Mianyang Environmental Improvement Project

Total Page:16

File Type:pdf, Size:1020Kb

Mianyang Environmental Improvement Project E1245 v 1 Sichuan Urban Development Project (SUDP) Financed by The World Bank Loan Public Disclosure Authorized Mianyang Environmental Improvement Project (Infrastructure and Access Improvement in Pioneer Park and Economic Development Zone) Public Disclosure Authorized Environmental Impact Assessment Report Public Disclosure Authorized (Draft for Review) Public Disclosure Authorized Sichuan Research Institute of Environmental Protection (SRIEP) September 2005 CONTENTS 1.0 INTRODUCTION …………………………………………… 1.1 Source and Necessity of the Proposed Project 1.2 Objectives, Principles and Methodology of the EIA 1.3 Policy, Legal and Administrative Framework 1.4 Standards for the EIA 1.5 Category of the EIA 1.6 Scope of the EIA 1.7 Factors of the EIA 1.8 Major Environmental Impacts and Protected Objects 1.9 Key Points of the EIA 1.10 Process and Procedure of the EIA 1.11 SRIEP and Staff of the EIA Core Team 2.0 PROJECT DESCRIPTION AND ANALYSeS …………………………………………………………….. 2.1 Project Description 2.2 Project Construction 2.3 Project Analysis 2.4 Conformity Analysis of Project and Local Development Plan 3.0 ENVIRONMENTAL SETTING ………………………….. (56) 3.1 Physical Environment 3.2 Socioeconomic Environment 3.3 Ecological Environment 3.4 Local Living Quality 3.5 Local Conditions of the Project Area 4.0 EXISTING ENVIRONMENTAL QUALITY ASSESSMENT ……………………………………………………………... (60) 4.1 Monitoring and Assessment of Existing Water Environment 4.2 Monitoring and Assessment of Existing Air Environment 4.3 Monitoring and Assessment of Existing Acoustic Environment 4.4 Conclusions on the Quality of Local Environment 5.0 ENVIRONMENTAL IMPACT ANALYSIS …..…………….(70) 1 5.1 Positive Impact on Local Economic Development 5.2 Resettlement and Land Acquisition 5.3 Impact on Land Use 5.4 Impact on Urban Landscape and Traffic 5.5 Impact Assessment on Eco-environment 5.6 Impact Assessment on Water Environment 5.7 Impact Assessment on Air Environment 5.8 Impact Assessment on Acoustic Environment 5.9 Impact Assessment of Solid Wastes Disposal 5.10 Analyses on the Trend of Development of the Regional Environmental Quality and Potential Indirect Impact Brought about by the Proposed Project 5.11 Alternative Analyses 5.12 Linkage Analyses of Impact 6.0 ENVIRONMENTAL PROTECTION MEASURES AND THEIR ECONOMIC AND TECHNICAL PROOF …………………(89) 6.1 Environmental Protection Measures for Land Acquisition and Resettlement 6.2 Measures for Soil & Water Conservation and Ecological Restoration and Their Proof 6.3 Measures for Water Environmental Protection and Their Proof 6.4 Measures for Air Environmental Protection and Their Proof 6.5 Measures for Noise Control and Their Proof 6.6 Measures for Solid Wastes Disposal and Their Proof 6.7 Other Measures and Countermeasures for Environmental Protection 6.8 Availability of Environmental Protection Measures and Their Technical and Economic Proof 6.9 Estimated Costs of Environmental Protection Measures 7.0 ECONOMIC GAIN AND LOSS ANALYSIS OF ENVIRONMENTAL IMPACT ……………………………(107) 7.1 Objectives and Principles 7.2 Gain and Loss Analysis of Environmental Impact 8.0 PUBLIC PARTICIPATION …………………………….....(110) 8.1 Objectives and Effects 2 8.2 Methodology and Principles 8.3 Survey Schedule 8.4 Results of the Survey 8.5 Conclusion 9.0 ENVIRONMENTAL MANAGEMENT PLAN AND ENVIRONMENTAL MONITORING PROGRAM…..…. (115) 9.1 Environmental Management 9.2 Environmental Monitoring Program 9.3 Cost Estimate 10.0 CONCLUSIONS AND SUGGESTIONS ………………… (125) 10.1 Conclusions 10.2 Suggestions 1.0 INTRODUCTION 3 1.1 Source and Necessity of the Project 1.1.1. Source of the project As a big province in West China, Sichuan Province is endowed with abundant natural resources and boasts of its advantages in science technology and education. Since the policy of reform and opening up to the outside world is adopted in China, great achievements have been attained in the construction of a modern society. The hi-tech industries have won a relatively solid base for further development in the province. However, compared to the developed eastern areas of China, there is still a long way to go. The strategies for Sichuan’s further development would be as follows: make full use of the advantages of the province and the opportunity of western development, build key areas so as to bring innovation and breakthrough into modes of thought, systems and mechanisms with the ultimate aim of great development of the province through the combination of technologies and economic development. As an important base of national defense industry and scientific research, the City of Mianyang has 18 institutions of national defense, such as China Academy of Engineering Physics (CAEP), China Aerodynamics Research Development Center (CARDC), etc., 7 institutes of higher education, such as Southwest ScienceTechnology University (SSTU), and other 50 key large-and-medium-sized enterprises. As to personnel, there are 100 000 researchers, engineers and technicians, among them, 24 academicians and another large number of talented persons engaged in many key sectors. Following the step of Zhongguan Sci-Tech Park in Beijing and Yangling Agricultural Hi-Tech Demonstration Zone in Shaanxi Province, the central government has made an important decision to build Mianyang into a Sci-Tech City. In July, 2001, the Outline of Developing Mianyang into a Sci-Tech City was approved by the State Council of China. After that, construction of Sci-Tech City entered a new stage of all-around advancement. In term of economic development, there is still a big gap between East China and Mianyang, which locates in West China. The city still lags behind in infrastructure construction. Along with the implementation of the strategy of West China Development, it is of important significance to develop the Pioneering Park (being referred to as West District hereinafter) and the Economic Development Zone (being referred to as South District hereinafter) to improve infrastructure and living standard of the local people, to strengthen the service function of the city, so as to promote overall social and economic development. According to current development, Mianyang Municipal Government has put forward the aim of building the West District and South District by making use of the World Bank loan to achieve the objectives. This is very crucial in giving impetus to the economic development of the city. Thus Development & Reform Commission of Sichuan Province issued a reply to the Proposal of Mianyang Environmental Improvement Project Financed by the World Bank Loan by a formal document No. CFGW[2004]No. 617. 4 According to the proposal, following infrastructure and access improvement work will be completed during the construction phase of the proposed project. In West District (Pioneer Park), 22 roads will be paved in width of 9~50m and total length of 21.23 km. Rain/storm water drains and trunk sewers will be laid together with the road construction, totally 91.79 km in length. In South District (Economic Development Zone), 17 roads will be paved with a total length of 24.53 km in width of 14~80m. Rain/storm water drains and trunk sewers will be laid together with the road construction, totally 74.56 km in length. In addition, one interchange, one flyover including lighting and traffic management system will be built in West District. In South District, one flyover, four bridges, greening space (2X2ha), Fuwongyan River flood control embankment in length of 4600m will be constructed. Total investment of this project is 1.3546512 billion yuan, of which 414 million yuan equivalent will be a loan from the World Bank. Based on the requirements specified by Environmental Protection Law of the People’s Republic of China, Environmental Impact Assessment Law of the People’s Republic of China, Regulations of Environmental Protection Management for Construction Projects, Order No. 253 issued by the State Council of the People’s Republic of China, and Notice of Strengthening the EA Management Work of the Construction Projects Financed by Loans of International Financial Organizations, HJ [1993] No. 324 issued by State Environmental Protection Administration, State Planning Commission, Ministry of Finance and People’s Bank of China, the related authority of Mianyang City entrusted Sichuan Research Institute of Environmental Protection* (being referred to as SRIEP hereinafter) to conduct the EA work for Mianyang Environmental Improvement Project (Infrastructure Development in Pioneer Park and Economic Development Zone) financed by the World Bank loan. As soon as receiving the task, SRIEP sent its professionals to conduct the environmental reconnaissance and collect relevant data. In May 2005, SRIEP produced the TOR for EA according to Technical Guidelines of EA and other requirements of the World Bank. In August 2005, SEPB invited some experts to review and exam the TOR and issued its approval opinions (see Annex). After the approval of the TOR, SRIEP entrusted Mianyang Environmental Monitoring Station (MEMS) and the project owner to conduct the survey on existing environment, environmental monitoring, public opinion survey and data collection. Now the EIA Report for the Project has been produced, waiting for review. The EIA work has got great help and support from SPMO, SEPB, Mianyang EPB, MEMS, project owner, W. B. experts, Mr. Sun Chongwu, Mr. Li Dahong and Mr. Gu Lixin. Here we would like to express our sincere thanks to them all. 1.1.2. Necessity of the Project (a)To satisfy the requirements of development of the city The urban center or city proper
Recommended publications
  • World Bank Document
    CONFORMED COPY Public Disclosure Authorized LOAN NUMBER 7616-CN Loan Agreement Public Disclosure Authorized (Wenchuan Earthquake Recovery Project) between PEOPLE’S REPUBLIC OF CHINA Public Disclosure Authorized and INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT Dated March 20, 2009 Public Disclosure Authorized LOAN AGREEMENT AGREEMENT dated March 20, 2009, between PEOPLE’S REPUBLIC OF CHINA (“Borrower”) and INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT (“Bank”). The Borrower and the Bank hereby agree as follows: ARTICLE I – GENERAL CONDITIONS; DEFINITIONS 1.01. The General Conditions (as defined in the Appendix to this Agreement) constitute an integral part of this Agreement. 1.02. Unless the context requires otherwise, the capitalized terms used in the Loan Agreement have the meanings ascribed to them in the General Conditions or in the Appendix to this Agreement. ARTICLE II – LOAN 2.01. The Bank agrees to lend to the Borrower, on the terms and conditions set forth or referred to in this Agreement, an amount equal to seven hundred ten million Dollars ($710,000,000), as such amount may be converted from time to time through a Currency Conversion in accordance with the provisions of Section 2.07 of this Agreement (“Loan”), to assist in financing the project described in Schedule 1 to this Agreement (“Project”). 2.02. The Borrower may withdraw the proceeds of the Loan in accordance with Section IV of Schedule 2 to this Agreement. 2.03. The Front-end Fee payable by the Borrower shall be equal to one quarter of one percent (0.25%) of the Loan amount. The Borrower shall pay the Front-end Fee not later than sixty (60) days after the Effective Date.
    [Show full text]
  • Sanctioned Entities Name of Firm & Address Date
    Sanctioned Entities Name of Firm & Address Date of Imposition of Sanction Sanction Imposed Grounds China Railway Construction Corporation Limited Procurement Guidelines, (中国铁建股份有限公司)*38 March 4, 2020 - March 3, 2022 Conditional Non-debarment 1.16(a)(ii) No. 40, Fuxing Road, Beijing 100855, China China Railway 23rd Bureau Group Co., Ltd. Procurement Guidelines, (中铁二十三局集团有限公司)*38 March 4, 2020 - March 3, 2022 Conditional Non-debarment 1.16(a)(ii) No. 40, Fuxing Road, Beijing 100855, China China Railway Construction Corporation (International) Limited Procurement Guidelines, March 4, 2020 - March 3, 2022 Conditional Non-debarment (中国铁建国际集团有限公司)*38 1.16(a)(ii) No. 40, Fuxing Road, Beijing 100855, China *38 This sanction is the result of a Settlement Agreement. China Railway Construction Corporation Ltd. (“CRCC”) and its wholly-owned subsidiaries, China Railway 23rd Bureau Group Co., Ltd. (“CR23”) and China Railway Construction Corporation (International) Limited (“CRCC International”), are debarred for 9 months, to be followed by a 24- month period of conditional non-debarment. This period of sanction extends to all affiliates that CRCC, CR23, and/or CRCC International directly or indirectly control, with the exception of China Railway 20th Bureau Group Co. and its controlled affiliates, which are exempted. If, at the end of the period of sanction, CRCC, CR23, CRCC International, and their affiliates have (a) met the corporate compliance conditions to the satisfaction of the Bank’s Integrity Compliance Officer (ICO); (b) fully cooperated with the Bank; and (c) otherwise complied fully with the terms and conditions of the Settlement Agreement, then they will be released from conditional non-debarment. If they do not meet these obligations by the end of the period of sanction, their conditional non-debarment will automatically convert to debarment with conditional release until the obligations are met.
    [Show full text]
  • Analysis of Accumulation Models of Middle Permian in Northwest Sichuan Basin
    EARTH SCIENCES RESEARCH JOURNAL GEOLOGY Earth Sci. Res. J. Vol. 24, No. 4 (December, 2020): 419-428 Analysis of accumulation models of middle Permian in Northwest Sichuan Basin Bin Li1,2,*, Qiqi Li3, Wenhua Mei2, Qingong Zhuo4, Xuesong Lu4 1State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi, 214126 2School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500 3School of Earth Resources, China University of Geosciences, Wuhan, 430074; 4PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China *Corresponding author: [email protected] ABSTRACT Keywords: Northwest of Sichuan Basin; Great progress has been made in middle Permian exploration in Northwest Sichuan in recent years, but there are still Structure Evolution of Foreland Basin; Middle many questions in understanding the hydrocarbon accumulation conditions. Due to the abundance of source rocks and Permian; Paleozoic; Accumulation conditions; the multi-term tectonic movements in this area, the hydrocarbon accumulation model is relatively complex, which has Accumulation Model. become the main problem to be solved urgently in oil and gas exploration. Based on the different tectonic backgrounds of the middle Permian in northwest Sichuan Basin, the thrust nappe belt, the hidden front belt, and the depression belt are taken as the research units to comb and compare the geologic conditions of the middle Permian reservoir. The evaluation of source rocks and the comparison of hydrocarbon sources suggest that the middle Permian hydrocarbon mainly comes from the bottom of the lower Cambrian and middle Permian, and the foreland orogeny promoted the thermal evolution of Paleozoic source rocks in northwest Sichuan to high maturity and over maturity stage.
    [Show full text]
  • 2016 Annual Report.PDF
    HAITONG SECURITIES CO., LTD. 海通證券股份有限公司 Annual Report 2016 2016 Annual Report 年度報告 CONTENTS Section I Definition and Important Risk Warnings 3 Section II Company Profile and Key Financial Indicators 7 Section III Summary of the Company’s Business 23 Section IV Report of the Board of Directors 28 Section V Significant Events 62 Section VI Changes in Ordinary Share and Particulars about Shareholders 91 Section VII Preferred Shares 100 Section VIII Particulars about Directors, Supervisors, Senior Management and Employees 101 Section IX Corporate Governance 149 Section X Corporate Bonds 184 Section XI Financial Report 193 Section XII Documents Available for Inspection 194 Section XIII Information Disclosure of Securities Company 195 IMPORTANT NOTICE The Board, the Supervisory Committee, Directors, Supervisors and senior management of the Company represent and warrant that this annual report (this “Report”) is true, accurate and complete and does not contain any false records, misleading statements or material omission and jointly and severally take full legal responsibility as to the contents herein. This Report was reviewed and passed at the twenty-third meeting of the sixth session of the Board. The number of Directors to attend the Board meeting should be 13 and the number of Directors having actually attended the Board meeting was 11. Director Li Guangrong, was unable to attend the Board meeting in person due to business travel, and had appointed Director Zhang Ming to vote on his behalf. Director Feng Lun was unable to attend the Board meeting in person due to business travel and had appointed Director Xiao Suining to vote on his behalf.
    [Show full text]
  • World Bank Document
    RP360 V5 World Bank Financed Sichuan Urban Development Project (SUDP) Mianyang Sub-project Remaining Loan Adjustment- Roads & Supporting Infrastructure Construction in the Cluster Zone of Public Disclosure Authorized Relocated Industries Through Post-disaster Reconstruction in Xinglong Area of Science & Education Pioneer Park of Mianyang Science and Technology City Public Disclosure Authorized Resettlement Action Plan Public Disclosure Authorized Mianyang Science and Technology City Development and Investment (Group) Co., Ltd. November 2009 Public Disclosure Authorized World Bank Financed SUDP Mianyang Sub-project Remaining Loan Adjustment-Roads & Supporting Infrastructure Construction in the Cluster Zone of Relocated Industries Through Post-disaster Reconstruction in Xinglong Area of Science & Education Pioneer Park of Mianyang Science and Technology City Compilation Description The Resettlement Action Plan (RAP) is of great importance to smooth implementation of Science & Education Pioneer Park Project in Mianyang, Sichuan, especially to those affected by land acquisition and house demolition within the scope of the Project. Local governments, Mianyang Science and Technology City Development Investment (Group) Co., Ltd. and Southwest Municipal Engineering Design & Research Institute of China, which is a design institute, attempt to minimize adverse impact of the Project on local residents through constantly repeated optimum designs. Mianyang Science & Technology City Development Investment (Group) Co., Ltd. has prepared the RAP with
    [Show full text]
  • Respective Influence of Vertical Mountain Differentiation on Debris Flow Occurrence in the Upper Min River, China
    www.nature.com/scientificreports OPEN Respective infuence of vertical mountain diferentiation on debris fow occurrence in the Upper Min River, China Mingtao Ding*, Tao Huang , Hao Zheng & Guohui Yang The generation, formation, and development of debris fow are closely related to the vertical climate, vegetation, soil, lithology and topography of the mountain area. Taking in the upper reaches of Min River (the Upper Min River) as the study area, combined with GIS and RS technology, the Geo-detector (GEO) method was used to quantitatively analyze the respective infuence of 9 factors on debris fow occurrence. We identify from a list of 5 variables that explain 53.92%% of the total variance. Maximum daily rainfall and slope are recognized as the primary driver (39.56%) of the spatiotemporal variability of debris fow activity. Interaction detector indicates that the interaction between the vertical diferentiation factors of the mountainous areas in the study area is nonlinear enhancement. Risk detector shows that the debris fow accumulation area and propagation area in the Upper Min River are mainly distributed in the arid valleys of subtropical and warm temperate zones. The study results of this paper will enrich the scientifc basis of prevention and reduction of debris fow hazards. Debris fows are a common type of geological disaster in mountainous areas1,2, which ofen causes huge casual- ties and property losses3,4. To scientifcally deal with debris fow disasters, a lot of research has been carried out from the aspects of debris fow physics5–9, risk assessment10–12, social vulnerability/resilience13–15, etc. Jointly infuenced by unfavorable conditions and factors for social and economic development, the Upper Min River is a geographically uplifed but economically depressed region in Southwest Sichuan.
    [Show full text]
  • Study on the Ecotourism Development in Dazhou
    Open Journal of Social Sciences, 2018, 6, 24-34 http://www.scirp.org/journal/jss ISSN Online: 2327-5960 ISSN Print: 2327-5952 Study on the Ecotourism Development in Dazhou Xiaomei Pu1, Lin Tian2, Zibiao Cheng3 1Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, China 2School of Foreign Languages, Sichuan University of Arts and Science, Dazhou, China 3School of Finance and Economics Management, Sichuan University of Arts and Science, Dazhou, China How to cite this paper: Pu, X.M., Tian, L. Abstract and Cheng, Z.B. (2018) Study on the Eco- tourism Development in Dazhou. Open After comprehensive discussion of the origin of ecotourism, the concept of Journal of Social Sciences, 6, 24-34. ecotourism and the theoretical basis for ecotourism development, the paper https://doi.org/10.4236/jss.2018.65002 carried out the SWOT analysis on ecotourism development in Dazhou City, Received: April 8, 2018 and then proposed development strategies. The strategies were to: enhance Accepted: May 13, 2018 the ecological awareness of the entire people and create a good atmosphere for Published: May 16, 2018 ecotourism development; break the talent bottleneck of ecotourism develop- ment by adopting the policy of “combination boxing”; make scientific and Copyright © 2018 by authors and Scientific Research Publishing Inc. feasible master plan for Dazhou’s ecotourism development; develop quality This work is licensed under the Creative ecotourism products; innovate marketing strategies for ecotourism in Dazhou. Commons Attribution International License (CC BY 4.0). Keywords http://creativecommons.org/licenses/by/4.0/ Open Access Dazhou, Ecotourism, Development 1.
    [Show full text]
  • Since the Reform and Opening Up1 1
    Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS020) p.6378 Research of Acceleration Urbanization Impacts on Resources and Environment in Sichuan Province Caimo,Teng National Bureau of Statistics of China, Survey Organizations of Sichuan No.31, the East Route, Qingjiang Road Chengdu, China, 610072 E-mail: [email protected] Since the reform and opening up, the rapid development of economic society and the rise ceaselessly of urbanization in Sichuan play an important role for material civilization and spiritual civilization, but also bring influence for resources and environment, this paper give an in-depth analysis about this. Ⅰ. The Main Characteristics of the Urbanization Development in Sichuan The reflection of urbanization in essence is from the industry cluster to population cluster., we tend to divided the process of urbanization into four stages, 1949-1978 is the first stage, 1978 – 1990 is the second stage, 1990 -2000 is the third stage, After the year of 2000 is the fourth stage. In view the particularities of the first phase, this paper researches mainly after three stages. 1. The level of the urbanization enhances unceasingly. With the reform and opening-up and the rapid development of social economy, the urbanization in Sichuan has significant achievements. The average annual growth of the level of urbanization is 0.8 percent in the twelve years of the second stage. The average annual growth in the third stage and the four stages is individually 0.5 and 1.3 percentage. The average annual growth of urbanization in the fourth stage is faster respectively 0.5 and 0.8 percent than the previous two stages which reflects obviously the rapid rise of the urbanization after the fourth stage in Sichuan.
    [Show full text]
  • Sichuan Province
    Directory of Important Bird Areas in China (Mainland): Key Sites for Conservation Editors SIMBA CHAN (Editor-in-chief) MIKE CROSBY , SAMSON SO, WANG DEZHI , FION CHEUNG and HUA FANGYUAN Principal compilers and data contributors Prof. Zhang Zhengwang (Beijing Normal University), Prof. Chang Jiachuan (Northeast Forestry University), the late Prof. Zhao Zhengjie (Forestry Institute of Jilin Province), Prof. Xing Lianlian (University of Nei Menggu), Prof. Ma Ming (Ecological and Geographical Institute, Chinese Academy of Sciences, Xinjiang), Prof. Lu Xin (Wuhan University), Prof. Liu Naifa (Lanzhou University), Prof. Yu Zhiwei (China West Normal University), Prof. Yang Lan (Kunming Institute for Zoology), Prof. Wang Qishan (Anhui University), Prof. Ding Changqing (Beijing Forestry University), Prof. Ding Ping (Zhejiang University), the late Prof. Gao Yuren (South China Institute for Endangered Animals), Prof. Zhou Fang (Guangxi University), Prof. Hu Hongxing (Wuhan University), Prof. Chen Shuihua (Zhejiang Natural History Museum), Tsering (Tibet University), Prof. Ma Zhijun (Fudan University), Prof. Guo Yumin (Capital Normal University), Dai Nianhua (Institute of Sciences, Jiangxi), Prof. Han Lianxian (Southwest Forestry University), Yang Xiaojun (Kunming Institute for Zoology), Prof. Wang Zijiang (Kunming Ornithological Association), Prof. Li Zhumei (Institute of Biology, Guizhou), Ma Chaohong (Management Office of Yellow River Wetland National Nature Reserve, Henan), Shen You (Chengdu Bird Watching Society), Wei Qian (Chengdu Bird Watching Society), Zhang Yu (Wild Bird Society of Jiangsu), Kang Hongli (Wild Bird Society of Shanghai). Information on Important Bird Areas in China was compiled with the support of the World Bank using consultant trust funds from the Government of Japan. Surveys of IBAs in western China were funded by Keidanren Nature Conservation Fund (Japan) and the Sekisui Chemical Co.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Key Driving Factors of Selenium-Enriched Soil in the Low
    Catena 196 (2021) 104926 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Key driving factors of selenium-enriched soil in the low-Se geological belt: A T case study in Red Beds of Sichuan Basin, China ⁎ Yonglin Liua,b, Xinglei Tianc,d,e, , Rui Liua,b, Shuling Liua,b, Andrew V. Zuzaf a The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China b Geography and Tourism College, Chongqing Normal University, Chongqing 401331, China c Shandong Institute of Geological Sciences, Jinan 250013, China d Key Laboratory of Gold Mineralization Processes and Resource Utilization Subordinated to the Ministry of Land and Resources, Jinan 250013, China e Key Laboratory of Metallogenic Geological Process and Resources Utilization in Shandong Province, Jinan 250013, China f Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557, USA ARTICLE INFO ABSTRACT Keywords: Selenium (Se) is an essential micronutrient for humans given its varying health benefits. It is generally re- Red Beds region cognized that China has a wide belt of low-Se soil stretching from the northeast to southwest. Nevertheless, there Geodetector are Se-enriched areas distributed in the low-Se belt of China. However, the quantificational relationships among Selenium soil properties, topographic characteristics, parent materials, land use and soil Se content in those Se-enriched Soil organic matter soils remain to be elucidated. Similarly, the key driving factors of the Se-enriched soil in the low-Se geological Spatial variation belt need to be documented. These aims could be an useful basis for evaluating the health of the soil ecosystem (in terms of Se toxicity or deficiency) and the potential intake of Se by humans from soils to food crops and animal products.
    [Show full text]
  • A New Method for Time-Of-Day Breakpoints Determination Based on Clustering and Image Processing
    Canadian Journal of Civil Engineering A new method for time-of-day breakpoints determination based on clustering and image processing Journal: Canadian Journal of Civil Engineering Manuscript ID cjce-2019-0153.R2 Manuscript Type: Article Date Submitted by the 28-Sep-2019 Author: Complete List of Authors: Shen, Hui; Southwest University of Science and Technology; Mianyang Polytechnic Yan, Jing; Southwest University of Science and Technology Liu, Daoguang; Southwest University of Science and Technology Liu, Zhigui;Draft Southwest University of Science and Technology; Southwest University of Science and Technology, School of computer science and technology Keyword: signal control, clustering, image segment, TOD breakpoints Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjce-pubs Page 1 of 33 Canadian Journal of Civil Engineering A new method for time-of-day breakpoints determination based on clustering and image segmentation Hui Shen1,3, Jing Yan2, Daoguang Liu2, Zhigui Liu*1,2 1. School of Information Engineering, Southwest University of Science and Technology, 59, Qinglong Road, Fucheng District, Mianyang, 621000, China. 2. School of Computer Science and Technology, Southwest University of Science and Technology, 59, Qinglong Road, Fucheng District, Mianyang, 621000, China. 3. Corresponding author. Mianyang Polytechnic, 1, Xianren Road, Youxian District, Mianyang, 621000, China. Draft Abstract: Signal control is an important part of the transportation system and it plays an important role in improving the capacity of intersections. This paper proposes a new traffic time division method for multi-period fixed-time control strategy. Firstly, we put forward a new concept-transportation overlap rate, in order to complete the clustering of daily traffic flow patterns.
    [Show full text]