STRIPE2 Encodes a Putative Dcmp Deaminase That Plays an Important Role in Chloroplast Development in Rice

Total Page:16

File Type:pdf, Size:1020Kb

STRIPE2 Encodes a Putative Dcmp Deaminase That Plays an Important Role in Chloroplast Development in Rice Available online at www.sciencedirect.com ScienceDirect JGG Journal of Genetics and Genomics 41 (2014) 539e548 ORIGINAL RESEARCH STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice Jing Xu a, Yiwen Deng a, Qun Li a, Xudong Zhu b,*, Zuhua He a,* a National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China b China National Rice Research Institute, Hangzhou 31006, China Received 31 March 2014; revised 8 May 2014; accepted 9 May 2014 Available online 19 June 2014 ABSTRACT Mutants with abnormal leaf coloration are good genetic materials for understanding the mechanism of chloroplast development and chlorophyll biosynthesis. In this study, a rice mutant st2 (stripe2) with stripe leaves was identified from the g-ray irradiated mutant pool. The st2 mutant exhibited decreased accumulation of chlorophyll and aberrant chloroplasts. Genetic analysis indicated that the st2 mutant was controlled by a single recessive locus. The ST2 gene was finely confined to a 27-kb region on chromosome 1 by the map-based cloning strategy and a 5-bp deletion in Os01g0765000 was identified by sequence analysis. The deletion happened in the joint of exon 3 and intron 3 and led to new spliced products of mRNA. Genetic complementation confirmed that Os01g0765000 is the ST2 gene. We found that the ST2 gene was expressed ubiquitously. Subcellular localization assay showed that the ST2 protein was located in mitochondria. ST2 belongs to the cytidine deaminase-like family and possibly functions as the dCMP deaminase, which catalyzes the formation of dUMP from dCMP by deamination. Additionally, exogenous application of dUMP could partially rescue the st2 phenotype. Therefore, our study identified a putative dCMP deaminase as a novel regulator in chloroplast development for the first time. KEYWORDS: stripe2; Chloroplast development; dCMP deaminase; Oryza sativa INTRODUCTION materials to investigate regulation mechanisms of chlorophyll biosynthesis and chloroplast development in rice. The chloroplast is the crucial organelle for plant photosyn- Screening for chloroplast development mutants has identi- thesis and essential for the production of hormones and me- fied most steps in these biological processes, such as yellow- tabolites (Pogson and Albrecht, 2011). About 3000 proteins in green leaf1 ( ygl1) and faded green leaf ( fgl ), which result the chloroplast participate in transition from proplastids to from lesions of chlorophyll synthase that catalyzes esterifica- mature chloroplasts, and this process is coordinated by both tion of chlorophyllide in the last step of chlorophyll biosyn- nuclear and plastid genome involved in synthesis of chloro- thesis (Wu et al., 2007) and NADPH:protochlorophyllide plast DNA, the plastidic transcription/translation apparatus oxidoreductase that catalyzes the photoreduction of proto- and the photosynthetic system (Sakamoto et al., 2008). chlorophyllide (pchlide) to chlorophyllide (chlide) (Sakuraba Numerous chlorophyll-deficient or abnormal chloroplast mu- et al., 2013). Both mutations led to reduced contents of tants have been identified, and they provide ideal genetic chlorophyll and undeveloped chloroplasts. The magnesium chelatase, catalyzing the chelation of Mg2þ into proto IX to produce Mg-Proto IX, comprises three subunits including * Corresponding authors. Tel: þ86 21 5492 4121, fax: þ86 21 5492 4123 (Z. He); Tel: þ86 571 6337 0327, fax: þ86 571 6337 0389 (X. Zhu). ChlH, ChlD and ChlI (Jung et al., 2003; Zhang et al., 2006). E-mail addresses: [email protected] (X. Zhu); [email protected] (Z. He). Mutations of the chlorina-1 and chlorina-9 led to deficiency in http://dx.doi.org/10.1016/j.jgg.2014.05.008 1673-8527/Copyright Ó 2014, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. All rights reserved. 540 J. Xu et al. / Journal of Genetics and Genomics 41 (2014) 539e548 chlorophyll content and incomplete development of chloro- ribonucleotide reductase (RNR), respectively, which regulates plasts, due to the disruption of ChlD and ChlI subunits, the rate of deoxyribonucleotide production for DNA synthesis respectively. Moreover, an insert mutation in ygl2 ( yellow- and repair. Yoo et al. (2009) speculated that, upon insufficient green leaf 2), encoding heme oxygenase (HO) that catalyzes activity of RNR, plastid DNA synthesis is preferentially the degradation of heme to synthesize phytochrome precursor, arrested to allow nuclear genome replication in developing results in significantly reduced content of chlorophyll and leaves to sustain the continuous plant growth. tetrapyrrole intermediates (Chen et al., 2013). In this study, we identified a stripe variegated mutant As a semiautonomous organelle, chloroplast genome only named st2 (stripe2). The st2 plants develop chlorotic leaves encodes about 100 genes (Delannoy et al., 2009). Most of the caused by low content of chlorophylls. Examination of the proteins essential for chloroplast development and function are ultrastructure showed that the thylakoid membranes are nuclear-encoded (Chen et al., 2010). It is well documented that extremely disturbed in the mutants. Map-based cloning and the coordination of nuclear and plastid genes is crucial for genetic complementation indicated that ST2 encodes a cyti- chloroplast biogenesis (Mullet, 1988). Under illumination, dine deaminase-like protein, which most likely functions as one-third of the nuclear genes change expression, including the dCMP deaminase. many transcription factors such as PIFs (phytochrome inter- acting factors). Either pif1 or pif3 mutant showed delayed RESULTS development of chloroplast (Moon et al., 2008; Stephenson et al., 2009). Gene transcription, RNA maturation, and pro- Phenotype characterization of stripe2 mutant tein translation in the chloroplasts also have impact on chlo- roplast biogenesis and development. There are two types of The rice (Oryza sativa L.) st2 mutant was isolated from g-ray- plastid RNA polymerases: plastid-encoded RNA polymerase induced mutations of an indica cultivar (Longtepu, LTP). The (PEP) and nucleus-encoded RNA polymerase (NEP) respon- mutant leaves were virescent with stripes (Fig. 1A and E). To sible for the transcription of the plastome. In Arabidopsis, determine its effect on chlorophyll formation, the leaves of mutations in SIG6 (sigma factor 6) cause a weakly virescent 3-week seedling were analyzed for chlorophyll contents. phenotype and transcripts of several PEP-dependent plastid Compared with the wild type, the chlorophyll contents in st2 genes are specifically reduced (Loschelder et al., 2006). were reduced by 30% (Fig. 1B), and autofluorescence in the Decreased expression of AtRpoTp, one of the NEP genes, st2 leaves also decreased (Fig. 1C and D). The ultrastructure of leads to a typical virescent phenotype which can be recovered the wild-type chloroplasts was crescent-shaped and contained after two weeks of growth (Swiatecka-Hagenbruch et al., well-formed thylakoid structure including stroma thylakoids 2008). PPR proteins (pentatricopeptide repeat proteins), and grana thylakoids (Fig. 2A). In contrast, the mutant chlo- characterized by tandem arrays of a 35 amino acid motif, have roplasts were small and thylakoid membrane was disturbed, been demonstrated to be critical for RNA processing, splicing, some with less thylakoid structure (Fig. 2B and C). Some editing, stability, maturation and translation in the chloroplast chloroplasts formed rudimentary thylakoids consisting of only (Takenaka et al., 2013). YSA (young seedling albino) encodes grana lamellae without formation of stroma lamellae a PPR protein and the disruption of its function causes a (Fig. 2D), while some chloroplasts displayed well-developed seedling stage-specific albino phenotype in rice. The mutant lamellar structures equipped with normally stacked grana but plants can recover and develop normal green leaves after the no starch grains in the st2 leaves (Fig. 2E and F). These results four-leaf stage. Interestingly, the ysa mutant has been used as a indicated the st2 phenotype is caused by the underdevelop- marker for efficient identification and elimination of false ment of the chloroplast. hybrids in commercial hybrid rice production (Su et al., 2012). The Arabidopsis mutant sel1 (seedling lethal 1) exhibited a Fine mapping of the ST2 Gene pigment-defective and seedling-lethal phenotype with a dis- rupted PPR gene. In the sel1 plants, RNA editing of acetyl- For genetic analysis of the st2 mutant, we firstly crossed st2 CoA carboxylase b subunit transcripts was disrupted (Pyo mutant with a japonica cultivar Zhonghua11 (ZH11), and the et al., 2013). The virescent rice mutants v1, v2 and v3 are F1 generation exhibited normal green leaves. Among the 762 temperature-conditional, which produce chlorotic leaves at a F2 individuals, 183 were virescent and 579 were green. The restrictive temperature (20 C) but develop nearly green segregation ratio of the F2 population accorded with 3:1 2 2 leaves at a permissive temperature (30 C). V1 encodes a (c ¼ 0.39 < c0.05 ¼ 3.81; P > 0.05), suggesting that the st2 chloroplast-localized protein NUS1 which is involved in the phenotype was controlled by a single recessive gene. Genetic regulation of chloroplast rRNA metabolism during early mapping was performed using the same population. The chloroplast
Recommended publications
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Purine Metabolism in Cultured Endothelial Cells
    PURINE METABOLISM IN MAN-III Biochemical, Immunological, and Cancer Research Edited by Aurelio Rapado Fundacion Jimenez Diaz Madrid, Spain R.W.E. Watts M.R.C. Clinical Research Centre Harrow, England and Chris H.M.M. De Bruyn Department of Human Genetics University of Nijmegen Faculty of Medicine Nijmegen, The Netherlands PLENUM PRESS · NEW YORK AND LONDON Contents of Part Β I. PURINE METABOLISM PATHWAYS AND REGULATION A. De Novo Synthesis; Precursors and Regulation De Novo Purine Synthesis in Cultured Human Fibroblasts 1 R.B. Gordon, L. Thompson, L.A. Johnson, and B.T. Emmerson Comparative Metabolism of a New Antileishmanial Agent, Allopurinol Riboside, in the Parasite and the Host Cell 7 D. J. Nelson, S.W. LaFon, G.B. Elion, J.J. Marr, and R.L. Berens Purine Metabolism in Rat Skeletal Muscle 13 E. R. Tully and T.G. Sheehan Alterations in Purine Metabolism in Cultured Fibroblasts with HGPRT Deficiency and with PRPPP Synthetase Superactivity 19 E. Zoref-Shani and 0. Sperling Purine Metabolism in Cultured Endothelial Cells 25 S. Nees, A.L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach Determinants of 5-Phosphoribosyl-l-Pyrophosphate (PRPP) Synthesis in Human Fibroblasts 31 K.0, Raivio, Ch. Lazar, H. Krumholz, and M.A. Becker Xanthine Oxidoreductase Inhibition by NADH as a Regulatory Factor of Purine Metabolism 35 M.M. Jezewska and Z.W. Kaminski vii viii CONTENTS OF PART Β Β. Nucleotide Metabolism Human Placental Adenosine Kinase: Purification and Characterization 41 CM. Andres, T.D. Palella, and I.H. Fox Long-Term Effects of Ribose on Adenine Nucleotide Metabolism in Isoproterenol-Stimulated Hearts .
    [Show full text]
  • Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals
    Journal of the American Heart Association ORIGINAL RESEARCH Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals Joonatan Palmu , MD; Aaro Salosensaari , MSc; Aki S. Havulinna , DSc (Tech); Susan Cheng , MD, MPH; Michael Inouye, PhD; Mohit Jain, MD, PhD; Rodolfo A. Salido , BSc; Karenina Sanders , BSc; Caitriona Brennan, BSc; Gregory C. Humphrey, BSc; Jon G. Sanders , PhD; Erkki Vartiainen , MD, PhD; Tiina Laatikainen , MD, PhD; Pekka Jousilahti, MD, PhD; Veikko Salomaa , MD, PhD; Rob Knight , PhD; Leo Lahti , DSc (Tech); Teemu J. Niiranen , MD, PhD BACKGROUND: Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted as- sociation between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abun- dance and between Lactobacillus abundance and BP. METHODS AND RESULTS: We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly re- lated to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032).
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Properties of Chlorophyllase from Capsicum Annuum L. Fruits
    Properties of Chlorophyllase from Capsicum annuum L. Fruits Dámaso Hornero-Méndez and Marí a Isabel Mínguez-Mosquera* Departamento de Biotecnologia de Alimentos, Instituto de la Grasa (CSIC), Av. Padre Garcia Tejero, 4, 41012-Sevilla, SPAIN. Fax: +34-954691262. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 1015-1021 (2001); received June 27/August 6 , 2001 Chlorophyll, Chlorophyllase, Capsicum annuum The in vitro properties of semi-purified chlorophyllase (chlorophyll-chlorophyllido hy­ drolase, EC 3.1.1.14) from Capsicum annuum fruits have been studied. The enzyme showed an optimum of activity at pH 8.5 and 50 °C. Substrate specificity was studied for chlorophyll (Chi) a, Chi b, pheophytin (Phe) a and Phe b, with K m values of 10.70, 4.04, 2.67 and 6.37 ^im respectively. Substrate inhibition was found for Phe b at concentrations higher than 5 ^m. Chlorophyllase action on Chi a ’ and Chi b' was also studied but no hydrolysis was observed, suggesting that the mechanism of action depends on the configuration at C-132 in the chloro­ phyll molecule, with the enzyme acting only on compounds with R132 stereochemistry. The effect of various metals (Mg2+, Hg2+, Cu2+, Zn2+, Co , Fe2+ and Fe3+) was also investigated, and a general inhibitory effect was found, this being more marked for Hg2+ and Fe2+. Func­ tional groups such as -SH and -S-S- seemed to participate in the formation of the enzyme- substrate complex. Chelating ion and the carbonyl group at C3 appeared to be important in substrate recognition by the enzyme.
    [Show full text]
  • Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus Tazetta Var
    International Journal of Molecular Sciences Article Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai Yujun Ren † ID , Jingwen Yang †, Bingguo Lu, Yaping Jiang, Haiyang Chen, Yuwei Hong, Binghua Wu and Ying Miao * Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Y.R.); [email protected] (J.Y.); [email protected] (B.L.); [email protected] (Y.J.); [email protected] (H.C.); [email protected] (Y.H.); [email protected] (B.W.) * Correspondence: [email protected]; Tel.:/Fax: +86-591-8639-2987 † These authors contributed equally to this work. Received: 7 August 2017; Accepted: 4 September 2017; Published: 8 September 2017 Abstract: Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes.
    [Show full text]
  • Infection by a Giant Virus (Aav) Induces Widespread Physiological Reprogramming in Aureococcus Anophagefferens CCMP1984 – a Harmful Bloom Algae
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-19-2018 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman University of Tennessee, Knoxville Eric R. Gann University of Tennessee, Knoxville Steven W. Wilhelm University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Moniruzzaman, Mohammad, Eric R. Gann, and Steven W. Wilhelm. “Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae.” Frontiers in Microbiology 9 (2018). https://doi.org/10.3389/fmicb.2018.00752. This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. fmicb-09-00752 April 18, 2018 Time: 16:59 # 1 ORIGINAL RESEARCH published: 19 April 2018 doi: 10.3389/fmicb.2018.00752 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman1,2, Eric R. Gann1 and Steven W. Wilhelm1* 1 Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States, 2 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to Edited by: be associated with important ecological processes, including the collapse of algal Akio Adachi, Tokushima University, Japan blooms.
    [Show full text]
  • High Coverage Metabolomics Analysis Reveals Phage-Specific Alterations to Pseudomonas Aeruginosa Physiology During Infection
    The ISME Journal (2016) 10, 1823–1835 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection Jeroen De Smet1, Michael Zimmermann2, Maria Kogadeeva2, Pieter-Jan Ceyssens1,3, Wesley Vermaelen1, Bob Blasdel1, Ho Bin Jang1, Uwe Sauer2 and Rob Lavigne1 1Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium; 2Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland and 3Unit Bacterial Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomo- nas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • Metabolomics Identifies Pyrimidine Starvation As the Mechanism of 5-Aminoimidazole-4-Carboxamide-1- Β-Riboside-Induced Apoptosis in Multiple Myeloma Cells
    Published OnlineFirst April 12, 2013; DOI: 10.1158/1535-7163.MCT-12-1042 Molecular Cancer Cancer Therapeutics Insights Therapeutics Metabolomics Identifies Pyrimidine Starvation as the Mechanism of 5-Aminoimidazole-4-Carboxamide-1- b-Riboside-Induced Apoptosis in Multiple Myeloma Cells Carolyne Bardeleben1, Sanjai Sharma1, Joseph R. Reeve3, Sara Bassilian3, Patrick Frost1, Bao Hoang1, Yijiang Shi1, and Alan Lichtenstein1,2 Abstract To investigate the mechanism by which 5-aminoimidazole-4-carboxamide-1-b-riboside (AICAr) induces apoptosis in multiple myeloma cells, we conducted an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in purine metabolites and a decrease in pyrimidine metabolites. The most striking abnormality was a 26-fold increase in orotate associated with a decrease in uridine monophosphate (UMP) levels, indicating an inhibition of UMP synthetase (UMPS), the last enzyme in the de novo pyrimidine biosynthetic pathway, which produces UMP from orotate and 5-phosphoribosyl- a-pyrophosphate (PRPP). As all pyrimidine nucleotides can be synthesized from UMP, this suggested that the decrease in UMP would lead to pyrimidine starvation as a possible cause of AICAr-induced apoptosis. Exogenous pyrimidines uridine, cytidine, and thymidine, but not purines adenosine or guanosine, rescued multiple myeloma cells from AICAr-induced apoptosis, supporting this notion. In contrast, exogenous uridine had no protective effect on apoptosis resulting from bortezomib, melphalan, or metformin. Rescue resulting from thymidine add-back indicated apoptosis was induced by limiting DNA synthesis rather than RNA synthesis. DNA replicative stress was identified by associated H2A.X phosphorylation in AICAr-treated cells, which was also prevented by uridine add-back.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]