Postnatal Development of Subterranean Habits in Tuco-Tucos Ctenomys Talarum (Rodentia, Caviomorpha, Ctenomyidae)

Total Page:16

File Type:pdf, Size:1020Kb

Postnatal Development of Subterranean Habits in Tuco-Tucos Ctenomys Talarum (Rodentia, Caviomorpha, Ctenomyidae) J Ethol DOI 10.1007/s10164-015-0453-5 ARTICLE Postnatal development of subterranean habits in tuco-tucos Ctenomys talarum (Rodentia, Caviomorpha, Ctenomyidae) 1 1,2 1,3 Alejandra Isabel Echeverrı´a • Laura Marina Biondi • Federico Becerra • Aldo Iva´n Vassallo1 Received: 14 September 2015 / Accepted: 18 November 2015 Ó Japan Ethological Society and Springer Japan 2015 Abstract Postnatal development of subterranean habits hindfeet as adults do. During lactancy individuals could was investigated in Los Talas’ tuco-tuco Ctenomys construct a simple burrow to shelter, and first burrow talarum, a subterranean caviomorph rodent endemic from construction occurred in the absence of either a burrowing South America. Since in this species, some key morpho- demonstrator or an early subterranean environment (a natal functional traits related to scratch-digging behaviour—a burrow). However, certain features of the complex burrow form of underground progression—are already present system that characterize this species, such as lateral bran- during early ontogeny and develop progressively, we pre- ches and nest chamber, just appeared after weaning. The dicted that this behaviour expresses early during postanatal time elapsed until animals started to dig and the time development and its performance enhances gradually from dedicated to underground activities varied with age, pups to adults. The process of acquisition of different decreasing and increasing, respectively. In sum, our results behaviours associated to the construction of a burrow show that—in C. talarum—immature digging behaviour system was recorded in 11 individuals, each one coming gets expressed early during ontogeny, and develops pro- from different litters, inside a terrarium filled with natural gressively. The role of the early ability to build its own soil. We found that scratch-digging and burrowing beha- burrow and its possible function influencing the develop- viours expressed early during postnatal development, par- ment of musculoskeletal traits and on efficiency for such ticularly, during lactancy. The digging of a ‘‘true burrow’’ conduct is discussed. clearly preceded the dispersal age, with a high inter-indi- vidual variability, from 18 (lactancy) to 47 (post-weaning) Keywords Postnatal ontogeny Á Scratch-digging postnatal days. Pups could lose the soil using their fore- behaviour Á Subterranean rodents Á Tuco-tucos claws and remove the accumulated substrate using their Introduction & Alejandra Isabel Echeverrı´a [email protected] For altricial animals, the initial phase in the ontogeny represents a stage of great vulnerability because younglings 1 Grupo Morfologı´a Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de have to learn and refine survival and reproductive skills Mar del Plata, Consejo Nacional de Investigaciones (Kirkton and Harrison 2006). Thus, investigating beha- Cientı´ficas y Te´cnicas, Dea´n Funes 3250, 2do. Piso, vioural changes during an organism’s development may 7600 Mar del Plata, Argentina provide insights into both the evolution of these behaviours 2 Grupo Vertebrados, Instituto de Investigaciones Marinas y and the differential ecology of various life stages (Stamps Costeras, Universidad Nacional de Mar del Plata, Consejo 2003). For small rodents, running and hiding are the main Nacional de Investigaciones Cientı´ficas y Te´cnicas, Dea´n Funes 3250, 3er. piso, 7600 Mar del Plata, Argentina strategies to protect themselves from predators and burrows offer an excellent protection against most of them (Trill- 3 Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary mich et al. 2003). On the other hand, digging (i.e., to Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany breakup and remove the soil) and burrowing (i.e., to hide in 123 J Ethol burrows, to construct by tunnelling or to progress by or as axial tunnel representing 48 % of the total length, a single if by digging) are common behaviours in many mammals, nest, and a variable number of lateral blind and foraging particularly in arid and semi-arid ecosystems (Nevo 1999; tunnels; Antinuchi and Busch 1992). Although increasing Whitford and Kay 1999). Moreover, the possession of a evidence suggests that several complex behaviours in burrow with stable temperatures underground is especially higher vertebrates are socially transmitted from mother to critical for surviving in zones with great temperature offspring, it was shown that vertical social transmission is fluctuations on the ground surface (Kinlaw 1999). For not essential for the development of subterranean habits in mammals that evolved to live underground, burrows play C. talarum (Vassallo 2006). This rodent is solitary and an important role in their interactions with the environment highly territorial, both sexes and all ages displaying a low (Reig et al. 1990; Lacey et al. 2000), since they serve a vagility, whose individuals do not share burrows except for number of purposes (e.g., thermoregulation, procurement females and their offspring (up until the time of dispersing) and storage of foods, facilitation of social interactions and or at the moment when mating occurs (Busch et al. 1989). mating; see for examples, Fleming and Brown 1975; Elli- Nestlings stay inside the natal burrow during a *2 months son 1995; Ebensperger and Blumstein 2006). Accordingly, period (Zenuto et al. 2002a), which probably determines a subterranean lifestyle has become advantageous for small the species-typical early environmental conditions. They mammals in different phylogenetic lineages, not only show a long gestation period [95 days; (Zenuto et al. because it provides a stable environment but also a shelter 2002b)], and females raise pups in isolation (i.e., without against predators (Antinuchi et al. 2007; Zelova´ et al. any male or conspecific cooperation), which are rather 2010). altricial with respect to the developmental stage at birth Caviomorph rodents (Rodentia, Hystricognathi) repre- (Zenuto et al. 2002a; Cutrera et al. 2003). sent one of the most diverse clades of rodents in terms of Although there are studies on digging behaviour of adult ecology, life history, body size, and locomotor habits tuco-tucos (Camı´n et al. 1995; Giannoni et al. 1996; Vas- (Mares and Ojeda 1982; Vassallo and Antenucci 2015). For sallo 1998), the literature contains little information con- example, the Superfamily Octodontoidea includes aquatic, cerning its postnatal development. Our goal was to arboreal, terrestrial, fossorial, and completely subterranean investigate the postnatal development of subterranean species with wide-ranging climbing and digging special- habits in C. talarum under semi-natural conditions by izations (Morgan 2009; and references therein). Particu- analysing: (i) the first appearance and time course of larly, echimyids (spiny rats) and ctenomyids (tuco-tucos) changes in the ability to break down and remove the soil are the most diverse families of South American cavio- and associated behaviours, (ii) the time course of changes morphs (Parada et al. 2011; Fabre et al. 2013). Ctenomys, in the architecture of the excavated burrow system. Dig- the only living genus of the family Ctenomyidae, is char- ging behaviour is a highly specialized and derived loco- acterized by a high species richness (*60 recognized liv- motor behaviour (Lessa et al. 2008) by which animals ing species; Parada et al. 2011). These species occur over a progress underground by breaking down and removing the wide geographical and environmental range, nevertheless soil. Evidence from postnatal development analyses of they all share adaptations to terrestrial and underground different modes of locomotion in rodents (see Eilam 1997) activity (Camı´n et al. 1995). Los Talas’ tuco-tuco (C. showed that those species with more specialized locomotor talarum Thomas, 1898) inhabits dunes and interdunes at behaviours (e.g., asymmetrical gaits: bound, gallop and Buenos Aires Province (Argentina) and spends most of its bipedal walk) exhibit them late during ontogeny, compared life within plugged burrows (Reig et al. 1990), located to more generalized modes (e.g., symmetrical gaits: lateral parallel to soil surface (Busch et al. 1989; Antinuchi and walk and trot). This fact is partly related to the acquisition Busch 1992). At the morphological level, adult tuco-tucos of certain morphological features (for example, propor- have a robust digging apparatus (forelimbs and skull), tionally longer hindlimbs in jumping species; see Eilam which is specially adapted for loosening and transporting 1997). However, Echeverrı´a et al. (2014) showed that—in the soil (Ferna´ndez et al. 2000; Mora et al. 2003; Morgan C. talarum—some morphological adaptations to scratch- and Verzi 2006; Verzi 2008). Vassallo (1998) found that, digging are already present during early postnatal onto- when confronted with sandy and friable soils, these tuco- geny—suggesting that they are prenatally shaped—and tucos exclusively use their forelimbs—scratch-digging—to develop progressively. Particularly, these authors have break down the soil. Conversely, when it is confronted with shown that the olecranon increasingly elongate, suggesting harder and clayey soils, they behaved as a scratch- and a gradual enhancement in the scratch-digging performance chisel-tooth digger, using also the incisors to dig. This due to an improvement in the mechanical advantage of species builds extensive and elaborated tunnel systems
Recommended publications
  • Stress, Sleep, and Sex: a Review of Endocrinological Research in Octodon Degus ⇑ Carolyn M
    General and Comparative Endocrinology 273 (2019) 11–19 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Stress, sleep, and sex: A review of endocrinological research in Octodon degus ⇑ Carolyn M. Bauer a, , Loreto A. Correa b,c, Luis A. Ebensperger c, L. Michael Romero d a Biology Department, Adelphi University, Garden City, NY, USA b Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile c Departamento de Ecología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile d Department of Biology, Tufts University, Medford, MA, USA article info abstract Article history: The Common Degu (Octodon degus) is a small rodent endemic to central Chile. It has become an important Received 24 December 2017 model for comparative vertebrate endocrinology because of several uncommon life-history features – it is Revised 20 February 2018 diurnal, shows a high degree of sociality, practices plural breeding with multiple females sharing natal Accepted 11 March 2018 burrows, practices communal parental care, and can easily be studied in the laboratory and the field. Available online 12 March 2018 Many studies have exploited these features to make contributions to comparative endocrinology. This review summarizes contributions in four major areas. First are studies on degu stress responses, focusing Keywords: on seasonal changes in glucocorticoid (GC) release, impacts of parental care on offspring GC responses, Agonistic behavior and fitness consequences of individual variations of GC responses. These studies have helped confirm Circadian Female masculinization the ecological relevance of stress responses. Second are studies exploring diurnal circadian rhythms of Glucocorticoid melatonin and sex steroids.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]
  • Cell Populations in the Pineal Gland of the Viscacha (Lagostomus Maximus)
    Histol Histopathol (2003) 18: 827-836 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Cell populations in the pineal gland of the viscacha (Lagostomus maximus). Seasonal variations R. Cernuda-Cernuda1, R.S. Piezzi2, S. Domínguez2 and M. Alvarez-Uría1 1Departamento de Morfología y Biología Celular, Universidad de Oviedo, Spain 2Instituto de Histología y Embriología, Universidad Nacional de Cuyo/CONICET, Mendoza, Argentina and 3Cátedra de Histología, Universidad Nacional de San Luis, Argentina Summary. Pineal samples of the viscacha, which were Introduction taken in winter and in summer, were analysed using both light and electron microscopy. The differences found The pineal gland is mainly involved in the between the two seasons were few in number but integration of information about environmental significant. The parenchyma showed two main cell conditions (light, temperature, etc.), and in the populations. Type I cells occupied the largest volume of measurement of photoperiod length (Pévet, 2000). This the pineal and showed the characteristics of typical gland probably signals the enviromental conditions thus pinealocytes. Many processes, some of which were filled making mammals seasonal breeders (Reiter, 1981). The with vesicles, could be seen in intimate contact with the pineal has been thoroughly investigated; however, the neighbouring cells. The presence in the winter samples number of species in which its ultrastructure have been of “synaptic” ribbons and spherules, which were almost studied is a meager 1.5-2% of all mammalians absent in the summer pineals, suggests a seasonal (Bhatnagar, 1992). Previous studies have focused on rhythm. These synaptic-like structures, as well as the domestic and laboratory animals housed in artificially abundant subsurface cisterns present in type I cells, controlled conditions.
    [Show full text]
  • 45763089029.Pdf
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Frugone, María José; Correa, Loreto A; Sobrero, Raúl ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri Mastozoología Neotropical, vol. 26, núm. 2, 2019, Julio-, pp. 487-492 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=45763089029 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Mastozoología Neotropical, 26(2):487-492 Mendoza, 2019 Copyright © SAREM, 2019 Versión on-line ISSN 1666-0536 hp://www.sarem.org.ar hps://doi.org/10.31687/saremMN.19.26.2.0.05 hp://www.sbmz.org Nota ACTIVITY AND GROUP-LIVING IN THE PORTER’S ROCK RATS, Aconaemys porteri María José Frugone1, Loreto A. Correa2,3 and Raúl Sobrero4 1Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. 2Escuela de Medicina Veterinaria, Facultad de Ciencias. Universidad Mayor, Santiago, Chile. 3Departamento de Ecología, Facultad de Ciencias, Ponticia Universidad Católica de Chile. 4Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Cientícas y Técnicas (CONICET), Esperanza, Argentina. [Correspondence: Raúl Sobrero <[email protected]>] ABSTRACT. We provide the rst systematic data on behavior and ecology of Aconaemys porteri.
    [Show full text]
  • Comparative Ecology of the Caviomorph Rodent Octodon Degus in Two Chilean Mediterranean-Type Communities
    Revista Chilena de Historia Natural 57: 79-89, 1984 Comparative Ecology of the Caviomorph Rodent Octodon degus in Two Chilean Mediterranean-type Communities Ecologfa comparativa del roedor caviomorfo Octodon degus en dos comunidades mediterráneas de Chile PETER L. MESERVE, ROBERT E. MARTIN and JAIME RODRIGUEZ Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA; and Facultad de Ciencias Agrarias, Veterinarias y Forestales, Universidad de Chile, Casilla 9206, Santiago, Chile RESUMEN El degu (Octodon degus) es el roedor caviomorfo más común que se encuentra en las comunidades de tipo mediterráneo de Chile. Entre 1973 y 1976 se desarrollaron dos estudios sobre el degu; uno de ellos se centro en la zona norte de Chile (Fray Jorge) y el otro en una sabana mediterránea de Chile central (La Dehesa). Aun cuando no fueron simultaneos, en ambos estudios se utilizaron similares metodologias y análisis, permitiendo de este modo la comparacion de resultados sobre tendencias poblacionales, reproducci6n, hábitos alimenticios y caracteristicas de asociaci6n al hábitat. Se observaron densidades máximas de 59-65 individuos/ha en octubre-noviembre como resultado del reclutamiento de juveniles a la poblacion en ambos sitios. Los decrecimientos poblacionales durante los meses de verano se debieron fundamentalmente a la desaparici6n de los juveniles. El apareamiento se desarrollo principalmente en agosto-octubre, con la concepcion en mayo-junio; un segundo episodio reproductivo, que refleja la presencia de estro postparto, ocurri6 en la poblaci6n de La Dehesa en diciembre-enero. El ta- mafio de la camada fue identico en ambas poblaciones.
    [Show full text]
  • Vigilance and Social Foraging in Octodon Degus (Rodentia: Octodontidae) in Central Chile
    Revista Chilena de Historia Natural 70: 557-563, 1997 Vigilance and social foraging in Octodon degus (Rodentia: Octodontidae) in central Chile Vigilancia y forrajeo social en Octodon degus (Rodentia: Octodontidae) en Chile central ROD RI GO A. V ASQUEZ Departamento de Ciencias Eco16gicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. E-mail: rvasquez@ abello.dic. uchile.cl ABSTRACT Social foragers frequently show diminishing levels of per capita vigilance as the group size increases. This phenomenon, called the "group size effect", was studied in a natural population of the caviomorph rodent Octodon degus. Through field observations of groups of different size, I quantified the duration of bouts of vigilance and foraging. Results showed that degus spent significantly less time being vigilant as group size increased, which agrees with the group size effect. The reduction in vigilance was achieved through a decrease in the duration of vigilance bouts as well as in scanning rate. Further, foraging bouts of group members lasted longer with increasing group size. Total group vigilance also increased with group size. Degus adjusted their behavior in similar manner to that of other social feeding species. Time saved from vigilance was allocated to foraging. Group foraging may confer anti-predator as well as short-term feeding advantages to 0. degus. Further studies in this area of research may help to understand the evolution of sociality in this species. Key words: Anti-predator behavior, foraging, group size, Octodon degus, sociality. RESUMEN Con frecuencia, animales que forrajean socialmente muestran niveles menores de vigilancia individual a medida que crece el tamaiio del grupo.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Habitat-Specific Fitness Benefits of Sociality in Octodon Degus
    HABITAT-SPECIFIC FITNESS BENEFITS OF SOCIALITY IN OCTODON DEGUS BY MADELINE KLEES STROM Loren Hayes Hope Klug Associate Professor Associate Professor Biology, Geology, and Environmental Science Biology, Geology, and Environmental Science (Advisor) (Committee Member) Mark Schorr Professor Biology, Geology, and Environmental Science (Committee Member) HABITAT-SPECIFIC FITNESS BENEFITS OF SOCIALITY IN OCTODON DEGUS BY MADELINE KLEES STROM A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee August 2017 iii Copyright © 2017 By Madeline Klees Strom All Rights Reserved iv ABSTRACT Recent debate has focused on how ecology shapes the evolution of group-living and cooperation in social vertebrates. Evidence suggests that group-living and cooperation enhance reproductive success under harsh local conditions in some species. Across two years, I studied two populations of Octodon degus, a plurally breeding rodent, to answer three questions: (1) Does living in large groups and having strong social network strength improve access to resources in harsh environments? (2) Does increased access to resources improve the reproductive success of group-living females? (3) Does living in large groups and having strong social network strength improve reproductive success of females in harsh environments? I quantified group sizes and social network strength, ecological conditions at burrow systems, and per capita offspring weaned of social groups to answer these questions. I found site- and year-specific relationships in partial support of predictions, demonstrating habitat-specific costs and benefits of social group-living and cooperation.
    [Show full text]
  • Paleontological and Developmental Evidence Resolve the Homology and Dual Embryonic Origin of a Mammalian Skull Bone, the Interparietal
    Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal Daisuke Koyabua,b,1, Wolfgang Maierc, and Marcelo R. Sánchez-Villagraa,1 aPalaeontological Institute and Museum, University of Zürich, 8006 Zürich, Switzerland; bKyoto University Museum, Kyoto University, Kyoto 606-8501, Japan; and cInstitute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany Edited by Clifford J. Tabin, Harvard Medical School, Boston, MA, and approved July 16, 2012 (received for review May 23, 2012) The homologies of mammalian skull elements are now fairly well supraoccipital (17). In contrast to the human pattern, it is gen- established, except for the controversial interparietal bone. A erally regarded for mammals that the interparietal arises in de- previous experimental study reported an intriguing mixed origin velopment as a pair of bones that soon fuse at the midline to form of the interparietal: the medial portion being derived from the a single bone (6, 8, 18). However, the absence of the interparietal neural crest cells, whereas the lateral portion from the mesoderm. has been pointed out in marsupials (11, 18), xenarthrans (19), The evolutionary history of such mixed origin remains unresolved, shrews (4), seals (10), hippopotamuses (10), and pangolins (11). and contradictory reports on the presence or absence and de- The classic work of de Beer (20) reported that the interparietal is velopmental patterns of the interparietal among mammals have lacking in monotremes, bandicoots, armadillos, and pigs. The paucity of appropriate embryonic material across mamma- complicated the question of its homology. Here we provide an lian species has undoubtedly hindered evaluations as to the pri- alternative perspective on the evolutionary identity of the interpar- mordial anlage, general presence, and variation of the interparietal.
    [Show full text]
  • On Mammalian Sperm Dimensions J
    On mammalian sperm dimensions J. M. Cummins and P. F. Woodall Reproductive Biology Group, Department of Veterinary Anatomy, University of Queensland, St Lucia, Queensland4067, Australia Summary. Data on linear sperm dimensions in mammals are presented. There is infor- mation on a total of 284 species, representing 6\m=.\2%of all species; 17\m=.\2%of all genera and 49\m=.\2%of all families have some representation, with quantitative information missing only from the orders Dermoptera, Pholidota, Sirenia and Tubulidentata. In general, sperm size is inverse to body mass (except for the Chiroptera), so that the smallest known spermatozoa are amongst those of artiodactyls and the largest are amongst those of marsupials. Most variations are due to differences in the lengths of midpiece and principal piece, with head lengths relatively uniform throughout the mammals. Introduction There is increasing interest in comparative studies of gametes both from the phylogenetic viewpoint (Afzelius, 1983) and also in the analysis of the evolution of sexual reproduction and anisogamy (Bell, 1982; Parker, 1982). This work emerged as part of a review of the relationship between sperm size and body mass in mammals (Cummins, 1983), in which lack of space precluded the inclusion of raw data. In publishing this catalogue of sperm dimensions we wish to rectify this defect, and to provide a reference point for, and stimulus to, further quantitative work while obviating the need for laborious compilation of raw data. Some aspects of the material presented previously (Cummins, 1983) have been re-analysed in the light of new data. Materials and Methods This catalogue of sperm dimensions has been built up from cited measurements, from personal observations and from communication with other scientists.
    [Show full text]
  • Morphology of the Limbs in the Semi-Fossorial Desert Rodent Species of Tympanoctomys (Octodontidae, Rodentia)
    A peer-reviewed open-access journal ZooKeys 710:Morphology 77–96 (2017) of the limbs in the semi-fossorial desert rodent species of Tympanoctomys... 77 doi: 10.3897/zookeys.710.14033 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, Rodentia) M. Julieta Pérez1, Rubén M. Barquez2, M. Mónica Díaz1,2 1 PIDBA (Programa de Investigaciones de Biodiversidad Argentina), PCMA (Programa de Conservación de los Murciélagos de Argentina), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML-Universidad Nacional de Tucumán. Miguel Lillo 251, 4000. Tucumán, Argentina 2 Fundación Miguel Lillo. Miguel Lillo 205, 4000. Tucumán, Argentina Corresponding author: M. Julieta Pérez ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 June 2017 | Accepted 26 September 2017 | Published 19 October 2017 http://zoobank.org/4E701E29-1D3E-4092-B150-94BD7C52957B Citation: Pérez MJ, Barquez RM, Díaz MM (2017) Morphology of the limbs in the semi-fossorial desert rodent species of Tympanoctomys (Octodontidae, Rodentia). ZooKeys 710: 77–96. https://doi.org/10.3897/zookeys.710.14033 Abstract Here, a detailed description of the forelimbs and hindlimbs of all living species of the genus Tympa- noctomys are presented. These rodents, highly adapted to desert environments, are semi-fossorial with capacity to move on the surface as well as to build burrows. The shape, structure, and size of the limbs are described. Contrary to what was expected for scratch digging semi-fossorial species, Tympanoctomys have slender humerus, radius and ulna; with narrow epicondyles of the humerus and short olecranon of the ulna with poorly developed processes.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]