Habitat-Specific Fitness Benefits of Sociality in Octodon Degus

Total Page:16

File Type:pdf, Size:1020Kb

Habitat-Specific Fitness Benefits of Sociality in Octodon Degus HABITAT-SPECIFIC FITNESS BENEFITS OF SOCIALITY IN OCTODON DEGUS BY MADELINE KLEES STROM Loren Hayes Hope Klug Associate Professor Associate Professor Biology, Geology, and Environmental Science Biology, Geology, and Environmental Science (Advisor) (Committee Member) Mark Schorr Professor Biology, Geology, and Environmental Science (Committee Member) HABITAT-SPECIFIC FITNESS BENEFITS OF SOCIALITY IN OCTODON DEGUS BY MADELINE KLEES STROM A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee August 2017 iii Copyright © 2017 By Madeline Klees Strom All Rights Reserved iv ABSTRACT Recent debate has focused on how ecology shapes the evolution of group-living and cooperation in social vertebrates. Evidence suggests that group-living and cooperation enhance reproductive success under harsh local conditions in some species. Across two years, I studied two populations of Octodon degus, a plurally breeding rodent, to answer three questions: (1) Does living in large groups and having strong social network strength improve access to resources in harsh environments? (2) Does increased access to resources improve the reproductive success of group-living females? (3) Does living in large groups and having strong social network strength improve reproductive success of females in harsh environments? I quantified group sizes and social network strength, ecological conditions at burrow systems, and per capita offspring weaned of social groups to answer these questions. I found site- and year-specific relationships in partial support of predictions, demonstrating habitat-specific costs and benefits of social group-living and cooperation. v DEDICATION To Mary K. Harris, for always lifting me up when I doubted myself. vi ACKNOWLEDGMENTS I would like to thank my dedicated advisor, Dr. Loren Hayes, for his continued guidance, wisdom and support during my many years in the Hayes lab. I also thank my thesis committee members, Dr. Hope Klug and Dr. Mark Schorr, for their advice in statistical analyses and the writing process. I am extremely thankful for, and indebted to my collaborators in Chile. Firstly, I thank Dr. Luis Ebensperger and his lab members at Pontificia Universidad Católica de Chile, without whom this project would not exist. Secondly, I thank Dr. Rodrigo Vasquez and his lab members at Universidad de Chile for providing me with essential and hardworking field assistants. I thank the graduate students at UTC for always giving me emotional support (especially fellow Hayes students who accompanied me to remote field stations in Chile), and my friends who encouraged me to pursue a graduate degree. Finally, I thank my loving family, for always cheering me on, teaching me to say yes to every inspiring opportunity that comes my way, and without whom none of my dreams would be possible. vii TABLE OF CONTENTS ABSTRACT ............................................................................................................................. v DEDICATION ........................................................................................................................ vi ACKNOWLEDGEMENTS ...................................................................................................... vii LIST OF TABLES .................................................................................................................... xi LIST OF FIGURES ................................................................................................................. xii LIST OF TERMS .................................................................................................................. xiv LIST OF ABBREVIATIONS ................................................................................................... xvi CHAPTER I. INTRODUCTION .................................................................................................... 1 Hypotheses for the formation of social groups and cooperation ........................ 3 Costs and benefits of group-living and cooperation ............................................ 7 Direct fitness consequences of social group-living ............................................ 13 Challenges .......................................................................................................... 14 Ecology and social variation ............................................................................... 15 Social structure and social network analysis ..................................................... 16 Thesis objectives ................................................................................................ 18 Study sites .......................................................................................................... 21 II. HABITAT-SPECIFIC FITNESS BENEFITS OF SOCIALITY IN OCTODON DEGUS ..... 25 Introduction ....................................................................................................... 25 Habitat-specific fitness consequences .............................................................. 28 Social networks ................................................................................................. 29 Study organism and objectives ......................................................................... 31 Methods ............................................................................................................ 34 Study populations ..................................................................................... 34 Social group identification ........................................................................ 35 viii Social network analysis ............................................................................. 37 Ecological sampling ................................................................................... 38 Fitness estimates ...................................................................................... 39 Statistical analysis ..................................................................................... 39 Hypothesis Tests About Means .................................................... 39 Hypothesis Tests about Regression Relationships ........................ 40 Question 1 ......................................................................... 40 Question 2 ......................................................................... 41 Question 3 ......................................................................... 41 Results ............................................................................................................... 42 Descriptive statistics ................................................................................. 42 Question 1: Does living in large groups and having strong network strength improve access to resources in harsh environments? ............... 44 Rinconada ..................................................................................... 44 Fray Jorge ...................................................................................... 45 Per capita offspring weaned ......................................................... 49 Question 2: Does increased access to resources improve the direct fitness of group-living females? ................................................................ 50 Rinconada ..................................................................................... 50 Fray Jorge ...................................................................................... 52 Question 3: Does living in large groups and having strong network strength improve direct fitness of females in harsh environments? ....... 52 Rinconada ..................................................................................... 52 Fray Jorge ...................................................................................... 53 Discussion .......................................................................................................... 55 Question 1: Benefits of social group-living and cooperation ................... 57 Question 2: Access to resources and fitness benefits .............................. 61 Question 3: Direct fitness benefits of social group-living and cooperation ............................................................................................... 63 Why live in groups? ................................................................................... 64 Evolutionary history .................................................................................. 65 Stress physiology ....................................................................................... 65 III. CONSERVATION IMPLICATIONS ....................................................................... 68 APPENDIX A. SOCIAL GROUPS ................................................................................................ 72 B. ECOLOGICAL DATA ............................................................................................ 75 C. SOCPROG PROCEDURE ..................................................................................... 80 ix D. SOCPROG OUTPUTS/NETWORK DATA ............................................................. 84 REFERENCES ...................................................................................................................... 87 VITA ................................................................................................................................
Recommended publications
  • Stress, Sleep, and Sex: a Review of Endocrinological Research in Octodon Degus ⇑ Carolyn M
    General and Comparative Endocrinology 273 (2019) 11–19 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Stress, sleep, and sex: A review of endocrinological research in Octodon degus ⇑ Carolyn M. Bauer a, , Loreto A. Correa b,c, Luis A. Ebensperger c, L. Michael Romero d a Biology Department, Adelphi University, Garden City, NY, USA b Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile c Departamento de Ecología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile d Department of Biology, Tufts University, Medford, MA, USA article info abstract Article history: The Common Degu (Octodon degus) is a small rodent endemic to central Chile. It has become an important Received 24 December 2017 model for comparative vertebrate endocrinology because of several uncommon life-history features – it is Revised 20 February 2018 diurnal, shows a high degree of sociality, practices plural breeding with multiple females sharing natal Accepted 11 March 2018 burrows, practices communal parental care, and can easily be studied in the laboratory and the field. Available online 12 March 2018 Many studies have exploited these features to make contributions to comparative endocrinology. This review summarizes contributions in four major areas. First are studies on degu stress responses, focusing Keywords: on seasonal changes in glucocorticoid (GC) release, impacts of parental care on offspring GC responses, Agonistic behavior and fitness consequences of individual variations of GC responses. These studies have helped confirm Circadian Female masculinization the ecological relevance of stress responses. Second are studies exploring diurnal circadian rhythms of Glucocorticoid melatonin and sex steroids.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]
  • Cell Populations in the Pineal Gland of the Viscacha (Lagostomus Maximus)
    Histol Histopathol (2003) 18: 827-836 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Cell populations in the pineal gland of the viscacha (Lagostomus maximus). Seasonal variations R. Cernuda-Cernuda1, R.S. Piezzi2, S. Domínguez2 and M. Alvarez-Uría1 1Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain 2Instituto de Histología y Embriología, Universidad Nacional de Cuyo/CONICET, Mendoza, Argentina and 3Cátedra de Histología, Universidad Nacional de San Luis, Argentina Summary. Pineal samples of the viscacha, which were Introduction taken in winter and in summer, were analysed using both light and electron microscopy. The differences found The pineal gland is mainly involved in the between the two seasons were few in number but integration of information about environmental significant. The parenchyma showed two main cell conditions (light, temperature, etc.), and in the populations. Type I cells occupied the largest volume of measurement of photoperiod length (Pévet, 2000). This the pineal and showed the characteristics of typical gland probably signals the enviromental conditions thus pinealocytes. Many processes, some of which were filled making mammals seasonal breeders (Reiter, 1981). The with vesicles, could be seen in intimate contact with the pineal has been thoroughly investigated; however, the neighbouring cells. The presence in the winter samples number of species in which its ultrastructure have been of “synaptic” ribbons and spherules, which were almost studied is a meager 1.5-2% of all mammalians absent in the summer pineals, suggests a seasonal (Bhatnagar, 1992). Previous studies have focused on rhythm. These synaptic-like structures, as well as the domestic and laboratory animals housed in artificially abundant subsurface cisterns present in type I cells, controlled conditions.
    [Show full text]
  • 45763089029.Pdf
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Frugone, María José; Correa, Loreto A; Sobrero, Raúl ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri Mastozoología Neotropical, vol. 26, núm. 2, 2019, Julio-, pp. 487-492 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=45763089029 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Mastozoología Neotropical, 26(2):487-492 Mendoza, 2019 Copyright © SAREM, 2019 Versión on-line ISSN 1666-0536 hp://www.sarem.org.ar hps://doi.org/10.31687/saremMN.19.26.2.0.05 hp://www.sbmz.org Nota ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri María José Frugone1, Loreto A. Correa2,3 and Raúl Sobrero4 1Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 2Escuela de Medicina Veterinaria, Facultad de Ciencias. Universidad Mayor, Santiago, Chile. 3Departamento de Ecología, Facultad de Ciencias, Ponticia Universidad Católica de Chile. 4Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Cientícas y Técnicas (CONICET), Esperanza, Argentina. [Correspondence: Raúl Sobrero <[email protected]>] ABSTRACT. We provide the rst systematic data on behavior and ecology of Aconaemys porteri.
    [Show full text]
  • Comparative Ecology of the Caviomorph Rodent Octodon Degus in Two Chilean Mediterranean-Type Communities
    Revista Chilena de Historia Natural 57: 79-89, 1984 Comparative Ecology of the Caviomorph Rodent Octodon degus in Two Chilean Mediterranean-type Communities Ecologfa comparativa del roedor caviomorfo Octodon degus en dos comunidades mediterráneas de Chile PETER L. MESERVE, ROBERT E. MARTIN and JAIME RODRIGUEZ Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA; and Facultad de Ciencias Agrarias, Veterinarias y Forestales, Universidad de Chile, Casilla 9206, Santiago, Chile RESUMEN El degu (Octodon degus) es el roedor caviomorfo más común que se encuentra en las comunidades de tipo mediterráneo de Chile. Entre 1973 y 1976 se desarrollaron dos estudios sobre el degu; uno de ellos se centro en la zona norte de Chile (Fray Jorge) y el otro en una sabana mediterránea de Chile central (La Dehesa). Aun cuando no fueron simultaneos, en ambos estudios se utilizaron similares metodologias y análisis, permitiendo de este modo la comparacion de resultados sobre tendencias poblacionales, reproducci6n, hábitos alimenticios y caracteristicas de asociaci6n al hábitat. Se observaron densidades máximas de 59-65 individuos/ha en octubre-noviembre como resultado del reclutamiento de juveniles a la poblacion en ambos sitios. Los decrecimientos poblacionales durante los meses de verano se debieron fundamentalmente a la desaparici6n de los juveniles. El apareamiento se desarrollo principalmente en agosto-octubre, con la concepcion en mayo-junio; un segundo episodio reproductivo, que refleja la presencia de estro postparto, ocurri6 en la poblaci6n de La Dehesa en diciembre-enero. El ta- mafio de la camada fue identico en ambas poblaciones.
    [Show full text]
  • Vigilance and Social Foraging in Octodon Degus (Rodentia: Octodontidae) in Central Chile
    Revista Chilena de Historia Natural 70: 557-563, 1997 Vigilance and social foraging in Octodon degus (Rodentia: Octodontidae) in central Chile Vigilancia y forrajeo social en Octodon degus (Rodentia: Octodontidae) en Chile central ROD RI GO A. V ASQUEZ Departamento de Ciencias Eco16gicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. E-mail: rvasquez@ abello.dic. uchile.cl ABSTRACT Social foragers frequently show diminishing levels of per capita vigilance as the group size increases. This phenomenon, called the "group size effect", was studied in a natural population of the caviomorph rodent Octodon degus. Through field observations of groups of different size, I quantified the duration of bouts of vigilance and foraging. Results showed that degus spent significantly less time being vigilant as group size increased, which agrees with the group size effect. The reduction in vigilance was achieved through a decrease in the duration of vigilance bouts as well as in scanning rate. Further, foraging bouts of group members lasted longer with increasing group size. Total group vigilance also increased with group size. Degus adjusted their behavior in similar manner to that of other social feeding species. Time saved from vigilance was allocated to foraging. Group foraging may confer anti-predator as well as short-term feeding advantages to 0. degus. Further studies in this area of research may help to understand the evolution of sociality in this species. Key words: Anti-predator behavior, foraging, group size, Octodon degus, sociality. RESUMEN Con frecuencia, animales que forrajean socialmente muestran niveles menores de vigilancia individual a medida que crece el tamaiio del grupo.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Paleontological and Developmental Evidence Resolve the Homology and Dual Embryonic Origin of a Mammalian Skull Bone, the Interparietal
    Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal Daisuke Koyabua,b,1, Wolfgang Maierc, and Marcelo R. Sánchez-Villagraa,1 aPalaeontological Institute and Museum, University of Zürich, 8006 Zürich, Switzerland; bKyoto University Museum, Kyoto University, Kyoto 606-8501, Japan; and cInstitute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved July 16, 2012 (received for review May 23, 2012) The homologies of mammalian skull elements are now fairly well supraoccipital (17). In contrast to the human pattern, it is gen- established, except for the controversial interparietal bone. A erally regarded for mammals that the interparietal arises in de- previous experimental study reported an intriguing mixed origin velopment as a pair of bones that soon fuse at the midline to form of the interparietal: the medial portion being derived from the a single bone (6, 8, 18). However, the absence of the interparietal neural crest cells, whereas the lateral portion from the mesoderm. has been pointed out in marsupials (11, 18), xenarthrans (19), The evolutionary history of such mixed origin remains unresolved, shrews (4), seals (10), hippopotamuses (10), and pangolins (11). and contradictory reports on the presence or absence and de- The classic work of de Beer (20) reported that the interparietal is velopmental patterns of the interparietal among mammals have lacking in monotremes, bandicoots, armadillos, and pigs. The paucity of appropriate embryonic material across mamma- complicated the question of its homology. Here we provide an lian species has undoubtedly hindered evaluations as to the pri- alternative perspective on the evolutionary identity of the interpar- mordial anlage, general presence, and variation of the interparietal.
    [Show full text]
  • On Mammalian Sperm Dimensions J
    On mammalian sperm dimensions J. M. Cummins and P. F. Woodall Reproductive Biology Group, Department of Veterinary Anatomy, University of Queensland, St Lucia, Queensland4067, Australia Summary. Data on linear sperm dimensions in mammals are presented. There is infor- mation on a total of 284 species, representing 6\m=.\2%of all species; 17\m=.\2%of all genera and 49\m=.\2%of all families have some representation, with quantitative information missing only from the orders Dermoptera, Pholidota, Sirenia and Tubulidentata. In general, sperm size is inverse to body mass (except for the Chiroptera), so that the smallest known spermatozoa are amongst those of artiodactyls and the largest are amongst those of marsupials. Most variations are due to differences in the lengths of midpiece and principal piece, with head lengths relatively uniform throughout the mammals. Introduction There is increasing interest in comparative studies of gametes both from the phylogenetic viewpoint (Afzelius, 1983) and also in the analysis of the evolution of sexual reproduction and anisogamy (Bell, 1982; Parker, 1982). This work emerged as part of a review of the relationship between sperm size and body mass in mammals (Cummins, 1983), in which lack of space precluded the inclusion of raw data. In publishing this catalogue of sperm dimensions we wish to rectify this defect, and to provide a reference point for, and stimulus to, further quantitative work while obviating the need for laborious compilation of raw data. Some aspects of the material presented previously (Cummins, 1983) have been re-analysed in the light of new data. Materials and Methods This catalogue of sperm dimensions has been built up from cited measurements, from personal observations and from communication with other scientists.
    [Show full text]
  • Morphology of the Limbs in the Semi-Fossorial Desert Rodent Species of Tympanoctomys (Octodontidae, Rodentia)
    A peer-reviewed open-access journal ZooKeys 710:Morphology 77–96 (2017) of the limbs in the semi-fossorial desert rodent species of Tympanoctomys... 77 doi: 10.3897/zookeys.710.14033 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, Rodentia) M. Julieta Pérez1, Rubén M. Barquez2, M. Mónica Díaz1,2 1 PIDBA (Programa de Investigaciones de Biodiversidad Argentina), PCMA (Programa de Conservación de los Murciélagos de Argentina), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML-Universidad Nacional de Tucumán. Miguel Lillo 251, 4000. Tucumán, Argentina 2 Fundación Miguel Lillo. Miguel Lillo 205, 4000. Tucumán, Argentina Corresponding author: M. Julieta Pérez ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 June 2017 | Accepted 26 September 2017 | Published 19 October 2017 http://zoobank.org/4E701E29-1D3E-4092-B150-94BD7C52957B Citation: Pérez MJ, Barquez RM, Díaz MM (2017) Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, Rodentia). ZooKeys 710: 77–96. https://doi.org/10.3897/zookeys.710.14033 Abstract Here, a detailed description of the forelimbs and hindlimbs of all living species of the genus Tympa- noctomys are presented. These rodents, highly adapted to desert environments, are semi-fossorial with capacity to move on the surface as well as to build burrows. The shape, structure, and size of the limbs are described. Contrary to what was expected for scratch digging semi-fossorial species, Tympanoctomys have slender humerus, radius and ulna; with narrow epicondyles of the humerus and short olecranon of the ulna with poorly developed processes.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Octodon Bridgesi Waterhouse, 1844 NOMBRE COMÚN: Degú De Bridges
    FICHA DE ANTECEDENTES DE ESPECIE Id especie: NOMBRE CIENTÍFICO: Octodon bridgesi Waterhouse, 1844 NOMBRE COMÚN: degú de Bridges Fotografía de Octodon bridgesi (A. Muñoz-Pedreros 2000) Reino: Animalia Orden: Rodentia Phyllum/División: Chordata Familia: Octodontidae Clase: Mammalia Género: Octodon Sinonimia: Nota Taxonómica: ANTECEDENTES GENERALES Aspectos Morfológicos Su cariotipo es 2n= 58 (NF= 116) (Venegas 1975, Gallardo 1992). Roedor de pelaje más suave y plomizo que Octodon degus. Coloración café ocrácea uniforme, con áreas de tonalidad gris sin variación estacional o etaria. Presenta el pelo más grueso de la familia Octodontidae y Abrocomidae. La coloración gris se basa en eumelaninas negras, que ocupan el lugar de las feomelaninas ocres, imperantes en Octodon degus . Debajo de la región inguinal y axilar se presentan manchas blancas. Orejas grandes. Cola recta (44-46% de la longitud total) con pincel terminal. Patas de color más claro (Muñoz-Pedreros & Murúa 1987, Muñoz-Pedreros 2000). Aspectos Reproductivos y Conductuales En Concepción el peso promedio aumenta en otoño e invierno. Muestra un cronotipo marcadamente nocturno en laboratorio (Chávez et al. 2003), lo que concuerda con lo verificado en terreno en Chile central y el matorral esclerófilo degradado de Concepción. Gran habilidad trepadora la que está influenciada por el diámetro de los troncos y es más diestra, en este sentido, que O. degus (Gallardo-Santi et al. 2005). Su larga cola apoyada en el terreno y no incurvada como Octodon degus colabora con esta habilidad. Suele pasar inadvertido, salvo por agudos gritos de alarma. Se diferencia de O. degus , por su existencia entre rocas y matorrales densos. No es excavador y pareciera construir sus nidos en arbustos o hierbas secas.
    [Show full text]