    Lecture Notes 3 Charge-Coupled Devices (CCDs) { Part II • CCD array architectures and pixel layout ◦ One-dimensional CCD array ◦ Two-dimensional CCD array • Smear • Readout circuits • Anti-blooming, electronic shuttering, charge reset operation • Window of interest, pixel binning • Pinned photodiode EE 392B: CCDs{Part II 3-1 One-Dimensional (Linear) CCD Operation A. Theuwissen, \Solid State Imaging with Charge-Coupled Devices," Kluwer (1995) EE 392B: CCDs{Part II 3-2 • A line of photodiodes or photogates is used for photodetection • After integration, charge from the entire row is transferred in parallel to the horizontal CCD (HCCD) through transfer gates • New integration period begins while charge packets are transferred through the HCCD (serial transfer) to the output readout circuit (to be discussed later) • The scene can be mechanically scanned at a speed commensurate with the pixel size in the vertical direction to obtain 2D imaging • Applications: scanners, scan-and-print photocopiers, fax machines, barcode readers, silver halide film digitization, DNA sequencing • Advantages: low cost (small chip size) EE 392B: CCDs{Part II 3-3 Two-Dimensional (Area) CCD • Frame transfer CCD (FT-CCD) ◦ Full frame CCD • Interline transfer CCD (IL-CCD) • Frame-interline transfer CCD (FIT-CCD) • Time-delay-and-integration CCD (TDI-CCD) EE 392B: CCDs{Part II 3-4 Frame Transfer CCD Light−sensitive CCD array Frame−store CCD array Amplifier Output Horizontal CCD Integration Vertical shift Operation Vertical shift Horizotal shift Time EE 392B: CCDs{Part II 3-5 Pixel Layout { FT-CCD D. N. Nichols, W. Chang, B. C. Burkey, E. G. Stevens, E. A. Trabka, D.
    [Show full text]
  • CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 2, FEBRUARY 1997 187 CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems Sunetra K. Mendis, Member, IEEE, Sabrina E. Kemeny, Member, IEEE, Russell C. Gee, Member, IEEE, Bedabrata Pain, Member, IEEE, Craig O. Staller, Quiesup Kim, Member, IEEE, and Eric R. Fossum, Senior Member, IEEE Abstract—A family of CMOS-based active pixel image sensors Charge-coupled devices (CCD’s) are currently the dominant (APS’s) that are inherently compatible with the integration of on- technology for image sensors. CCD arrays with high fill-factor, chip signal processing circuitry is reported. The image sensors small pixel sizes, and large formats have been achieved and were fabricated using commercially available 2-"m CMOS pro- cesses and both p-well and n-well implementations were explored. some signal processing operations have been demonstrated The arrays feature random access, 5-V operation and transistor- with charge-domain circuits [1]–[3]. However, CCD’s cannot transistor logic (TTL) compatible control signals. Methods of be easily integrated with CMOS circuits due to additional on-chip suppression of fixed pattern noise to less than 0.1% fabrication complexity and increased cost. Also, CCD’s are saturation are demonstrated. The baseline design achieved a pixel high capacitance devices so that on-chip CMOS drive electron- size of 40 "m 40 "m with 26% fill-factor. Array sizes of 28 28 elements and 128 128 elements have been fabricated and ics would dissipate prohibitively high power levels for large characterized. Typical output conversion gain is 3.7 "V/e for the area arrays (2–3 W).
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • (PPS) • CMOS Photodiode Active Pixel Sensor (APS) • Photoga
    Lecture Notes 4 CMOS Image Sensors CMOS Passive Pixel Sensor (PPS) • Basic operation ◦ Charge to output voltage transfer function ◦ Readout speed ◦ CMOS Photodiode Active Pixel Sensor (APS) • Basic operation ◦ Charge to output voltage transfer function ◦ Readout speed ◦ Photogate and Pinned Diode APS • Multiplexed APS • EE 392B: CMOS Image Sensors 4-1 Introduction CMOS image sensors are fabricated in \standard" CMOS technologies • Their main advantage over CCDs is the ability to integrate analog and • digital circuits with the sensor Less chips used in imaging system ◦ Lower power dissipation ◦ Faster readout speeds ◦ More programmability ◦ New functionalities (high dynamic range, biometric, etc) ◦ But they generally have lower perofrmance than CCDs: • Standard CMOS technologies are not optimized for imaging ◦ More circuits result in more noise and fixed pattern noise ◦ In this lecture notes we discuss various CMOS imager architectures • In the following lecture notes we discuss fabrication and layout issues • EE 392B: CMOS Image Sensors 4-2 CMOS Image Sensor Architecture Word Pixel: Row Decoder Photodetector & Readout treansistors Bit Column Amplifiers/Caps Output Column Mux Readout performed by transferring one row at a time to the column • storage capacitors, then reading out the row, one (or more) pixel at a time, using the column decoder and multiplexer In many CMOS image sensor architectures, row integration times are • staggerred by the row/column readout time (scrolling shutter) EE 392B: CMOS Image Sensors 4-3 CMOS Image Sensor
    [Show full text]
  • Micro* Color and Macro* Color RGB Tunable Filters for High-Resolution
    PRODUCT NOTE RGB Tunable Filters Micro*Color and Macro*Color RGB Tunable Filters for High- Resolution Color Imaging Figure 1. High-resolution color image of pine cone stem at 10x magnification, taken with a Micro*Color™ slider and monochrome camera on a Zeiss Axioplan™ 2 microscope. Introduction Key Features Micro*Color™ RGB Tunable Filters turn your mono- • Solid-state design for rapid, vibrationless chrome camera into a high-resolution color imaging tuning system. The solid-state liquid crystal design allows • Better spatial resolution than conventional rapid, vibrationless switching between the red, “painted-pixel” CCD or CMOS cameras green, and blue color states, simulating the color- sensitivity curves of the human eye. The closer you • Variety of models for microscope or stand- look, the more you’ll notice that not only are images alone use taken with Micro*Color filter exceptionally accurate • Plug-and-play USB interface with simple in color rendition, but they also contain detail not serial command set reproducible using conventional color cameras. Figure 2. Left to right, Micro*Color sliders for Olympus BX/IX and Zeiss Axioskop™/ Axioplan, and Macro*Color 35 mm optics. True Color When You Need It Why is the Micro*Color Tunable RGB Filter with a The Micro*Color 0.65X coupler is designed for use on micro- Monochrome Camera Better Than a Conventional scopes with an available C-mount camera port. No other Color Camera? adapters are necessary. Micro*Color sliders fit into the analyzer Most digital color cameras utilize a single “painted-pixel” or similar slots on many common research microscope models.
    [Show full text]
  • Digital Light Field Photography
    DIGITAL LIGHT FIELD PHOTOGRAPHY a dissertation submitted to the department of computer science and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Ren Ng July © Copyright by Ren Ng All Rights Reserved ii IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Patrick Hanrahan Principal Adviser IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Marc Levoy IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Mark Horowitz Approved for the University Committee on Graduate Studies. iii iv Acknowledgments I feel tremendously lucky to have had the opportunity to work with Pat Hanrahan, Marc Levoy and Mark Horowitz on the ideas in this dissertation, and I would like to thank them for their support. Pat instilled in me a love for simulating the flow of light, agreed to take me on as a graduate student, and encouraged me to immerse myself in something I had a passion for.Icouldnothaveaskedforafinermentor.MarcLevoyistheonewhooriginallydrewme to computer graphics, has worked side by side with me at the optical bench, and is vigorously carrying these ideas to new frontiers in light field microscopy. Mark Horowitz inspired me to assemble my camera by sharing his love for dismantling old things and building new ones. I have never met a professor more generous with his time and experience. I am grateful to Brian Wandell and Dwight Nishimura for serving on my orals commit- tee. Dwight has been an unfailing source of encouragement during my time at Stanford. I would like to acknowledge the fine work of the other individuals who have contributed to this camera research. Mathieu Brédif worked closely with me in developing the simulation system, and he implemented the original lens correction software.
    [Show full text]
  • To Photographing the Planets, Stars, Nebulae, & Galaxies
    Astrophotography Primer Your FREE Guide to photographing the planets, stars, nebulae, & galaxies. eeBook.inddBook.indd 1 33/30/11/30/11 33:01:01 PPMM Astrophotography Primer Akira Fujii Everyone loves to look at pictures of the universe beyond our planet — Astronomy Picture of the Day (apod.nasa.gov) is one of the most popular websites ever. And many people have probably wondered what it would take to capture photos like that with their own cameras. The good news is that astrophotography can be incredibly easy and inexpensive. Even point-and- shoot cameras and cell phones can capture breathtaking skyscapes, as long as you pick appropriate subjects. On the other hand, astrophotography can also be incredibly demanding. Close-ups of tiny, faint nebulae, and galaxies require expensive equipment and lots of time, patience, and skill. Between those extremes, there’s a huge amount that you can do with a digital SLR or a simple webcam. The key to astrophotography is to have realistic expectations, and to pick subjects that are appropriate to your equipment — and vice versa. To help you do that, we’ve collected four articles from the 2010 issue of SkyWatch, Sky & Telescope’s annual magazine. Every issue of SkyWatch includes a how-to guide to astrophotography and visual observing as well as a summary of the year’s best astronomical events. You can order the latest issue at SkyandTelescope.com/skywatch. In the last analysis, astrophotography is an art form. It requires the same skills as regular photography: visualization, planning, framing, experimentation, and a bit of luck.
    [Show full text]
  • Charge-Coupled Devices
    CHARGE-COUPLED DEVICES by Philip Felber A literature study as a project for ECE 575 Illinois Institute of Technology May 2, 2002 Abstract 3 Introduction 3 History 4 Invention of CCD – Smith & Boyle 1969 4 Buried channel CCD – Smith & Boyle 1974 5 Early Video Camera Developments 1970 & 1975 5 CCD’s Replace Photographic Plates in Telescopes 1983 5 Digital Cameras Invade the Consumer Market 1995 5 Background 6 MOS Capacitor 6 Single CCD Cell 7 Array of Cells to Form a Device 8 Charge Transfer Process 8 Scanning Formants 10 Device Architectures 11 Color 13 Current developments 14 Resolution 14 Sensitivity 15 Speed 15 Cost 16 Conclusion 17 Bibliograghy 18 2 ABSTRACT The charge-coupled device (CCD) is, by far, the most common mechanism for converting optical images to electrical signals. In fact, the term CCD is know by many people because of their use of video cameras and digital still cameras. The CCD has matured over the last thirty years to the point that we can get a reasonable quality picture in an inexpensive “toy” camera. At the other end of the cost curve, we see spectacular telescope pictures returned from the Hubble Space Telescope (HST)[11]. A number of different device architectures have been developed to optimize resolution, sensitivity and various other performance parameters[4]. This paper gives a brief description of how the more common charge-coupled devices work, and it reviews some current developments in CCD technology. INTRODUCTION The charge-coupled device in truly one of the great developments of our time. It is conceptually quite simple.
    [Show full text]
  • CCD and CMOS Sensor Technology Technical White Paper Table of Contents
    White paper CCD and CMOS sensor technology Technical white paper table of contents 1. Introduction to image sensors 3 2. CCD technology 4 3. CMOS technology 5 4. HDtV and megapixel sensors 6 5. Main differences 6 6. Conclusion 6 5. Helpful links and resources 7 1. Introduction to image sensors When an image is being captured by a network camera, light passes through the lens and falls on the image sensor. The image sensor consists of picture elements, also called pixels, that register the amount of light that falls on them. They convert the received amount of light into a corresponding number of electrons. The stronger the light, the more electrons are generated. The electrons are converted into voltage and then transformed into numbers by means of an A/D-converter. The signal constituted by the numbers is processed by electronic circuits inside the camera. Presently, there are two main technologies that can be used for the image sensor in a camera, i.e. CCD (Charge-coupled Device) and CMOS (Complementary Metal-oxide Semiconductor). Their design and dif- ferent strengths and weaknesses will be explained in the following sections. Figure 1 shows CCD and CMOS image sensors. Figure 1. Image sensors: CCD (left) and CMOS (right) Color filtering Image sensors register the amount of light from bright to dark with no color information. Since CMOS and CCD image sensors are ‘color blind’, a filter in front of the sensor allows the sensor to assign color tones to each pixel. Two common color registration methods are RGB (Red, Green, and Blue) and CMYG (Cyan, Magenta, Yellow, and Green).
    [Show full text]
  • Colorimetric Characterization of Color Image Sensors Based on Convolutional Neural Network Modeling
    Sensors and Materials, Vol. 31, No. 5 (2019) 1513–1522 1513 MYU Tokyo S & M 1875 Colorimetric Characterization of Color Image Sensors Based on Convolutional Neural Network Modeling Po-Tong Wang,1* Jui Jen Chou,1,2** and Chiu Wang Tseng1 1Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (R.O.C.) 2Department of Bio-Mechatronics Engineering, National Ilan University, No. 1, Section 1, Shennong Road, Yilan City, Yilan County 26047, Taiwan (R.O.C.) (Received March 13, 2018; accepted March 20, 2019) Keywords: convolutional neural network, color image sensor, colorimetric characterization The colorimetric characterization of a color image sensor was developed and modeled using a convolutional neural network (CNN), which is an innovative approach. Color image sensors can be incorporated into compact devices to detect the color of objects under a wide range of light sources and brightness. They should be colorimetrically characterized to be suitable for smart industrial colorimeters or light detection. Furthermore, color image sensors can be incorporated into machine vision systems for various industrial applications. However, the red, green, and blue (RGB) signals generated by a color image sensor are device- dependent, which means that different image sensors make different RGB spectrum responses under the same conditions. Moreover, the signals are not colorimetric; that is, output RGB signals are not directly coherent in terms of device-independent tristimulus values, such as CIE XYZ or CIELAB. In this study, the colorimetric mapping of RGB signals and CIELAB tristimulus values by CNN modeling was proposed. After digitalizing an RGB image sensor, characterizing RGB colors in the CIE color space, and CNN modeling for precise accuracy, the colorimetric characterization of color image sensors based on CNN modeling was proved to be superior to that based on 3 × N polynomial regression.
    [Show full text]