Sociobiology 65(4): 645-653 (October, 2018) Special Issue DOI: 10.13102/Sociobiology.V65i4.3464

Total Page:16

File Type:pdf, Size:1020Kb

Sociobiology 65(4): 645-653 (October, 2018) Special Issue DOI: 10.13102/Sociobiology.V65i4.3464 Sociobiology 65(4): 645-653 (October, 2018) Special Issue DOI: 10.13102/sociobiology.v65i4.3464 Sociobiology An international journal on social insects Research article - Bees Two Colors, One Species: The Case of Melissodes nigroaenea (Apidae: Eucerini), an Important Pollinator of Cotton Fields in Brazil C Grando1,2, ND Amon2,6, SJ Clough3, N Guo3, W Wei3, P Azevedo1,4, MM López-Uribe2, MI Zucchi5 1 - Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil 2 - Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, USA 3 - Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, USA 4 - Centro de Estudos em Insetos Sociais, Universidade Estadual Paulista “Julio de Mesquita Filho”, Rio Claro, São Paulo, Brazil 5 - Agência Paulista de Tecnologia dos Agronegócios, Pólo Regional Centro-Sul, Piracicaba, São Paulo, Brazil 6 - Department of Entomology, University of Wisconsin-Madison, Madison, USA Article History Abstract Accurate taxonomic delimitation in ecological research is absolutely critical as Edited by studies that seek to evaluate levels of biodiversity and quantify human effects on Eduardo Almeida, USP, Brazil Received 10 May 2018 the environment are rapidly undertaken. Coloration is a widely used morphological Initial acceptance 02 July 2018 character for species identification through dichotomous keys. However, taxonomic Final acceptance 26 August 2018 identification based upon coloration is often unreliable because this character can Publication date 11 October 2018 exhibit high degree of intraspecific variation. An uncertain interpretation of mesosoma color-morphs (yellow or black) occurred when we used this character, in association Keywords Melissodes Cytochrome oxidase I, Bayesian with the bristle bands in the TII, for the identification of eucerine bee phylogeny, bees, barcoding gap. nigroaenea (Smith), an important pollinator of cotton fields in South America. Thus, we used a DNA barcoding approach to investigate if different color morphs within Corresponding author this species reflected two distinct evolutionary lineages. Our Bayesian phylogenetic Maria I. Zucchi, reconstruction revealed that both yellow and black individuals clustered in a highly Agência Paulista de Tecnologia supported monophyletic group. Additionally, pairwise genetic distances between dos Agronegócios Pólo Regional Centro Sul M. nigroaenea color-morphotypes were lower than 3%. These results indicate that Rodovia SP 127, km 30 both mesosoma color-morphs correspond to intraspecific variability within the same CEP 13400-970, Piracicaba-SP, Brasil. evolutionary unit. Although the mesosoma coloration is not the unique character E-Mail: [email protected] considered for taxonomic differentiation among Melissodes species, our results indicate that this character is not reliable for Melissodes species differentiation. The incorporation of DNA barcoding approaches to taxonomic classification can help resolve some of the problems that originate while relying on purely morphological taxonomy. Introduction of biological diversity (Vodă et al., 2015). Evolutionary lineages which have a recent divergence time but cannot be Accurate species identification is crucial for differentiated morphologically are the result of a process biodiversity studies that aim to characterize patterns of species called cryptic speciation (Bickford et al., 2007). On the other richness and abundance, and to identify recent changes in hand, species may exhibit polymorphism, a phenomenon these patterns as a result of anthropogenic activities (Austen et whereby conspecific individuals display marked variation in al., 2016; Packer et al., 2018). A critical step for biodiversity morphological characters. If these polymorphic characters studies is the reliable identification of collected individuals are used for species identification, the same evolutionary to the species level. In some cases, independent evolutionary unit may be assigned to different species, leading to an units with very similar morphological characters might be overestimation of biodiversity (Sigovini et al., 2016). When classified as one species leading to an underestimation cryptic or polymorphic species are present in a community, Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology ISSN: 0361-6525 646 C Grando et al. – Color polymorphism in the eucerine bee Melissodes nigroaenea species misidentification may be frequent, especially if dichotomous key the important morphological characters for morphological taxonomic keys are solely used to differentiate species differentiation of South American Melissodes bees, species (Padial et al., 2010). besides had discussed the many taxonomic classifications Even though morphological characters are widely proposed by previous authors. According to the author, there used for species identification, some of the phenotypic traits are two sympatric Melissodes species in Brazil, Melissodes that are easiest to be recognized visually often fail to delimit nigroaenea (Smith) and Melissodes sexcincta (Lepeletier), species accurately (Arribas et al., 2012; Lecocq et al., 2015). whose females can be differentiated mainly by the fullness For example, several studies on insects, including flies (Grella of the bristle band on the second tergum (TII), but also by et al., 2015), butterflies (Garzón-Orduña et al., 2018), and the color of mesosoma hair, and the presence of maxillary bees (Carolan et al., 2012; Ferrari & Melo, 2014; Huang et al., subapical yellow spots. 2015) have shown that traits like color can be hard to interpret In a recent survey of bee pollinators in cotton as diagnostic characters for species identification. Color traits (Gossypium hirsutum) farmlands from three regions in may exhibit high rates of polymorphism due to environmental Brazil, we collected a large number of female bees that were influences or genetic differences at a single single or multiple identified as M. nigroaenea based in the dichotomous key loci (Miyanaga et al., 1999; Uy et al., 2009; White & Kemp, of Urban (1973). Our specimens showed two distinct color- 2016; Hines et al., 2017). Still, color is commonly used as a morphs of mesosoma (yellow and black) in all populations, trait in taxonomic keys for many organisms, including bees, and few individuals showed variation in the bristle band in birds, and dragonflies among many others (Michener, 2007; TII that was not expected for M. nigroaenea. However, the McKay et al., 2014; Rodrílguez et al., 2015). proper identification of the individuals with these unexpected The advent of molecular biology has led to the patterns of bristle bands was not supported by the use of the development of diagnostic techniques that complement mesosoma color character, what brought us some concern morphological species identification and may ameliorate some about dealing or not with more than one evolutionary unit in of the challenges with morphological taxonomic delimitation. our bee sampling. DNA barcoding is a common molecular technique for species Using the DNA barcoding approach and the phylogenetic determination and involves the amplification of a highly species concept, in which we consider a species as the variable region of the genome through PCR (polymerase smallest aggregation of sexual population or assexual lineages chain reaction) (Hajibabaei et al., 2007). In animals, the that presents a unique combination of character states (Wheeler mitochondrial gene cytochrome c oxidase subunit I (COI) is & Platnick, 2000), we tested alternative hypotheses about the marker of choice for DNA barcoding because it can be the interpretation of color variation in M. nigroaenea for easily amplified with universal primers across a large number species identification. Specifically, we investigate whether of taxa (Hebert et al., 2003), and is likely involved in the different color morphs we sampled correspond to one or more process of speciation (Hill, 2016). COI fragments are aligned evolutionary units by quantifying the genetic distance of these and genetic distances between individuals are calculated and individuals using the COI barcoding region. Our hypothesis used as diagnostic boundaries for species. Low genetic distance is that, if significant differences in COI sequences underpin among individuals indicates low divergence suggesting the variation in M. nigroaenea coloration, individuals identified presence of genetic diversity within one evolutionary lineage. as M. nigroaenea actually comprise two evolutionarily On the other hand, large genetic distances among individuals distinct lineages of bees. If instead we observe nominal may indicate the presence of independent evolutionary lineages; genetic variation between individuals with distinct color- usually identified through a barcoding gap (Hebert et al., morphotypes, our alternative hypothesis is to attribute this 2004; Čandek & Kuntner, 2015). variation to color polymorphism. Despite its known intraspecific variability, color has been a widely used character among bee taxonomists Material and Methods for species descriptions and dichotomous keys (Michener, Species description 2007; Colla et al., 2011; Ascher & Pickering, 2018). Some authors argue that because coloration has a well-characterized M. nigroaenea (Fig 1) is a eucerine bee (Apidae: genetic basis, integument or hair color can be safely used as a Eucerini) distributed along the east coast of Brazil, Uruguay morphological character
Recommended publications
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Synthesis of Phylogeny and Taxonomy Into a Comprehensive Tree of Life
    Synthesis of phylogeny and taxonomy into a comprehensive tree of life Cody E. Hinchliffa,1, Stephen A. Smitha,1,2, James F. Allmanb, J. Gordon Burleighc, Ruchi Chaudharyc, Lyndon M. Coghilld, Keith A. Crandalle, Jiabin Dengc, Bryan T. Drewf, Romina Gazisg, Karl Gudeh, David S. Hibbettg, Laura A. Katzi, H. Dail Laughinghouse IVi, Emily Jane McTavishj, Peter E. Midfordd, Christopher L. Owenc, Richard H. Reed, Jonathan A. Reesk, Douglas E. Soltisc,l, Tiffani Williamsm, and Karen A. Cranstonk,2 aEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; bInterrobang Corporation, Wake Forest, NC 27587; cDepartment of Biology, University of Florida, Gainesville, FL 32611; dField Museum of Natural History, Chicago, IL 60605; eComputational Biology Institute, George Washington University, Ashburn, VA 20147; fDepartment of Biology, University of Nebraska-Kearney, Kearney, NE 68849; gDepartment of Biology, Clark University, Worcester, MA 01610; hSchool of Journalism, Michigan State University, East Lansing, MI 48824; iBiological Science, Clark Science Center, Smith College, Northampton, MA 01063; jDepartment of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045; kNational Evolutionary Synthesis Center, Duke University, Durham, NC 27705; lFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and mComputer Science and Engineering, Texas A&M University, College Station, TX 77843 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved July 28, 2015 (received for review December 3, 2014) Reconstructing the phylogenetic relationships that unite all line- published phylogenies are available only as journal figures, rather ages (the tree of life) is a grand challenge. The paucity of homologous than in electronic formats that can be integrated into databases and character data across disparately related lineages currently renders synthesis methods (7–9).
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program Permalink https://escholarship.org/uc/item/8z91q49s Author Ward, Laura True Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor Erica Bree Rosenblum Professor Eileen A. Lacey Fall 2020 Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program © 2020 by Laura T Ward Abstract Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair This dissertation combines two disparate subjects: bees and belonging. The first two chapters explore pesticide exposure for wild bees and honey bees visiting crop and non-crop plants in northern California agriculture. The final chapter utilizes surveys from a mentorship program as a case study to analyze sense of belonging among undergraduates. The first chapter of this dissertation explores pesticide exposure for wild bees and honey bees visiting sunflower crops.
    [Show full text]
  • Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture
    Matteson and Langellotto: URBAN BUMBLE BEE ABUNDANCE Cities and the Environment 2009 Volume 2, Issue 1 Article 5 Bumble Bee Abundance in New York City Community Gardens: Implications for Urban Agriculture Kevin C. Matteson and Gail A. Langellotto Abstract A variety of crops are grown in New York City community gardens. Although the production of many crops benefits from pollination by bees, little is known about bee abundance in urban community gardens or which crops are specifically dependent on bee pollination. In 2005, we compiled a list of crop plants grown within 19 community gardens in New York City and classified these plants according to their dependence on bee pollination. In addition, using mark-recapture methods, we estimated the abundance of a potentially important pollinator within New York City urban gardens, the common eastern bumble bee (Bombus impatiens). This species is currently recognized as a valuable commercial pollinator of greenhouse crops. However, wild populations of B. impatiens are abundant throughout its range, including in New York City community gardens, where it is the most abundant native bee species present and where it has been observed visiting a variety of crop flowers. We conservatively counted 25 species of crop plants in 19 surveyed gardens. The literature suggests that 92% of these crops are dependent, to some degree, on bee pollination in order to set fruit or seed. Bombus impatiens workers were observed visiting flowers of 78% of these pollination-dependent crops. Estimates of the number of B. impatiens workers visiting individual gardens during the study period ranged from 3 to 15 bees per 100 m2 of total garden area and 6 to 29 bees per 100 m2 of garden floral area.
    [Show full text]
  • Principles of Plant Taxonomy Bot
    PRINCIPLES OF PLANT TAXONOMY BOT 222 Dr. M. Ajmal Ali, PhD 1 What is Taxonomy / Systematics ? Animal group No. of species Amphibians 6,199 Birds 9,956 Fish 30,000 Mammals 5,416 Tundra Reptiles 8,240 Subtotal 59,811 Grassland Forest Insects 950,000 Molluscs 81,000 Q: Why we keep the stuffs of our home Crustaceans 40,000 at the fixed place or arrange into some Corals 2,175 kinds of system? Desert Others 130,200 Rain forest Total 1,203,375 • Every Human being is a Taxonomist Plants No. of species Mosses 15,000 Ferns and allies 13,025 Gymnosperms 980 Dicotyledons 199,350 Monocotyledons 59,300 Green Algae 3,715 Red Algae 5,956 Lichens 10,000 Mushrooms 16,000 Brown Algae 2,849 Subtotal 28,849 Total 1,589,361 • We have millions of different kind of plants, animals and microorganism. We need to scientifically identify, name and classify all the living organism. • Taxonomy / Systematics is the branch of science deals with classification of organism. 2 • Q. What is Plant Taxonomy / Plant systematics We study plants because: Plants convert Carbon dioxide gas into Every things we eat comes Plants produce oxygen. We breathe sugars through the process of directly or indirectly from oxygen. We cannot live without photosynthesis. plants. oxygen. Many chemicals produced by the Study of plants science helps to Study of plants science helps plants used as learn more about the natural Plants provide fibres for paper or fabric. to conserve endangered medicine. world plants. We have millions of different kind of plants, animals and microorganism.
    [Show full text]
  • The Taxonomy of Human Evolved Psychological Adaptations
    Evo Edu Outreach (2012) 5:312–320 DOI 10.1007/s12052-012-0428-8 EVOLUTION AND EDUCATION RESOURCES PsychTable.org: The Taxonomy of Human Evolved Psychological Adaptations Niruban Balachandran & Daniel J. Glass Published online: 8 July 2012 # Springer Science+Business Media, LLC 2012 Abstract We announce the launch of PsychTable.org,a Introduction collaborative web-based project devoted to classifying and evaluating evolved psychological adaptations The timing is right to establish a classification system for (EPAs), geared toward researchers, educators, students, human evolved psychological adaptations (EPAs). Several and the general public. The website works by aggregat- factors have coalesced to create a unique opportunity to de- ing citations which support or challenge the existence of velop a taxonomy that will facilitate the expansion of a culture each purported EPA, using a mathematical algorithm to of both synthesis and empirical rigor in the evolutionary assign an evidentiary strength score to each, and gener- behavioral sciences, including disciplines such as evolution- ating a table which represents the current but ever- ary cognitive neuroscience, behavioral ecology, “evo-devo,” changing state of the empirical evidence. Citations are primatology, evolutionary anthropology, human ethology, ge- added and assigned evaluative ratings by both general netics, and others. users and an international community of expert contrib- These aforementioned factors include: a large international utors; as such, the content of the site will represent the body of research describing hundreds of amassed EPAs; a consensus of the scientific community and new research global research community of evolutionary behavioral scien- opportunities. PsychTable has features for achieving empir- tists that recognizes the importance of both synthesis and ical meta-goals such as quality control, hypothesis testing, classification; the ascent of evolutionary psychology as a cross-disciplinary collaboration, and didactic utility.
    [Show full text]
  • Creating a Pollinator Garden for Native Specialist Bees of New York and the Northeast
    Creating a pollinator garden for native specialist bees of New York and the Northeast Maria van Dyke Kristine Boys Rosemarie Parker Robert Wesley Bryan Danforth From Cover Photo: Additional species not readily visible in photo - Baptisia australis, Cornus sp., Heuchera americana, Monarda didyma, Phlox carolina, Solidago nemoralis, Solidago sempervirens, Symphyotrichum pilosum var. pringlii. These shade-loving species are in a nearby bed. Acknowledgements This project was supported by the NYS Natural Heritage Program under the NYS Pollinator Protection Plan and Environmental Protection Fund. In addition, we offer our appreciation to Jarrod Fowler for his research into compiling lists of specialist bees and their host plants in the eastern United States. Creating a Pollinator Garden for Specialist Bees in New York Table of Contents Introduction _________________________________________________________________________ 1 Native bees and plants _________________________________________________________________ 3 Nesting Resources ____________________________________________________________________ 3 Planning your garden __________________________________________________________________ 4 Site assessment and planning: ____________________________________________________ 5 Site preparation: _______________________________________________________________ 5 Design: _______________________________________________________________________ 6 Soil: _________________________________________________________________________ 6 Sun Exposure: _________________________________________________________________
    [Show full text]
  • Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
    sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes.
    [Show full text]
  • Land Uses That Support Wild Bee (Hymenoptera: Apoidea: Anthophila) Communities Within an Agricultural Matrix
    Land uses that support wild bee (Hymenoptera: Apoidea: Anthophila) communities within an agricultural matrix A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Elaine Celeste Evans IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Marla Spivak December 2016 © Elaine Evans 2016 Acknowledgements Many people helped me successfully complete this project. Many years ago, my advisor, mentor, hero, and friend, Marla Spivak, saw potential in me and helped me to become an effective scientist and educator working to create a more bee-friendly world. I have benefitted immensely from her guidance and support. The Bee Lab team, both those that helped me directly in the field, and those that advised along the way through analysis and writing, have provided a dreamy workplace: Joel Gardner, Matt Smart, Renata Borba, Katie Lee, Gary Reuter, Becky Masterman, Judy Wu, Ian Lane, Morgan Carr- Markell. My committee helped guide me along the way and steer me in the right direction: Dan Cariveau (gold star for much advice on analysis), Diane Larson, Ralph Holzenthal, and Karen Oberauser. Cooperation with Chip Eullis and Jordan Neau at the USGS enabled detailed land use analysis. The bee taxonomists who helped me with bee identification were essential for the success of this project: Jason Gibbs, John Ascher, Sam Droege, Mike Arduser, and Karen Wright. My friends and family eased my burden with their enthusiasm for me to follow my passion and their understanding of my monomania. My husband Paul Metzger and my son August supported me in uncountable ways.
    [Show full text]
  • Hymenoptera: Apoidea) Habitat in Agroecosystems Morgan Mackert Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems Morgan Mackert Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Mackert, Morgan, "Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems" (2019). Graduate Theses and Dissertations. 17255. https://lib.dr.iastate.edu/etd/17255 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Strategies to improve native bee (Hymenoptera: Apoidea) habitat in agroecosystems by Morgan Marie Mackert A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Mary A. Harris, Co-major Professor John D. Nason, Co-major Professor Robert W. Klaver The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Morgan Marie Mackert, 2019. All rights reserved ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iv ABSTRACT ....................................................................................................................... vi CHAPTER 1.
    [Show full text]
  • A Molecular Phylogeny of the Long-Horned Bees in the Genus Melissodes Latreille (Hymenoptera: Apidae: Eucerinae)
    Insect Systematics & Evolution (2020) DOI 10.1163/1876312X-bja10015 brill.com/ise A molecular phylogeny of the long-horned bees in the genus Melissodes Latreille (Hymenoptera: Apidae: Eucerinae) Karen W. Wrighta,b,*, Kelly B. Millera and Hojun Songb aDepartment of Biology, University of New Mexico, Albuquerque, NM, USA bDepartment of Entomology, Texas A&M University, College Station, TX, USA *Corresponding author, e-mail: [email protected] Abstract The genus Melissodes Latreille in the subfamily Eucerinae (Hymenoptera: Apidae) is a widespread and common group of bees. There are 129 describedMelissodes species that range throughout the western hemisphere with the center of diversity in the warm deserts of southwestern North America. Despite its widespread nature and importance in agriculture, the evolutionary relationships among the species have never been investigated. Here, we present a molecular phylogeny using five loci for 89 species of Melis- sodes with representatives from all subgenera. We confirm all of the subgeneric delineations constructed by LaBerge, except for a paraphyletic M. (Tachymelissodes) and the placement of M. (Heliomelissodes), which renders M. (Eumelissodes) paraphyletic. We also discuss the unexpected placement of M. tristis Cockerell, M. paucipuncta LaBerge, M. dagosus Cockerell, and M. pexa LaBerge. Finally, we combine this analysis with previous data to support the placement of Melissodes within the subfamily Eucerinae. Keywords Anthophila; Eucerini; bee phylogeny; long-horned bees Introduction The genus Melissodes Latreille (Apidae: Eucerinae sensu Bossert et al. 2019) is a diverse genus of medium sized, setaceous bees. It is the second largest genus in the tribe Eu- cerini with 129 described species ranging from Canada to Argentina.
    [Show full text]
  • Effects of Cultivation and Proximity to Natural Habitat on Ground-Nesting Native Bees in California Sunflower Fields
    JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 79(4), 2006, pp. 309–320 Effects of Cultivation and Proximity to Natural Habitat on Ground-nesting Native Bees in California Sunflower Fields 1 2 3 JOHN KIM, NEAL WILLIAMS, AND CLAIRE KREMEN ABSTRACT: Agricultural conversion is one of the most prevalent anthropogenic uses on the terrestrial earth. Persistence of organisms in such landscapes is thought to be related to species- specific characteristics such as life history traits and dispersal distance. In an agricultural landscape in California, we examined local (farm-level) and landscape variables associated with nesting pref- erences of native ground-nesting bees. Compared to the known ground-nesting visitors to crops, bee community nesting on farms was depauperate. Further, more abundant and diverse communities of bees were found nesting at farms with patches of natural habitat near by than farms that were far away from natural habitat. Species responded differently to soil conditions created by farming practices, but the variability in nesting bee abundance was lower in farms near natural habitat than farms far from natural habitat. These findings suggest that most bee species are affected adversely but to varying degrees by agricultural intensification, and that natural habitats may buffer against the bee population variability in agricultural landscape. We present source/sink dynamics and resource limitations as possible explanations for the observed patterns. KEY WORDS: Ground-nesting bees, sunflower, nesting density, source-sink dynamics, agriculture, biodiversity, pollination Humans have appropriated an estimated 40% of the terrestrial surface for agriculture, greatly modifying the environment and ecosystem processes (Olson et al., 1983; Vitousek et al., 1997; Chapin et al., 2000; DeFries et al., 2004).
    [Show full text]