Cell Populations in the Pineal Gland of the Viscacha (Lagostomus Maximus)

Total Page:16

File Type:pdf, Size:1020Kb

Cell Populations in the Pineal Gland of the Viscacha (Lagostomus Maximus) Histol Histopathol (2003) 18: 827-836 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Cell populations in the pineal gland of the viscacha (Lagostomus maximus). Seasonal variations R. Cernuda-Cernuda1, R.S. Piezzi2, S. Domínguez2 and M. Alvarez-Uría1 1Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain 2Instituto de Histología y Embriología, Universidad Nacional de Cuyo/CONICET, Mendoza, Argentina and 3Cátedra de Histología, Universidad Nacional de San Luis, Argentina Summary. Pineal samples of the viscacha, which were Introduction taken in winter and in summer, were analysed using both light and electron microscopy. The differences found The pineal gland is mainly involved in the between the two seasons were few in number but integration of information about environmental significant. The parenchyma showed two main cell conditions (light, temperature, etc.), and in the populations. Type I cells occupied the largest volume of measurement of photoperiod length (Pévet, 2000). This the pineal and showed the characteristics of typical gland probably signals the enviromental conditions thus pinealocytes. Many processes, some of which were filled making mammals seasonal breeders (Reiter, 1981). The with vesicles, could be seen in intimate contact with the pineal has been thoroughly investigated; however, the neighbouring cells. The presence in the winter samples number of species in which its ultrastructure have been of “synaptic” ribbons and spherules, which were almost studied is a meager 1.5-2% of all mammalians absent in the summer pineals, suggests a seasonal (Bhatnagar, 1992). Previous studies have focused on rhythm. These synaptic-like structures, as well as the domestic and laboratory animals housed in artificially abundant subsurface cisterns present in type I cells, controlled conditions. Thus, the study of wild species, appeared as basic differential features which allowed which are subjected to natural conditions, will provide these cells to be distinguished from type II cells. These new information about seasonal changes in the gland. latter cells, which can be classified as interstitial cells, The plains viscacha (Lagostomus maximus) is a showed some other distinguishing features, such as rodent of considerable size (up to 80 cm in total length) irregular-shaped nuclei, abundant deposits of glycogen- that inhabits grasslands and lowland desert scrubs, and like particles and structures of unknown function also constructs burrow systems in the barren parts of the consisting of concentric cisterns surrounding a dense pampas at an elevation of 2,680 meters. The body. In the summer, interstitial cells displayed geographical distribution is relatively wide: extreme numerous large round bodies, which contributed to southwestern Paraguay, northern and central Argentina, increase the cellular volume slightly. Regarding other and southern Bolivia (Nowak, 1999). constituents, like glial cell processes, vessels of non- L. maximus is predominantly nocturnal, emerging fenestrated endothelium and sympathetic innervation, no from its burrow before dusk to feed. It is a highly social qualitative differences were observed between the two mammal, living in communities of 15-30 and sometimes seasons studied. up to 50 members (Branch, 1993). Given its high We have presented here some morphological cerebral and sensory development and complex social evidences of the circannual rhythm of the viscacha behavior, this species occupies an intermediate position pineal, as well as ultrastructural criteria for between classically studied rodents and superior distinguishing the main cell populations of this organ, mammals, thus constituting a very interesting matter of which could be useful for studies carried out in other study. mammals. Since a preliminary report on the viscacha pineal was done in the past (Domínguez et al., 1987), our main Key words: Pineal, Viscacha, Pinealocyte, Interstitial objectives were to enlarge this description, giving cell, Synaptic ribbon ultrastructural details that would have been missed then, mainly because of their low frequency of appearance, and to define better the cell populations present in this Offprint requests to: Rafael Cernuda-Cernuda, Departamento de organ. Special attention was paid to the seasonal changes Morfología y Biología Celular, Facultad de Medicina (8º planta), of some morphological features of these cell types in Universidad de Oviedo, 33071 Oviedo, Spain. Fax: 34 98 5103618. e- order to find data representative of the presumed mail: [email protected] circannual rhythmicity of the gland. 828 Cell types of the viscacha pineal Materials and methods as type AB according to Vollrath (1981), has got a considerable size, with 12 mm in length, 2.5 mm in A total of 7 adult male viscachas were used in this width, and an average weight of 4.23 mg. The study, 3 of them were captured during the summer and 4 histological features of this gland and the differences during the winter. The animals were killed in their observed between the two seasons analysed can be found habitat during the night by shooting with a rifle with below. telescopic sight. This method avoided stress and prolonged pain to the animal. Special care was taken to Light microscopy aim at the thoracic region, in order to avoid damage of the head, as well as to cause a rapid death and to prevent The analysis of the semithin sections revealed that the animals from getting refuge in their burrows. Within pineals of summer and winter showed a fairly similar a period of 4-5 minutes, the brain was exposed, the appearance (Figs. 1a,b). At least, two types of cells pineal gland dissected “in situ” and fixed in a phosphate could be easily recognized in the pineal parenchyma. buffered (0.1 M, pH 7.3) 3% paraformaldehyde/2.5% Most of the cells possessed a round/oval nucleus with glutaraldehyde solution for 2 hours at room temperature. prominent nucleolus (type I cells), but some others This solution was prepared 1-2 hours before use. The presented an irregular-shaped nucleus (type II cells). The samples were then postfixed in 1% OsO4 at 4 ºC for 2 type II cells had many dense inclusions in their hours, washed is distilled water, dehydrated in a series of cytoplasm in the summer samples (Fig. 1a), whereas acetone of increasing concentration and embedded in such inclusions were very scarce or absent in winter Epon, following a conventional protocol. 2 blocks of (Fig. 1b). Spaces occupied by vessels and connective tissue were sampled per gland. Semithin (1 µm thick) tissue were intensely stained, probably due to the and ultrathin (about 70 nm thick) sections were obtained abundant collagen deposits, and few details could be in a Reichert Jung ULTRACUT ultramicrotome. 4 areas observed. separated by 200 µm were sampled per block. Semithin No statistical differences were found between the sections were stained with toluidine blue solution and parameters measured in both groups, with the exception photographed with a Polaroid DMC digital camera. of the volume density of type II cells, which was slightly Ultrathin sections were mounted on copper grids and increased (p<0.05) in summer (Table 1). stained with lead citrate and uranyl acetate. Stained ultrathin sections were examined and photographed in a Electron microscopy Zeiss EM 109 transmission electron microscope. Type I and type II cells constituted the main Morphometric analysis was carried out at the light components of the parenchyma of this organ (Fig. 2). In microscope level to assess: (1) the volume density of the addition, some glial (Type III) cells could also be main cell types and the space occupied by connective observed. Nerves and blood vessels penetrated from a tissue, nerves and vessels, and (2) the numerical density connective capsule and were distributed throughout the of the main cell types per unit area of section gland. A detailed description of all of these elements can The point-counting method of Weibel (1979) was be found below. employed to calculate the relative volume of the gland components. Five semithin sections (1 µm width) Ultrastructural features of Type I cells separated by at least 100 µm were randomly chosen from each gland. Five fields were randomly selected and Type I cells, pinealocytes, the most abundant cell photographed at a final magnification of x1000, 0.01 type in the pineal parenchyma, were irregular-contoured mm2 being the area of gland tissue examined in each photograph. Measurements were made by placing a transparent screen with a square point lattice spacing 1 cm over each photograph and counting the number of Table 1. Morphometric data of the main pineal components. intersections on each component. The volume fraction of Comparisons between summer and winter samples. a particular component was calculated by dividing the SUMMER WINTER total number of points over that component by the total number of points over the glandular tissue. Volume density (%) The number of cells per unit area of section was Type I cells (pinealocytes) 70±1.7 71.9±1.5 estimated by counting their nuclei in 5 random fields of Type II cells 11.6±1.4 7.2±1.1* 2500 µm2 in each of the 5 sections mentioned above. Vessels and perivascular spaces The data obtained were statistically compared using (nerves, connective tissue, etc) 18.4±1.6 20.9±1.4 the Student t test. Numerical density (No. of nuclei/2500 µm2) Type I cells (pinealocytes) 10.1±0.7 11.5±0.5 Results Type II cells 4.2±0.4 4.0±0.3 The pineal of the viscacha, which can be classified Each value is the mean±S.E.M. *P<0.05. Fig. 1. Semithin sections of pineal taken in summer (a) and in winter (b). The general appearance is fairly similar in both of them. Small black arrows point to cells with irregular-shaped nuclei (type II cells). Note that in the summer pineal (a), these cells possess numerous dense inclusions (white arrows point to two large-sized bodies).
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • The Interaction of the Thyroid Gland, Pineal Gland and Immune System in Chicken
    Vol. 6, Suppl. 2 79 The interaction of the thyroid gland, pineal gland and immune system in chicken Mykola E. Dzerzhynsky1, Olga I. Gorelikova, Andriy S. Pustovalov Department of Cytology, Histology and Development Biology, Kiev, Taras Shevchenko National University, Kiev, Ukraine Received: 7 October 2005; accepted: 15 September 2006 SUMMARY The interaction of immunological system, thyroid and pineal gland was studied in 5-week old males of Gallus domesticus. Several morphometri- cal parameters in pineal and thyroid glands were measured after bird im- munization with human red blood cells and/or treatment with melatonin or seduxen, a melatonin receptor blocker. The peak of the thyroid activity was found on Day 7 after immunization. The immune system appears to directly activate the thyroid gland only in the presence of certain level of melatonin. We suggest that the melatonin mechanism of action includes the enhancement of thyroid gland sensitivity to immune factors. Seduxen prevented the stimulatory influence of the immune system on the thyroid gland. Reproductive Biology 2006, 6, Suppl. 2:79–85. Key words: thyroid gland, immunization, pineal gland, melatonin, seduxen 1Corresponding author: Department of Cytology, Histology and Development Biology, Kiev, Taras Shevchenko National University, 64 Volodomyrska Str, 01033 Kiev, Ukraine; e-mail: [email protected] Copyright © 2006 by the Society for Biology of Reproduction 80 Immune-thyroid-pineal interactions in chicken INTRODUCTION Interrelationships of the endocrine, nervous and immune systems attract a lot of scientific attention [3]. Thyroid hormones (thyroxine: T4; triio- dothyronine), in addition to involvement in controlling energy production and protein and carbohydrate metabolism, stimulate the metamorphosis of lower vertebrates, control tissue growth and development, intensify oxida- tion and heat production as well as influence the functioning of the nervous system.
    [Show full text]
  • The South American Plains Vizcacha, Lagostomus Maximus, As a Valuable Animal Model for Reproductive Studies
    Central JSM Anatomy & Physiology Bringing Excellence in Open Access Editorial *Corresponding author Verónica Berta Dorfman, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y The South American Plains Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775 6to piso, C1405BCK, Ciudad Autónoma Vizcacha, Lagostomus maximus, de Buenos Aires, Argentina, Tel: 54 11 49051100; Email: Submitted: 08 October 2016 as a Valuable Animal Model for Accepted: 11 October 2016 Published: 12 October 2016 Copyright Reproductive Studies © 2016 Dorfman et al. Verónica Berta Dorfman1,2*, Pablo Ignacio Felipe Inserra1,2, OPEN ACCESS Noelia Paola Leopardo1,2, Julia Halperin1,2, and Alfredo Daniel Vitullo1,2 1Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Argentina 2Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina INTRODUCTION anti-apoptotic BCL-2 over the pro-apoptotic BAX protein which leads to a down-regulation of apoptotic pathways and promotes The vast majority of our understanding of the mammalian a continuous oocyte production [6,7]. Moreover, the inversion reproductive biology comes from investigations mainly in the BAX/BCL-2 balance is expressed in embryonic ovaries performed in mice, rats and humans. However, evidence throughout development, pinpointing this physiological aspect gathered from non-conventional laboratory models, farm and as a constitutive feature of the vizcacha´s ovary, which precludes wild animals strongly suggests that reproductive mechanisms show a plethora of different strategies among species. For massive intra-ovarian germ cell elimination. Massive intra- instance, studies developed in unconventional rodents such ovarian germ cell elimination through apoptosis during fetal life as guinea pigs and hamsters, that share with humans some accounts for 66 to 85% loss at birth as recorded for human, mouse endocrine and reproductive characters, have contributed to a and rat [8].
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Pineal Calcification, Melatonin Production, Aging, Associated
    molecules Review Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland Dun Xian Tan *, Bing Xu, Xinjia Zhou and Russel J. Reiter * Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA; [email protected] (B.X.); [email protected] (X.Z.) * Correspondence: [email protected] (D.X.T.); [email protected] (R.J.R.); Tel.: +210-567-2550 (D.X.T.); +210-567-3859 (R.J.R.) Received: 13 January 2018; Accepted: 26 January 2018; Published: 31 January 2018 Abstract: The pineal gland is a unique organ that synthesizes melatonin as the signaling molecule of natural photoperiodic environment and as a potent neuronal protective antioxidant. An intact and functional pineal gland is necessary for preserving optimal human health. Unfortunately, this gland has the highest calcification rate among all organs and tissues of the human body. Pineal calcification jeopardizes melatonin’s synthetic capacity and is associated with a variety of neuronal diseases. In the current review, we summarized the potential mechanisms of how this process may occur under pathological conditions or during aging. We hypothesized that pineal calcification is an active process and resembles in some respects of bone formation. The mesenchymal stem cells and melatonin participate in this process. Finally, we suggest that preservation of pineal health can be achieved by retarding its premature calcification or even rejuvenating the calcified gland. Keywords: pineal gland; calcification; melatonin; aging; neurodegenerative diseases; rejuvenation 1. Introduction Pineal gland is a unique organ which is localized in the geometric center of the human brain. Its size is individually variable and the average weight of pineal gland in human is around 150 mg [1], the size of a soybean.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Stress, Sleep, and Sex: a Review of Endocrinological Research in Octodon Degus ⇑ Carolyn M
    General and Comparative Endocrinology 273 (2019) 11–19 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Stress, sleep, and sex: A review of endocrinological research in Octodon degus ⇑ Carolyn M. Bauer a, , Loreto A. Correa b,c, Luis A. Ebensperger c, L. Michael Romero d a Biology Department, Adelphi University, Garden City, NY, USA b Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile c Departamento de Ecología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile d Department of Biology, Tufts University, Medford, MA, USA article info abstract Article history: The Common Degu (Octodon degus) is a small rodent endemic to central Chile. It has become an important Received 24 December 2017 model for comparative vertebrate endocrinology because of several uncommon life-history features – it is Revised 20 February 2018 diurnal, shows a high degree of sociality, practices plural breeding with multiple females sharing natal Accepted 11 March 2018 burrows, practices communal parental care, and can easily be studied in the laboratory and the field. Available online 12 March 2018 Many studies have exploited these features to make contributions to comparative endocrinology. This review summarizes contributions in four major areas. First are studies on degu stress responses, focusing Keywords: on seasonal changes in glucocorticoid (GC) release, impacts of parental care on offspring GC responses, Agonistic behavior and fitness consequences of individual variations of GC responses. These studies have helped confirm Circadian Female masculinization the ecological relevance of stress responses. Second are studies exploring diurnal circadian rhythms of Glucocorticoid melatonin and sex steroids.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]
  • 45763089029.Pdf
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Frugone, María José; Correa, Loreto A; Sobrero, Raúl ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri Mastozoología Neotropical, vol. 26, núm. 2, 2019, Julio-, pp. 487-492 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=45763089029 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Mastozoología Neotropical, 26(2):487-492 Mendoza, 2019 Copyright © SAREM, 2019 Versión on-line ISSN 1666-0536 hp://www.sarem.org.ar hps://doi.org/10.31687/saremMN.19.26.2.0.05 hp://www.sbmz.org Nota ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri María José Frugone1, Loreto A. Correa2,3 and Raúl Sobrero4 1Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 2Escuela de Medicina Veterinaria, Facultad de Ciencias. Universidad Mayor, Santiago, Chile. 3Departamento de Ecología, Facultad de Ciencias, Ponticia Universidad Católica de Chile. 4Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Cientícas y Técnicas (CONICET), Esperanza, Argentina. [Correspondence: Raúl Sobrero <[email protected]>] ABSTRACT. We provide the rst systematic data on behavior and ecology of Aconaemys porteri.
    [Show full text]
  • Melatonin Receptor (MTNR1A and MTNR2B) Expression During the Breeding Season in the Yak (Bos Grunniens)
    Original Paper Czech J. Anim. Sci., 59, 2014 (3): 140–145 Melatonin receptor (MTNR1A and MTNR2B) expression during the breeding season in the yak (Bos grunniens) S.-D. Huo1, 2, R.-J. Long1 1College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China 2College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, P.R. China ABSTRACT: Melatonin plays key roles in a wide range of mammalian body functions, which are mediated by the melatonin-specific cell surface receptor (MTNR1A and MTNR1B). To better understand the role of MTNR in the yak (Bos grunniens), we determined the melatonin receptor mRNA expression level. The analysis showed that the MTNR mRNA expression level was higher in the pineal gland tissue than in the hypothalamus, pituitary gland, and ovary (P < 0.01) during the breeding season. Immunofluorescence analyses showed that yak MTNR was located in the pinealocyte, synaptic ribbon, and synaptic spherules of the pineal gland and that melatonin interacts via nerve fibres. In the hypothalamus, MTNR was located in the magnocellular neurons and parvicellular neurons. MTNR was localized in acidophilic cells and basophilic cells in the pituitary gland. In the ovary, MTNR was present in the ovarian follicle, corpus luteum, and Leydig cells. Keywords: domestic yak; immunofluorescence; MLTR; real-time PCR The domestic yak (Bos grunniens) is a rare bovine receptor 1A (MTNR1A) genes are expressed in the species found at high altitudes in the Qinghai- cumulus-oocytes complex, whereas the MTNR1B Tibetan Plateau and adjacent regions. Yaks have gene is expressed only in the oocytes. Melatonin unique biological and economic characteristics that can enhance the maturation of oocytes in vitro make them resistant to cold.
    [Show full text]
  • (Lagostomus Maximus) Jane A
    Milk composition in the plains viscacha (Lagostomus maximus) Jane A. Goode, M. Peaker and Barbara J. Weir A.R.C. Institute ofAnimal Physiology, Cambridge CB2 4AT and ^Department ofAnatomy, University of Cambridge, Cambridge CB2 3DY, U.K. Summary. Milk samples were taken from 10 plains viscacha between 9 and 64 days post partum. Mean concentrations (\m=+-\s.e.)were 17 \m=+-\1\m=.\1mM-Na; 32 \m=+-\1\m=.\6mM-K; 35 \m=+-\2.2 mM-Cl; 116 \m=+-\3\m=.\3mM-lactose (total reducing sugar) (all in 8 samples); < 10\p=n-\220mg citrate/1 (range of 4 samples); 15\m=.\7\m=+-\0\m=.\64g total nitrogen/1 (3 samples). The Na:K ratio was 1:1\m=.\95\m=+-\0\m=.\17.It was estimated that the fat concentration was between 116 and 182 g/1. Introduction A systematic study of milk composition has been made in very few non-domestic animals; in fewer still have studies been made on the composition of the aqueous phase. Such data are important because they permit examination of whether mechanisms proposed to account for milk secretion can apply to all species with but relatively minor quantitative differences (see Peaker, 1977). The present study was therefore undertaken on the plains viscacha (Lagostomus maximus), which although indigenous to Argentina has bred successfully in captivity (Weir, 1970). In this caviomorph rodent two relatively precocious young are born (>90% of litters) after a gestation of approximately 154 days. There are two pairs of mammary glands situated laterally on the thorax but suckling appears to be confined to the anterior pair.
    [Show full text]
  • Comparative Ecology of the Caviomorph Rodent Octodon Degus in Two Chilean Mediterranean-Type Communities
    Revista Chilena de Historia Natural 57: 79-89, 1984 Comparative Ecology of the Caviomorph Rodent Octodon degus in Two Chilean Mediterranean-type Communities Ecologfa comparativa del roedor caviomorfo Octodon degus en dos comunidades mediterráneas de Chile PETER L. MESERVE, ROBERT E. MARTIN and JAIME RODRIGUEZ Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA; and Facultad de Ciencias Agrarias, Veterinarias y Forestales, Universidad de Chile, Casilla 9206, Santiago, Chile RESUMEN El degu (Octodon degus) es el roedor caviomorfo más común que se encuentra en las comunidades de tipo mediterráneo de Chile. Entre 1973 y 1976 se desarrollaron dos estudios sobre el degu; uno de ellos se centro en la zona norte de Chile (Fray Jorge) y el otro en una sabana mediterránea de Chile central (La Dehesa). Aun cuando no fueron simultaneos, en ambos estudios se utilizaron similares metodologias y análisis, permitiendo de este modo la comparacion de resultados sobre tendencias poblacionales, reproducci6n, hábitos alimenticios y caracteristicas de asociaci6n al hábitat. Se observaron densidades máximas de 59-65 individuos/ha en octubre-noviembre como resultado del reclutamiento de juveniles a la poblacion en ambos sitios. Los decrecimientos poblacionales durante los meses de verano se debieron fundamentalmente a la desaparici6n de los juveniles. El apareamiento se desarrollo principalmente en agosto-octubre, con la concepcion en mayo-junio; un segundo episodio reproductivo, que refleja la presencia de estro postparto, ocurri6 en la poblaci6n de La Dehesa en diciembre-enero. El ta- mafio de la camada fue identico en ambas poblaciones.
    [Show full text]