Community Patterns and Plant Attractiveness to Pollinators in the Texas High Plains

Total Page:16

File Type:pdf, Size:1020Kb

Community Patterns and Plant Attractiveness to Pollinators in the Texas High Plains Scale-Dependent Bee (Hymenoptera: Anthophila) Community Patterns and Plant Attractiveness to Pollinators in the Texas High Plains by Samuel Discua, B.Sc., M.Sc. A Dissertation In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Scott Longing Chair of the Committee Nancy McIntyre Robin Verble Cynthia McKenney Joseph Young Mark Sheridan Dean of the Graduate School May, 2021 Copyright 2021, Samuel Discua Texas Tech University, Samuel Discua, May 2021 ACKNOWLEDGMENTS There are many who helped me along the way on this long and difficult journey. I want to take a moment to thank them. First, I wish to thank my dissertation committee. Without their guidance, I would not have made it. Dr. McIntytre, Dr. McKenney, Dr. Young and Dr. Verble served as wise committee members, and Dr. Longing, my committee chair, for sticking with me and helping me reach my goal. To the Longing Lab members, Roberto Miranda, Wilber Gutierrez, Torie Wisenant, Shelby Chandler, Bryan Guevara, Bianca Rendon, Christopher Jewett, thank you for all the hard work. To my family, my parents, my sisters, and Balentina and Bruno: you put up with me being distracted and missing many events. Finally, and most important, to my wife, Baleshka, your love and understanding helped me through the most difficult times. Without you believing in me, I never would have made it. It is time to celebrate; you earned this degree right along with me. I am forever grateful for your patience and understanding. It is time to close this chapter of my life and start a new one. ii Texas Tech University, Samuel Discua, May 2021 TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................ ii LIST OF TABLES ................................................................................................... vi LIST OF FIGURES ................................................................................................. xi ABSTRACT ........................................................................................................... xiii I. INTRODUCTION ................................................................................................. 1 Value of Pollination Services Provided by Bees .......................................................... 1 Global Pollinator Declines .......................................................................................... 5 Effects of Habitat Quality on Pollinators ..................................................................... 7 Ecological Restoration for Bees and Other Pollinators ................................................ 8 Agriculture and Pollination Services in the Texas High Plains .................................. 10 Native Bees in the Texas High Plains ....................................................................... 12 Research Objectives ................................................................................................. 15 Rationale and Significance ....................................................................................... 16 LITERATURE CITED .......................................................................................... 17 II. POLLINATOR ATTRACTIVENESS OF DROUGHT-TOLERANT PLANTS IN THE TEXAS HIGH PLAINS ............................................................................ 24 Abstract .................................................................................................................... 24 Introduction .............................................................................................................. 25 Materials and Methods ............................................................................................. 27 Site Description and Field Experimental Design ............................................... 27 Plant Selection .................................................................................................. 29 Insect Floral Visitation Counts .......................................................................... 30 Plant Measurements .......................................................................................... 31 Data Analysis ................................................................................................... 31 Results...................................................................................................................... 32 Bee Community ................................................................................................ 32 Plant – Pollinator Associations .......................................................................... 34 Discussion ................................................................................................................ 36 LITERATURE CITED .......................................................................................... 42 iii Texas Tech University, Samuel Discua, May 2021 III. A MULTIVARIATE ANALYSIS OF NATIVE BEES AND FLORAL COMMUNITIES ACROSS AGROECOSYSTEMS IN THE LLANO ESTACADO REGION OF TEXAS ....................................................................... 56 Abstract .................................................................................................................... 56 Introduction .............................................................................................................. 57 Study Area ........................................................................................................ 61 Insect Sampling ................................................................................................ 63 Sample Processing ............................................................................................ 64 Local Habitat Sampling .................................................................................... 65 Pollinator Community Composition .................................................................. 66 Data Analysis ................................................................................................... 66 Results...................................................................................................................... 69 Bee Richness and Abundance ........................................................................... 69 Floral Richness and Abundance ........................................................................ 71 Bee Habitat Data ............................................................................................... 73 PCA Results ..................................................................................................... 73 NMDS Results .................................................................................................. 73 Generalized Linear Mixed Model Results ......................................................... 74 Bee Communities ............................................................................................. 74 Bee Communities and Adjacency to CRP Lands ............................................... 75 Bee Communities and Farm Type ..................................................................... 75 Bee Communities and Playas ............................................................................ 76 Bee Communities and Soil Type ....................................................................... 76 Floral Communities and CRP Lands ................................................................. 78 Floral Communities and Farm Type .................................................................. 78 Floral Communities and Playas ......................................................................... 78 Floral Communities and Soil Types .................................................................. 79 Discussion ................................................................................................................ 79 LITERATURE CITED .......................................................................................... 85 iv Texas Tech University, Samuel Discua, May 2021 IV. HABITAT ANALYSIS OF NATIVE BEES AND FLORAL RESOURCES IN THE LLANO ESTACADO AGRICULTURAL REGION OF TEXAS ......... 137 Abstract .................................................................................................................. 137 Introduction ............................................................................................................ 138 Materials and Methods ........................................................................................... 143 Study Area ...................................................................................................... 143 Insect Sampling .............................................................................................. 144 Land Cover data.............................................................................................. 144 Landscape Composition and Configuration Metrics ........................................ 145 Pollinator Community Composition ................................................................ 146 Data Analysis ................................................................................................. 147 Results.................................................................................................................... 150 Land Cover within Buffers .............................................................................. 150 PCA
Recommended publications
  • Bees in Urban Landscapes: an Investigation of Habitat Utilization By
    Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied.
    [Show full text]
  • Las Abejas Del Género Agapostemon (Hymenoptera: Halictidae) Del Estado De Nuevo León, México
    Revista Mexicana de Biodiversidad 83: 63-72, 2012 Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México Bees of the genus Agapostemon (Hymenoptera: Halictidae) of the state of Nuevo León, Mexico Liliana Ramírez-Freire1 , Glafiro José Alanís-Flores1, Ricardo Ayala-Barajas2, Humberto Quiroz -Martínez1 y Carlos GerardoVelazco-Macías3 1Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Cd. Universitaria. Apartado postal 134-F, 66450 San Nicolás de los Garza, Nuevo León, México. 2Estación de Biología Chamela (Sede Colima) Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, 48980 San Patricio, Jalisco, México. 3Parques y Vida Silvestre. Av. Alfonso Reyes norte s/n, interior del Parque Niños Héroes, lateral izquierda, acceso 3, 64290 Monterrey, Nuevo León, México. [email protected] Resumen. Se realizó un estudio faunístico de las abejas del género Agapostemon (Halictidae) en el estado de Nuevo León, México para conocer las especies presentes, su distribución, relación con la flora y tipos de vegetación del estado. La metodología se basó en la revisión de literatura y de bases de datos de colecciones entomológicas, y en muestreos en campo donde se utilizó red entomológica y platos trampa de colores amarillo, azul, rosa (tonos fluorescentes) y blanco. Sólo en 20 de los 35 muestreos que se realizaron se obtuvieron ejemplares del género. Se recolectaron 11 especies, 2 de las cuales son registros nuevos para el estado (A. nasutus y A. splendens). El 12.31% de los ejemplares se obtuvo mediante el uso de red y el 87.84% con los platos trampa; el color amarillo fue el preferido por las abejas.
    [Show full text]
  • Insects Associated with the Flowers of Two Species of Malacothrix{A^Tekaceke) on San Miguel Island, California
    INSECTS ASSOCIATED WITH THE FLOWERS OF TWO SPECIES OF MALACOTHRIX{A^TEKACEKE) ON SAN MIGUEL ISLAND, CALIFORNIA BY SCOTT E. MILLER' AND W. S. DAVIS^ The insects associated with Malacothrix incana (Nutt.) T. & G. and M. implicata Eastwood on San Miguel Island were sampled as part of a general analysis of hybridization between the two species on the island (Davis and Philbrick, 1986). On San Miguel Island, M. incana is widely distributed on unstabilized and stabilized sand dunes on slopes near the ocean or on sandy substrate on the upper surfaces of the island including the slopes of San Miguel Peak and Green Mountain. In contrast, M. implicata is generally restricted to the slopes near the ocean or the walls of canyons above the ocean. Hybrid plants were found only where M. incana and M. implicata were growing in a common area and constituted less than 1% of the total number of the three forms in these areas. Hybrid plants were most frequent on the slopes above Cuyler Harbor and above Tyler Bight. Plants of M. implicata are spreading or erect perennials with large heads containing up to 80 florets. The ligules are white and have a purple stripe on the abaxial surface. Plants of M. incana are peren- nial and become mound-shaped after several years of growth. The large heads contain up to 100 florets with yellow ligules. The hybrid is also perennial and has large heads with pale yellow florets whose ligules often bear a reddish stripe on the abaxial surface. During our visit to San Miguel Island in May, 1984 a majority of the plants of M.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • The Lily Pad
    The Lily Pad certain flower seeds because of the July Program shape of their beak. Eleanor C. Foerste, Faculty, Natural They also found this was true of the July 2013 Resources, UF/IFAS Osceola County squirrels and the mice we saw. Volume 7, Issue 5 Extension will present on Invasive species - Air potato and the One young boy just could not stop biocontrol air potato beetle as a himself from reaching over to collect management tool. a few seeds for himself to take home to his own garden! His chosen plant? In the Community Dune sunflower. A native plant by Jenny Welch member in the making. The purpose of the Florida Native Plant Interesting that our class was about Society is to promote the preservation, Sandy Webb and I were asked to birds yet it still came back around to conservation, and restoration of the native help out at Bok Tower Summer native plants… plants and native plant communities of Camp Program. We were there for Florida. "Bountiful Birds" program. As I always say you cannot have BOARD OF DIRECTORS : birds without native plants and you President: cannot have native plants without Jenny Welch.............. [email protected] birds. We discussed what birds eat 1st Vice President: based upon their beaks. Mark Johnson ....... [email protected] We went on a walk to the Window Secretary: by the pond, a great place to see birds Sandy Webb....... [email protected] because it is a room with glass Treasurer: overlooking a small pond. OPEN ................................... Apply now Along the way we saw several Chapter Rep: birds…mockingbird, cardinal, blue .............................................
    [Show full text]
  • Novltatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    NovltatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3180, 39 pp., 17 figures, 8 tables August 23, 1996 Phylogenetic Analysis of the Cleptoparasitic Bees Belonging to the Nomadinae Based on Mature Larvae (Apoidea: Apidae) JEROME G. ROZEN, JR.' CONTENTS Abstract .................................................................... 2 Introduction .................................................................... 2 Acknowledgments .............................................................. 3 Historical Background ............................................................ 4 Methodology ...................................................................5 Evaluation of Characters ....................... .................................. 6 Monophyly of the Nomadinae ................ ................................... 10 Phylogeny of the Nomadinae ................ .................................... 12 Analysis 1. Based on larval features alone ...................................... 13 Analysis 2. Based on larval characters from current study and adult characters from Alexander (1990) ................. .................................... 13 Analysis 3. Based on larval characters from current study and adult characters from Roig-Alsina (1991) ................................................... 16 Analysis 4. Based on larval characters from current study and adult characters from Roig-Alsina and Michener (1993) .....................................
    [Show full text]
  • Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
    sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes.
    [Show full text]
  • Bee Species Checklist of the San Francisco Peaks, Arizona
    Biodiversity Data Journal 8: e49285 doi: 10.3897/BDJ.8.e49285 Taxonomic Paper Bee species checklist of the San Francisco Peaks, Arizona Lindsie M McCabe‡, Paige R Chesshire‡§, David R Smith , Atticus Wolf‡, Jason Gibbs |, Terry L Griswold¶, Karen W Wright#‡, Neil S Cobb ‡ Department of Biological Sciences, Northern Arizona University, Flagstaff, United States of America § U.S. Fish and Wildlife Service, Southwest Forest Science Complex, Flagstaff, United States of America | Department of Entomology, University of Manitoba, Winnipeg, Canada ¶ USDA-ARS, Pollinating Insects Research Unit, Logan, United States of America # Department of Entomology, Texas A&M, College Station, United States of America Corresponding author: Lindsie M McCabe ([email protected]) Academic editor: Dominique Zimmermann Received: 11 Dec 2019 | Accepted: 25 Mar 2020 | Published: 02 Apr 2020 Citation: McCabe LM, Chesshire PR, Smith DR, Wolf A, Gibbs J, Griswold TL, Wright KW, Cobb NS (2020) Bee species checklist of the San Francisco Peaks, Arizona. Biodiversity Data Journal 8: e49285. https://doi.org/10.3897/BDJ.8.e49285 Abstract Background Here we present a checklist of the bee species found on the C. Hart Merriam elevation gradient along the San Francisco Peaks in northern Arizona. Elevational gradients can serve as natural proxies for climate change, replacing time with space as they span multiple vegetation zones over a short geographic distance. Describing the distribution of bee species along this elevation gradient will help predict how bee communities might respond to changing climate. To address this, we initiated an inventory associated with ecological studies on pollinators that documented bees on the San Francisco Peaks.
    [Show full text]
  • Crop and Semi-Natural Habitat Configuration Affects
    insects Article Crop and Semi-Natural Habitat Configuration Affects Diversity and Abundance of Native Bees (Hymenoptera: Anthophila) in a Large-Field Cotton Agroecosystem Isaac L. Esquivel 1,2,*, Katherine A. Parys 3 , Karen W. Wright 1, Micky D. Eubanks 1, John D. Oswald 1, Robert N. Coulson 1 and Michael J. Brewer 1,2 1 Department of Entomology, Texas A&M University, College Station, TX 77843, USA; [email protected] (K.W.W.); [email protected] (M.D.E.); [email protected] (J.D.O.); [email protected] (R.N.C.); [email protected] (M.J.B.) 2 Department of Entomology, Texas A&M AgriLife Research, Corpus Christi, TX 78406, USA 3 Pollinator Health in Southern Crop Ecosystems Research Unit, USDA-ARS, Stoneville, MS 38732, USA; [email protected] * Correspondence: [email protected] Simple Summary: Commercial cotton growing systems are one of the most intensely managed, economically, and culturally important fiber cropping systems worldwide. The composition and configuration of crop species and semi-natural habitat can have significant effects on ecosystem ser- vices such as pollination. Here, we investigated the local-scale effect on the arrangement of different Citation: Esquivel, I.L.; Parys, K.A.; crop fields and surrounding semi-natural habitat in a large-field commercial cotton system on the Wright, K.W.; Eubanks, M.D.; Oswald, diversity and abundance of native bee pollinators. Using bee bowl traps at crop interfaces (cotton J.D.; Coulson, R.N.; Brewer, M.J. Crop grown next to cotton, sorghum, or semi-natural habitat along with a natural habitat comparator), and Semi-Natural Habitat we found a total of 32 bee species in 13 genera across 3 families.
    [Show full text]
  • Phylogeny and Classification of the Parasitic Bee Tribe Epeolini (Hymenoptera: Apidae, Nomadinae)^
    Ac Scientific Papers Natural History Museum The University of Kansas 06 October 2004 Number 33:1-51 Phylogeny and classification of the parasitic bee tribe Epeolini (Hymenoptera: Apidae, Nomadinae)^ By Molly G. Rightmyer y\CZ Division of E)itoiiiologi/, Nntuinl History Museiiui mid Biodizvrsity Rcsenrch Center, jV^Ar^^ and Eiitomology Progrniii, Department of Ecology nnd Evolutionary Biology, The Unii>ersity of Kansas, Lawrence, Kansas, 66045-7523 CONTENTS ^AB'"^^?Sy ABSTRACT 2 lJHIVE^^^ ' INTRODUCTION 2 Acknowledgments 2 HISTORICAL REVIEW 3 METHODS AND MATERIALS 5 MORPHOLOGY 7 PsEUDOPYGiDiAL Area 7 Sting Apparatus 7 Male Internal Sclerites 11 PHYLOGENETIC RESULTS 11 SYSTEMATICS 13 Tribe Epeolini Robertson 13 Subtribe Odyneropsina Handlirsch new status 14 Genus Odyneropsis Schrottky 14 Subgenus Odyneropsis Schrottky new status 15 Subgenus Parammobates Friese new status 15 Rhogepeolina new subtribe 15 Genus Rhogepeolus Moure 15 Rhogepeolina + (Epeolina + Thalestriina) 16 Epeolina + Thalestriina 16 Subtribe Epeolina Robertson new status 16 Genus Epeolus Latreille 16 'Contribution No. 3397 of the Division of Entomology, Natural History Museum and Biodiversity Research Center, University of Kansas. Natural ISSN No. 1094-0782 © History Museum, The University of Kansas _ . «i„,, I <*»ro»V Ernst K'ayr Li^^rary Zoology Museum of Comparawe Harvard University Ac Scientific Papers Natural History Museum The University of Kansas 06 October 2004 NumLx-r 33:1-51 Phylogeny and classification of the parasitic bee tribe Epeolini (Hymenoptera: Apidae, Nomadinae)'
    [Show full text]
  • Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones
    Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-20-2020 Predicting Changes in Bee Assemblages Following State Transitions at North American Dryland Ecotones Melanie R. Kazenel University of New Mexico Karen W. Wright Texas A&M University Julieta Bettinelli University of New Mexico Terry L. Griswold Utah State University Kenneth D. Whitney University of New Mexico Jennifer A. Rudgers University of New Mexico Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Other Animal Sciences Commons Recommended Citation Kazenel, M.R., Wright, K.W., Bettinelli, J. et al. Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Sci Rep 10, 708 (2020). https://doi.org/10.1038/ s41598-020-57553-2 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Predicting changes in bee assemblages following state transitions at North American dryland ecotones Melanie R. Kazenel1,4*, Karen W. Wright1,2,4, Julieta Bettinelli1, Terry L. Griswold3, Kenneth D. Whitney1 & Jennifer A. Rudgers1 Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional diferences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may infuence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S.
    [Show full text]