ELEC3221 Digital IC & Sytems Design Iain Mcnally Koushik Maharatna Basel Halak ELEC3221 / ELEC6241 Digital IC & Sytems D

Total Page:16

File Type:pdf, Size:1020Kb

ELEC3221 Digital IC & Sytems Design Iain Mcnally Koushik Maharatna Basel Halak ELEC3221 / ELEC6241 Digital IC & Sytems D ELEC3221 ELEC3221 / ELEC6241- module merge for 2016/2017 Digital IC & Sytems Design Digital IC & Sytems Design SoC Design Techniques Iain McNally Iain McNally 10 lectures 10 lectures ≈ ≈ Koushik Maharatna Koushik Maharatna 12 lectures 12 lectures ≈ ≈ Basel Halak Basel Halak 12 lectures 12 lectures ≈ ≈ 1001 1001 ELEC3221 / ELEC6241 Digital IC & Sytems Design Assessment Digital IC & Sytems Design • SoC Design Techniques 10% Coursework L-Edit Gate Design (BIM) 90% Examination Iain McNally Books • 10 lectures ≈ Integrated Circuit Design Koushik Maharatna a.k.a. Principles of CMOS VLSI Design - A Circuits and Systems Perspective Neil Weste & David Harris 12 lectures ≈ Pearson, 2011 Basel Halak Digital System Design with SystemVerilog Mark Zwolinski 12 lectures ≈ Pearson Prentice-Hall, 2010 1001 1002 Digital IC & Sytems Design History Iain McNally 1947 First Transistor Integrated Circuit Design John Bardeen, Walter Brattain, and William Shockley (Bell Labs) Content • 1952 Integrated Circuits Proposed – Introduction Geoffrey Dummer (Royal Radar Establishment) - prototype failed... – Overview of Technologies 1958 First Integrated Circuit – Layout Jack Kilby (Texas Instruments) - Co-inventor – CMOS Processing 1959 First Planar Integrated Circuit – Design Rules and Abstraction Robert Noyce (Fairchild) - Co-inventor – Cell Design and Euler Paths – System Design using Standard Cells 1961 First Commercial ICs – Wider View Simple logic functions from TI and Fairchild Notes & Resources 1965 Moore’s Law • http://users.ecs.soton.ac.uk/bim/notes/icd Gordon Moore (Fairchild) observes the trends in integration. 1003 1004 History 1947 Point Contact Transistor Collector Emitter 1947 First Transistor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) Base 1952 Integrated Circuits Proposed Geoffrey Dummer (Royal Radar Establishment) - prototype failed... 1958 First Integrated Circuit Jack Kilby (Texas Instruments) - Co-inventor Gold Point Contacts 1959 First Planar Integrated Circuit for Collector Robert Noyce (Fairchild) - Co-inventor and Emitter 1961 First Commercial ICs Simple logic functions from TI and Fairchild Germanium Base N 1965 Moore’s Law Gordon Moore (Fairchild) observes the trends in integration. Each contact creates a metal/semiconductor (Schottky) diode Depletion regions are shown for zero bias voltage. 1004 Source: Bell Labs History 1958 First Integrated Circuit 1 Transistor 1947 First Transistor 1 Capacitor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) 3 Resistors 1952 Integrated Circuits Proposed Hand soldered interconnect Geoffrey Dummer (Royal Radar Establishment) - prototype failed... 1958 First Integrated Circuit Source: Texas Instruments Jack Kilby (Texas Instruments) - Co-inventor 1959 First Planar Integrated Circuit Robert Noyce (Fairchild) - Co-inventor 1961 First Commercial ICs Simple logic functions from TI and Fairchild 1965 Moore’s Law Gordon Moore (Fairchild) observes the trends in integration. 1004 Source: Jack Kilby (Patent Application) History History 1947 First Transistor 1947 First Transistor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) John Bardeen, Walter Brattain, and William Shockley (Bell Labs) 1952 Integrated Circuits Proposed 1952 Integrated Circuits Proposed Geoffrey Dummer (Royal Radar Establishment) - prototype failed... Geoffrey Dummer (Royal Radar Establishment) - prototype failed... 1958 First Integrated Circuit 1958 First Integrated Circuit Jack Kilby (Texas Instruments) - Co-inventor Jack Kilby (Texas Instruments) - Co-inventor 1959 First Planar Integrated Circuit 1959 First Planar Integrated Circuit Robert Noyce (Fairchild) - Co-inventor Robert Noyce (Fairchild) - Co-inventor 1961 First Commercial ICs 1961 First Commercial ICs Simple logic functions from TI and Fairchild Simple logic functions from TI and Fairchild 1965 Moore’s Law 1965 Moore’s Law Gordon Moore (Fairchild) observes the trends in integration. Gordon Moore (Fairchild) observes the trends in integration. 1004 1004 History 1947 First Transistor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) 1952 Integrated Circuits Proposed Geoffrey Dummer (Royal Radar Establishment) - prototype failed... 1958 First Integrated Circuit Jack Kilby (Texas Instruments) - Co-inventor 1959 First Planar Integrated Circuit Robert Noyce (Fairchild) - Co-inventor 1961 First Commercial ICs Simple logic functions from TI and Fairchild 1965 Moore’s Law Source: Fairchild Gordon Moore (Fairchild) observes the trends in integration. 1004 1961 First Commercial ICs Using Planar Bipolar Transistors R Q Fairchild Bipolar RTL RS Flip−Flop Q S Source: Fairchild Back to back PN junctions to provide isolation Integrated interconnect Resistor Transistor Logic VCC Z Source: Robert Noyce (Patent Application) AB Source: Fairchild RTL NOR gate History 1947 First Transistor John Bardeen, Walter Brattain, and William Shockley (Bell Labs) 1952 Integrated Circuits Proposed Geoffrey Dummer (Royal Radar Establishment) - prototype failed... 1958 First Integrated Circuit Jack Kilby (Texas Instruments) - Co-inventor 1959 First Planar Integrated Circuit Robert Noyce (Fairchild) - Co-inventor 1961 First Commercial ICs Simple logic functions from TI and Fairchild 1965 Moore’s Law Source: Intel Gordon Moore (Fairchild) observes the trends in integration. 1004 History History Moore’s Law 1 Predicts exponential growth in the number of components per chip. Moore’s Law at Intel 18−core Xeon E5 v3 10,000,000,000 1965 - 1975 Doubling Every Year 22−core Dual Core Itantium 2 10−core XeonXeon E5 1,000,000,000 In 1965 Gordon Moore observed that the number of components per chip had Itantium 2 Westfield−Ex Itantium doubled every year since 1959 and predicted that the trend would continue 100,000,000 through to 1975. Pentium 4 Pentium III 10,000,000 Moore describes his initial growth predictions as ”ridiculously precise”. Pentium II Pentium 1,000,000 486 DX 1975 - 201? Doubling Every Two Years 286 386 100,000 In 1975 Moore revised growth predictions to doubling every two years. 8086 10,000 Growth would now depend only on process improvements rather than on 4004 8080 8008 more efficient packing of components. 1,000 1970 1980 1990 2000 2010 In 2000 he predicted that the growth would continue at the same rate for an- other 10-15 years before slowing due to physical limits. 1Intel was founded by Gordon Moore and Robert Noyce from Fairchild 1005 1006 History Moore’s Law; a Self-fulfilling Prophesy The whole industry uses the Moore’s Law curve to plan new fabrication facilities. Slower - wasted investment Must keep up with the Joneses2. Faster - too costly Cost of capital equipment to build ICs doubles approximately ev- ery 4 years. Moore’s law is not dead (at least not quite), although there are worries that below 20nm, clever processing required for smaller transistors means that cost per transistor goes up rather than down. 2or the Intels 1007 1947 Point Contact transistor1961 Fairchild Bipolar RTL RS Flip−Flop (4 Transistors) Source: Bell Labs Source: Fairchild Moore’s Law (1965) Number of transistor has doubled every year and will continue to do so until 1975 Moore’s Law (1975) Number of transistors will double every two years 18−core Xeon E5 v3 10,000,000,000 22−core Dual Core Itantium 2 Xeon E5 1,000,000,000 10−core Xeon Itantium 2 Westfield−Ex Itantium Self−fulfilling 100,000,000 Pentium 4 Prophecy Pentium III 10,000,000 Pentium II Pentium 1,000,000 486 DX 286 386 100,000 8086 10,000 4004 8080 8008 1,000 1970 1980 1990 2000 2010 1000.
Recommended publications
  • ECE Illinois WINTER2005.Indd
    Electrical and Computer Engineering Alumni News ECE Alumni Association newsletter University of Illinois at Urbana-Champaign Winter 2005-2006 Jack Kilby, 1923–2005 Volume XL Cancer claims Nobel laureate, ECE alumnus By Laura Schmitt and Jamie Hutchinson Inside this issue Microchip inventor and Nobel physics laureate DEPARTMENT HEAD’S Jack Kilby (BSEE ’47) died from cancer on MESSAGE June 22, 2005. He was 81. Kilby received the 2000 Nobel Prize in 2 Physics on December 10, 2001, in an award ceremony in Stockholm, Sweden. Kilby was ROOM-TEMPERATURE LASER recognized for his part in the invention and 4 development of the integrated circuit, which he first demonstrated on September 12, 1958, while at Texas Instruments. At the Nobel awards ceremony, Royal Swedish Academy member Tord Claesen called that date “one of the most important birth dates in the history of technology.” A measure of Kilby’s importance can be seen in the praise that was lavished on him in death. Lengthy obituaries appeared in engi- Jack Kilby neering and science trade publications as well FEATURED ALUMNI CAREERS as in major newspapers worldwide, including where his interest in electricity and electron- the New York Times, Financial Times, and The ics blossomed at an early age. His father ran a 29 Economist. On June 24, ABC News honored power company that served a wide area in rural Kilby by naming him its Person of the Week. Kansas, and he used amateur radio to keep in Reporter Elizabeth Vargas introduced the contact with customers during emergencies. segment by noting that Kilby’s invention During an ice storm, the teenage Kilby saw “had a direct effect on billions of people in the firsthand how electronic technology could world,” despite his relative anonymity among positively impact people’s lives.
    [Show full text]
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Emerging Physics a Fresh Approach to Viewing the Complexity of the Universe
    GETTY IMAGES Emerging physics A fresh approach to viewing the complexity of the Universe. A Different Universe: Reinventing (an analogy that Robert Laughlin draws from with those of life,the biomolecules,for which Physics from the Bottom Down Christina Rossetti’s poem Who Has Seen the he has considerable admiration.Then we hear by Robert Laughlin Wind?). Our identity and perceptions are his own ideas on biology, which will not be Basic Books: 2005. 304 pp. $26, £19.99 all the collective behaviour of ‘ghosts’, who to everyone’s taste but are certainly thought- Philip Anderson borrow their reality from each other. provoking. Finally, his view of complexity Laughlin gives the reader a quick tour science surprised and pleased me with its I should make my interests clear right at the through much of physics (without a single relative benevolence. start. For many years I have thought that a equation). There is a slight emphasis on the Despite the above fulsome praise, this is book such as this should be written, and quantum theory of condensed matter, in so not by any means a perfect book, even for its have been urged to write it myself. I didn’t far as it explains such things as computers purpose.Laughlin is not reliably careful with do so, and couldn’t possibly have written (with a sceptical side glance at quantum facts, whether scientific or historical. For one as suited as this is for its target audience. computation), the properties of ordinary example, it has rhetorical value to give his A Different Universe is a book about what metals, and the like.
    [Show full text]
  • Fpgas As Components in Heterogeneous HPC Systems: Raising the Abstraction Level of Heterogeneous Programming
    FPGAs as Components in Heterogeneous HPC Systems: Raising the Abstraction Level of Heterogeneous Programming Wim Vanderbauwhede School of Computing Science University of Glasgow A trip down memory lane 80 Years ago: The Theory Turing, Alan Mathison. "On computable numbers, with an application to the Entscheidungsproblem." J. of Math 58, no. 345-363 (1936): 5. 1936: Universal machine (Alan Turing) 1936: Lambda calculus (Alonzo Church) 1936: Stored-program concept (Konrad Zuse) 1937: Church-Turing thesis 1945: The Von Neumann architecture Church, Alonzo. "A set of postulates for the foundation of logic." Annals of mathematics (1932): 346-366. 60-40 Years ago: The Foundations The first working integrated circuit, 1958. © Texas Instruments. 1957: Fortran, John Backus, IBM 1958: First IC, Jack Kilby, Texas Instruments 1965: Moore’s law 1971: First microprocessor, Texas Instruments 1972: C, Dennis Ritchie, Bell Labs 1977: Fortran-77 1977: von Neumann bottleneck, John Backus 30 Years ago: HDLs and FPGAs Algotronix CAL1024 FPGA, 1989. © Algotronix 1984: Verilog 1984: First reprogrammable logic device, Altera 1985: First FPGA,Xilinx 1987: VHDL Standard IEEE 1076-1987 1989: Algotronix CAL1024, the first FPGA to offer random access to its control memory 20 Years ago: High-level Synthesis Page, Ian. "Closing the gap between hardware and software: hardware-software cosynthesis at Oxford." (1996): 2-2. 1996: Handel-C, Oxford University 2001: Mitrion-C, Mitrionics 2003: Bluespec, MIT 2003: MaxJ, Maxeler Technologies 2003: Impulse-C, Impulse Accelerated
    [Show full text]
  • Kansas Inventors and Innovators Fourth Grade
    Kansas Inventors and Innovators Fourth Grade Developed for Kansas Historical Society at the Library of Congress, Midwest Region Workshop “It’s Elementary: Teaching with Primary Sources” 2012 Terry Healy Woodrow Wilson School, USD 383, Manhattan Overview This lesson is designed to teach students about inventors and innovators of Kansas. Students will read primary sources about Jack St. Clair Kilby, Clyde Tombaugh, George Washington Carver, and Walter P. Chrysler. Students will use a document analysis sheet to record information before developing a Kansas Innovator card. Standards History: Benchmark 1, Indicator 1 The student researches the contributions made by notable Kansans in history. Benchmark 4, Indicator 4 The student identifies and compares information from primary and secondary sources (e.g., photographs, diaries/journals, newspapers, historical maps). Common Core ELA Reading: Benchmark RI.4.9 The student integrates information from two texts on the same topic in order to write or speak about the subject knowledgably. Benchmark RI.4.10. By the end of year, read and comprehend informational texts, including history/social studies, science, and technical texts, in the grades 4–5 text complexity band proficiently, with scaffolding as needed at the high end of the range. Objectives Content The student will summarize and present information about a Kansas inventor/innovator. 1 Skills The student will analyze and summarize primary and secondary sources to draw conclusions. Essential Questions How do we know about past inventions and innovations? What might inspire or spark the creation of an invention or innovation? How do new inventions or innovations impact our lives? Resource Table Image Description Citation URL Photograph of Jack Photograph of Jack http://kshs.org/kans Kilby (Handout 1) Kilby, Kansapedia, apedia/jack-st-clair- from Texas Kansas Historical kilby/12125 Instruments Society (Topeka, Kansas) Photo originally from Texas Instruments.
    [Show full text]
  • William Bradford Shockley
    William Bradford Shockley Born February 13, 1910, London, UK- died 1989, Santa Clara, Calif.; with Walter Brattain and John Bardeen, inventor of the transistor in 1947, the 1956 Nobel laureate. Education: BS, physics, California Institute of Technology, 1932; PhD, physics, MIT, 1936. Professional Experience: Bell Telephone Laboratories: member, Technical Staff, 1936- 1942 and 1945-1954, director, Transistor Physics Research Facility, 1954; director of research, Antisubmarine Warfare Operations Research Group, US Navy, 1942-1944; founder, Shockley Semiconductor Laboratory, 1954-1989; Stanford University: lecturer, 1958-1963, Alexander M. Poniatoff Professor of Engineering Science and Applied Science, 1963-1975, professor emeritus, 1975-1989. Honors and Awards: Nobel Prize in physics,1 1956. Co-inventor of the transistor in 1947 with John Bardeen and Walter Brattian, Shockley participated in one of the most important discoveries of the century. They applied for a patent in 1948; this device was described as a germanium “transfer resistance” unit, from which the name “transistor” was derived. Shockley continued his research on the device to create the germanium junction transfer transistor, which was much more reliable than the first unit. From this start he founded Shockley Semiconductor Laboratories in Santa Clara Valley in 1954. After he received the Nobel Prize in 1956, disenchantment with Shockley's management style and his propensity for pure research led to the defection of the “Fairchild Eight” in 1957, and the deterioration of his company. His controversial views on genetics and his racist theories have shocked the society around him, but he has continued his research into “grave world problems.” QUOTATION “The only heritage I can leave to Billy is the feeling of power and joy of responsibility for setting the world right on something.” (Shockley's mother, about her 8-year-old son) BIBLIOGRAPHY Biographical 1 Jointly with John Bardeen and Walter H.
    [Show full text]
  • Guide to the Jack Kilby, Manuscript
    Guide to the Jack Kilby, Manuscript NMAH.AC.0798 NMAH Staff Archives Center, National Museum of American History P.O. Box 37012 Suite 1100, MRC 601 Washington, D.C. 20013-7012 [email protected] http://americanhistory.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents note................................................................................................ 2 Arrangement..................................................................................................................... 2 Biographical/Historical note.............................................................................................. 1 Names and Subjects ...................................................................................................... 2 Container Listing ...................................................................................................... Jack Kilby, Manuscript NMAH.AC.0798 Collection Overview Repository: Archives Center, National Museum of American History Title: Jack Kilby, Manuscript Identifier: NMAH.AC.0798 Date: 1951. Creator: Johnson Controls. (5757 North Green Bay Avenue, Glendale, Illinois 53209) Kilby, Jack Extent: 0.05 Cubic feet (1 folder) Language: English . Administrative Information Immediate Source of Acquisiton Collection donated by Jack Kilby and
    [Show full text]
  • Integrated Circuit
    PREMLILA VITHALDAS POLYTECHNIC S. N. D. T. Women’s University, Juhu Campus, Santacruz (West), Mumbai- 400 049. Maharashtra (INDIA). Integrated Circuit PREPARED BY Miss. Rohini A. Mane (G. R. No.: 15070113) Miss. Anjali J. Maurya (G. R. No.: 15070114) Miss. Tejal S. Mejari (G. R. No.: 15070115) . Diploma in Electronics: Semester VII (June - November 2018) Introduction: History: The separately manufactured components like An integrated circuit is a thin slice of silicon resistor, capacitor, diode, and transistor are joined by or sometimes another material that has been specially wires or by printed circuit boards (PCB) to form processed so that a tiny electric circuit is etched on its circuit. These circuits are called discrete circuits and surface. The circuit can have many millions of they have following disadvantages. microscopic individual elements, including 1. In a large electronic circuit, there may be very transistors, resistors, capacitors, and conductors, all large number of components and as a result electrically connected in a certain way to perform the discrete assembly will occupy very large some useful function. space. 2. They are formed by soldering which causes a problem of reliability. To overcome these problems of space conservation and reliability the integrated circuit were developed(IC). Figure2 The first Integrated circuit The first integrated circuits were based on the idea that the same process used to make clusters of transistors on silicon wafers might be used to make a functional circuit, such as an amplifier circuit or a computer logic circuit. Slices of the semiconductor Figure1 Integrated Circuit materials silicon and germanium were already being printed with patterns, the exposed surfaces etched with An integrated circuit (IC), sometimes called a chemicals, and then the pattern removed, leaving chip or microchip, is a semiconductor wafer on which dozens of individual transistors, ready to be sliced up thousands or millions of tiny resistors, capacitors, and and packed individually.
    [Show full text]
  • Transistors to Integrated Circuits
    resistanc collectod ean r capacit foune yar o t d commercial silicon controlled rectifier, today's necessarye b relative .Th e advantage lineaf so r thyristor. This later wor alss kowa r baseou n do and circular structures are considered both for 1956 research [19]. base resistanc r collectofo d an er capacity. Parameters, which are expected to affect the In the process of diffusing the p-type substrate frequency behavior considerede ar , , including wafer into an n-p-n configuration for the first emitter depletion layer capacity, collector stage of p-n-p-n construction, particularly in the depletion layer capacit diffusiod yan n transit redistribution "drive-in" e donophasth f ro e time. Finall parametere yth s which mighe b t diffusion at higher temperature in a dry gas obtainabl comparee ear d with those needer dfo ambient (typically > 1100°C in H2), Frosch a few typical switching applications." would seriously damag r waferseou wafee Th . r surface woul e erodedb pittedd an d r eveo , n The Planar Process totally destroyed. Every time this happenee dth s e apparenlosexpressiowa th s y b tn o n The development of oxide masking by Frosch Frosch' smentiono t face t no , ourn o , s (N.H.). and Derick [9,10] on silicon deserves special We would make some adjustments, get more attention inasmuch as they anticipated planar, oxide- silicon wafers ready, and try again. protected device processing. Silicon is the key ingredien oxids MOSFEr it fo d ey an tpave wa Te dth In the early Spring of 1955, Frosch commented integrated electronics [22].
    [Show full text]
  • Matse Alumni News/Winter 2005 University of Illinois at Urbana-Champaign 1 Contents 3 Message from the Department Head
    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Mat SE Department of Materials Science and Illinois Engineering WINTER 2005 ALUMNI NEWS New diffraction techniques improve sensitivity to small structures John Rogers listed in 2005 Scientific American 50 MatSE Alumni News/Winter 2005 University of Illinois at Urbana-Champaign 1 Contents 3 Message from the Department Head 4 Electron nanodiffraction techniques reveal new structures 5 Alumni awards 6 Awards banquet 6 7-8 Student awards 9 New faculty: Jianjun Cheng 10 Nestor Zaluzec honored by College 11-13 FY05 donors recognized 14 In memoriam: Earl Eckel 7 15 Where are our alumni? 16 Department notes 17 John Rogers in the 2005 Scientifi c American 50 18 Obituaries 19 Class notes 19 20 Flashback Published twice annually by the University of Illinois Department of Materials Science and Engineering for its alumni, faculty and friends. All ideas expressed in Materials Science & Engineering Alumni News are those of the authors or editor and do not necessarily refl ect the offi cial position of either the alumni or the Department of Materials Science and Engineering at the University of Illinois. On the Cover Correspondence concerning the MatSE Department Head Alumni News should be sent to: Ian Robertson The development and understanding of nanomaterials for nanotechnology rely critically on high-resolution The Editor structural characterization of individual nanostruc- MatSE Alumni News Associate Heads tures. Structure characterization tools, such as diffrac- 201B MSEB Phil Geil, Angus Rockett tion, need to be developed and adapted to nanoscale re- 1304 West Green Street quirements. The image on the cover shows single-wall Urbana, IL 61801 Assistant to the Head carbon nanotube bundles from NASA Johnson Space Jay Menacher Center.
    [Show full text]
  • Liste Der Nobelpreisträger
    Physiologie Wirtschafts- Jahr Physik Chemie oder Literatur Frieden wissenschaften Medizin Wilhelm Henry Dunant Jacobus H. Emil von Sully 1901 Conrad — van ’t Hoff Behring Prudhomme Röntgen Frédéric Passy Hendrik Antoon Theodor Élie Ducommun 1902 Emil Fischer Ronald Ross — Lorentz Mommsen Pieter Zeeman Albert Gobat Henri Becquerel Svante Niels Ryberg Bjørnstjerne 1903 William Randal Cremer — Pierre Curie Arrhenius Finsen Bjørnson Marie Curie Frédéric John William William Mistral 1904 Iwan Pawlow Institut de Droit international — Strutt Ramsay José Echegaray Adolf von Henryk 1905 Philipp Lenard Robert Koch Bertha von Suttner — Baeyer Sienkiewicz Camillo Golgi Joseph John Giosuè 1906 Henri Moissan Theodore Roosevelt — Thomson Santiago Carducci Ramón y Cajal Albert A. Alphonse Rudyard \Ernesto Teodoro Moneta 1907 Eduard Buchner — Michelson Laveran Kipling Louis Renault Ilja Gabriel Ernest Rudolf Klas Pontus Arnoldson 1908 Metschnikow — Lippmann Rutherford Eucken Paul Ehrlich Fredrik Bajer Theodor Auguste Beernaert Guglielmo Wilhelm Kocher Selma 1909 — Marconi Ostwald Ferdinand Lagerlöf Paul Henri d’Estournelles de Braun Constant Johannes Albrecht Ständiges Internationales 1910 Diderik van Otto Wallach Paul Heyse — Kossel Friedensbüro der Waals Allvar Maurice Tobias Asser 1911 Wilhelm Wien Marie Curie — Gullstrand Maeterlinck Alfred Fried Victor Grignard Gerhart 1912 Gustaf Dalén Alexis Carrel Elihu Root — Paul Sabatier Hauptmann Heike Charles Rabindranath 1913 Kamerlingh Alfred Werner Henri La Fontaine — Robert Richet Tagore Onnes Theodore
    [Show full text]
  • Computer History a Look Back Contents
    Computer History A look back Contents 1 Computer 1 1.1 Etymology ................................................. 1 1.2 History ................................................... 1 1.2.1 Pre-twentieth century ....................................... 1 1.2.2 First general-purpose computing device ............................. 3 1.2.3 Later analog computers ...................................... 3 1.2.4 Digital computer development .................................. 4 1.2.5 Mobile computers become dominant ............................... 7 1.3 Programs ................................................. 7 1.3.1 Stored program architecture ................................... 8 1.3.2 Machine code ........................................... 8 1.3.3 Programming language ...................................... 9 1.3.4 Fourth Generation Languages ................................... 9 1.3.5 Program design .......................................... 9 1.3.6 Bugs ................................................ 9 1.4 Components ................................................ 10 1.4.1 Control unit ............................................ 10 1.4.2 Central processing unit (CPU) .................................. 11 1.4.3 Arithmetic logic unit (ALU) ................................... 11 1.4.4 Memory .............................................. 11 1.4.5 Input/output (I/O) ......................................... 12 1.4.6 Multitasking ............................................ 12 1.4.7 Multiprocessing .........................................
    [Show full text]