Comparative Transcriptome Analyses of Oleaginous Botryococcus Braunii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Insight Into Role of Phosphoketolase Pathway in Synechocystis Sp
www.nature.com/scientificreports OPEN A new insight into role of phosphoketolase pathway in Synechocystis sp. PCC 6803 Anushree Bachhar & Jiri Jablonsky* Phosphoketolase (PKET) pathway is predominant in cyanobacteria (around 98%) but current opinion is that it is virtually inactive under autotrophic ambient CO2 condition (AC-auto). This creates an evolutionary paradox due to the existence of PKET pathway in obligatory photoautotrophs. We aim to answer the paradox with the aid of bioinformatic analysis along with metabolic, transcriptomic, fuxomic and mutant data integrated into a multi-level kinetic model. We discussed the problems linked to neglected isozyme, pket2 (sll0529) and inconsistencies towards the explanation of residual fux via PKET pathway in the case of silenced pket1 (slr0453) in Synechocystis sp. PCC 6803. Our in silico analysis showed: (1) 17% fux reduction via RuBisCO for Δpket1 under AC-auto, (2) 11.2–14.3% growth decrease for Δpket2 in turbulent AC-auto, and (3) fux via PKET pathway reaching up to 252% of the fux via phosphoglycerate mutase under AC-auto. All results imply that PKET pathway plays a crucial role under AC-auto by mitigating the decarboxylation occurring in OPP pathway and conversion of pyruvate to acetyl CoA linked to EMP glycolysis under the carbon scarce environment. Finally, our model predicted that PKETs have low afnity to S7P as a substrate. Metabolic engineering of cyanobacteria provides many options for producing valuable compounds, e.g., acetone from Synechococcus elongatus PCC 79421 and butanol from Synechocystis sp. strain PCC 68032. However, certain metabolites or overproduction of intermediates can be lethal. Tere is also a possibility that required mutation(s) might be unstable or the target bacterium may even be able to maintain the fux distribution for optimal growth balance due to redundancies in the metabolic network, such as alternative pathways. -
CO2-Fixing One-Carbon Metabolism in a Cellulose-Degrading Bacterium
CO2-fixing one-carbon metabolism in a cellulose- degrading bacterium Clostridium thermocellum Wei Xionga, Paul P. Linb, Lauren Magnussona, Lisa Warnerc, James C. Liaob,d, Pin-Ching Manessa,1, and Katherine J. Choua,1 aBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095; cNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401; and dAcademia Sinica, Taipei City, Taiwan 115 Edited by Lonnie O. Ingram, University of Florida, Gainesville, FL, and approved September 23, 2016 (received for review April 6, 2016) Clostridium thermocellum can ferment cellulosic biomass to for- proposed pathway involving CO2 utilization in C. thermocellum is mate and other end products, including CO2. This organism lacks the malate shunt and its variant pathway (7, 14), in which CO2 is formate dehydrogenase (Fdh), which catalyzes the reduction of first incorporated by phosphoenolpyruvate carboxykinase (PEPCK) 13 CO2 to formate. However, feeding the bacterium C-bicarbonate to form oxaloacetate and then is released either by malic enzyme or and cellobiose followed by NMR analysis showed the production via oxaloacetate decarboxylase complex, yielding pyruvate. How- of 13C-formate in C. thermocellum culture, indicating the presence ever, other pathways capable of carbon fixation may also exist but of an uncharacterized pathway capable of converting CO2 to for- remain uncharacterized. mate. Combining genomic and experimental data, we demon- In recent years, isotopic tracer experiments followed by mass strated that the conversion of CO2 to formate serves as a CO2 spectrometry (MS) (15, 16) or NMR measurements (17) have entry point into the reductive one-carbon (C1) metabolism, and emerged as powerful tools for metabolic analysis. -
Properties of Chlorophyllase from Capsicum Annuum L. Fruits
Properties of Chlorophyllase from Capsicum annuum L. Fruits Dámaso Hornero-Méndez and Marí a Isabel Mínguez-Mosquera* Departamento de Biotecnologia de Alimentos, Instituto de la Grasa (CSIC), Av. Padre Garcia Tejero, 4, 41012-Sevilla, SPAIN. Fax: +34-954691262. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 1015-1021 (2001); received June 27/August 6 , 2001 Chlorophyll, Chlorophyllase, Capsicum annuum The in vitro properties of semi-purified chlorophyllase (chlorophyll-chlorophyllido hy drolase, EC 3.1.1.14) from Capsicum annuum fruits have been studied. The enzyme showed an optimum of activity at pH 8.5 and 50 °C. Substrate specificity was studied for chlorophyll (Chi) a, Chi b, pheophytin (Phe) a and Phe b, with K m values of 10.70, 4.04, 2.67 and 6.37 ^im respectively. Substrate inhibition was found for Phe b at concentrations higher than 5 ^m. Chlorophyllase action on Chi a ’ and Chi b' was also studied but no hydrolysis was observed, suggesting that the mechanism of action depends on the configuration at C-132 in the chloro phyll molecule, with the enzyme acting only on compounds with R132 stereochemistry. The effect of various metals (Mg2+, Hg2+, Cu2+, Zn2+, Co , Fe2+ and Fe3+) was also investigated, and a general inhibitory effect was found, this being more marked for Hg2+ and Fe2+. Func tional groups such as -SH and -S-S- seemed to participate in the formation of the enzyme- substrate complex. Chelating ion and the carbonyl group at C3 appeared to be important in substrate recognition by the enzyme. -
Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus Tazetta Var
International Journal of Molecular Sciences Article Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai Yujun Ren † ID , Jingwen Yang †, Bingguo Lu, Yaping Jiang, Haiyang Chen, Yuwei Hong, Binghua Wu and Ying Miao * Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Y.R.); [email protected] (J.Y.); [email protected] (B.L.); [email protected] (Y.J.); [email protected] (H.C.); [email protected] (Y.H.); [email protected] (B.W.) * Correspondence: [email protected]; Tel.:/Fax: +86-591-8639-2987 † These authors contributed equally to this work. Received: 7 August 2017; Accepted: 4 September 2017; Published: 8 September 2017 Abstract: Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
Infection by a Giant Virus (Aav) Induces Widespread Physiological Reprogramming in Aureococcus Anophagefferens CCMP1984 – a Harmful Bloom Algae
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-19-2018 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman University of Tennessee, Knoxville Eric R. Gann University of Tennessee, Knoxville Steven W. Wilhelm University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Moniruzzaman, Mohammad, Eric R. Gann, and Steven W. Wilhelm. “Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae.” Frontiers in Microbiology 9 (2018). https://doi.org/10.3389/fmicb.2018.00752. This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. fmicb-09-00752 April 18, 2018 Time: 16:59 # 1 ORIGINAL RESEARCH published: 19 April 2018 doi: 10.3389/fmicb.2018.00752 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman1,2, Eric R. Gann1 and Steven W. Wilhelm1* 1 Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States, 2 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to Edited by: be associated with important ecological processes, including the collapse of algal Akio Adachi, Tokushima University, Japan blooms. -
Re-Investigation of Glucose Metabolism in Fibrobacter Succinogenes, Using NMR Spectroscopy and Enzymatic Assays
View metadata, citation and similar papers at core.ac.ukBiochimica et Biophysica Acta 1355Ž. 1997 50±60 brought to you by CORE provided by Elsevier - Publisher Connector Re-investigation of glucose metabolism in Fibrobacter succinogenes, using NMR spectroscopy and enzymatic assays. Evidence for pentose phosphates phosphoketolase and pyruvate formate lyase activities Christelle Matheron a, Anne-Marie Delort a,), GenevieveÁ Gaudet b,c, Evelyne Forano b a Laboratoire de SyntheseÁÁÁÂà et Etudes de Systemes a Interet Biologique, URA 485 du CNRS, UniÕersite  Blaise Pascal, 63177 Aubiere, Á France b Laboratoire de Microbiologie, INRA, Centre de Recherches de Clermont-Ferrand-Theix, 63122 Saint-Genes-Champanelle,Á France c Centre UniÕersitaire des Sciences et Techniques, UniÕersiteÂÁ Blaise Pascal, 63177 Aubiere, France Received 21 May 1996; revised 16 July 1996; accepted 12 August 1996 Abstract The glucose metabolism of Fibrobacter succinogenes S85 was studied in detail; key intermediates and alternative pathways were evidenced by NMR andror enzymatic assays. A high phosphoketolase activity was detected in four strains of Fibrobacter under strictly anaerobic conditions, with ribose-5-phosphate as substrate, no activity was evidenced with fructose-6-phosphate. This is the first report of a pentose phosphates phosphoketolase in bacteria unable to use pentoses. In contrast, the Entner-Doudoroff pathway and the oxidative branch of the pentose phosphate pathway could not be evidenced. 13 13 Incubation of living cells of F. succinogenes with Na 23CO confirmed the incorporation of CO 2 in the carboxylic group of succinate. The presence of fumarase was evidenced by in vivo 13C-NMR using 2-heptyl-4-hydroxyquinoline-N-oxide Ž.HQNO ; the enzyme showed a high reversibility under physiological conditions. -
Bacterial and Eukaryotic Phosphoketolases: Phylogeny, Distribution and Evolution
Research Article J Mol Microbiol Biotechnol 2010;18:37–51 Published online: January 6, 2010 DOI: 10.1159/000274310 Bacterial and Eukaryotic Phosphoketolases: Phylogeny, Distribution and Evolution a b c–e Borja Sánchez Manuel Zúñiga Fernando González-Candelas f f Clara G. de los Reyes-Gavilán Abelardo Margolles a b Université de Bordeaux, UMR 5248 CNRS, UBX1-ENITAB, ENITAB, Gradignan , France; Instituto de Agroquímica y c Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Instituto Cavanilles de Biodiversidad d e y Biología Evolutiva, Universidad de Valencia, CIBER en Epidemiología y Salud Pública, Area de Genómica y f Salud, Centro Superior de Investigación en Salud Pública, Valencia , Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa , Spain Key Words are most possibly xenologs. The results of the phylogenetic Phosphoketolase ؒ Horizontal gene transfer ؒ analyses, the distribution of xfp genes and the location of Phylogenetic study some xfp genes in plasmids are independent pieces of evi- dence that point to horizontal gene transfer as a major driv- ing force in the evolution of phosphoketolases. Abstract Copyright © 2010 S. Karger AG, Basel Phosphoketolases (XFPs) are glycolytic enzymes present in several organisms belonging to the Eukarya and Bacteria do- mains. A total of 151 putative xfp genes were detected in 650 Introduction complete genomes available in public databases. Elimina- tion of redundant sequences and pseudogenes rendered a Phosphoketolases (XFPs) catalyze the phosphorolytic final data set of 128 phosphoketolases, which was analyzed cleavage of fructose-6-phosphate and/or xylulose-5- by phylogenetic methods. The distribution of xfp genes was phosphate into acetyl-phosphate plus erythrose-4-phos- uneven in most taxonomic groups, with the exception of the phate and/or acetyl-phosphate plus glyceraldehyde-3- taxonomical division Lactobacillaceae, in which all the spe- phosphate. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Biochemical and Transcriptome Analyses of a Novel Chlorophyll
Wang et al. BMC Plant Biology 2014, 14:352 http://www.biomedcentral.com/1471-2229/14/352 RESEARCH ARTICLE Open Access Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar Lu Wang1,2,3?,ChuanYue1,3?,HongliCao1,3, Yanhua Zhou1,3,JianmingZeng1,2,3,YajunYang1,2,3* and Xinchao Wang1,2,3* Abstract Background: The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Recently, many leaf color genotypes have been developed during tea plant breeding and have become valuable materials in the processing of green tea. Although the physiological characteristics of some leaf color mutants of tea plants have been partially revealed, little is known about the molecular mechanisms leading to the chlorina phenotype in tea plants. Results: The yellow-leaf tea cultivar Zhonghuang 2 (ZH2) was selected during tea plant breeding. In comparison with Longjing 43 (LJ43), a widely planted green tea cultivar, ZH2 exhibited the chlorina phenotype and displayed significantly decreased chlorophyll contents. Transmission electron microscopy analysis revealed that the ultrastructure of the chloroplasts was disrupted, and the grana were poorly stacked in ZH2. Moreover, thecontentsoftheanineand free amino acids were significantly higher, whereas the contents of carotenoids, catechins and anthocyanin were lower in ZH2 than in LJ43. Microarray analysis showed that the expression of 259 genes related to amino acid metabolism, photosynthesis and pigment metabolism was significantly altered in ZH2 shoots compared with thoseofLJ43plants.Pathwayanalysisof4,902differentially expressed genes identified 24 pathways as being significantly regulated, including ?cysteine and methionine metabolism?, ?glycine, serine and threonine metabolism?, ?flavonoid biosynthesis?, ?porphyrin and chlorophyll metabolism?and ?carotenoid biosynthesis?. -
Identification and Functional Characterization of the First Two
Identification and functional characterization of the first two aromatic prenyltransferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae Fazeelat Karamat To cite this version: Fazeelat Karamat. Identification and functional characterization of the first two aromatic prenyl- transferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae. Agronomy. Université de Lorraine, 2013. English. NNT : 2013LORR0029. tel-01749560 HAL Id: tel-01749560 https://hal.univ-lorraine.fr/tel-01749560 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat,