Why Have No New Herbicide Modes of Action Appeared in Recent Years?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common and Chemical Names of Herbicides Approved by the WSSA
Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net). -
Properties of Chlorophyllase from Capsicum Annuum L. Fruits
Properties of Chlorophyllase from Capsicum annuum L. Fruits Dámaso Hornero-Méndez and Marí a Isabel Mínguez-Mosquera* Departamento de Biotecnologia de Alimentos, Instituto de la Grasa (CSIC), Av. Padre Garcia Tejero, 4, 41012-Sevilla, SPAIN. Fax: +34-954691262. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 1015-1021 (2001); received June 27/August 6 , 2001 Chlorophyll, Chlorophyllase, Capsicum annuum The in vitro properties of semi-purified chlorophyllase (chlorophyll-chlorophyllido hy drolase, EC 3.1.1.14) from Capsicum annuum fruits have been studied. The enzyme showed an optimum of activity at pH 8.5 and 50 °C. Substrate specificity was studied for chlorophyll (Chi) a, Chi b, pheophytin (Phe) a and Phe b, with K m values of 10.70, 4.04, 2.67 and 6.37 ^im respectively. Substrate inhibition was found for Phe b at concentrations higher than 5 ^m. Chlorophyllase action on Chi a ’ and Chi b' was also studied but no hydrolysis was observed, suggesting that the mechanism of action depends on the configuration at C-132 in the chloro phyll molecule, with the enzyme acting only on compounds with R132 stereochemistry. The effect of various metals (Mg2+, Hg2+, Cu2+, Zn2+, Co , Fe2+ and Fe3+) was also investigated, and a general inhibitory effect was found, this being more marked for Hg2+ and Fe2+. Func tional groups such as -SH and -S-S- seemed to participate in the formation of the enzyme- substrate complex. Chelating ion and the carbonyl group at C3 appeared to be important in substrate recognition by the enzyme. -
Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus Tazetta Var
International Journal of Molecular Sciences Article Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai Yujun Ren † ID , Jingwen Yang †, Bingguo Lu, Yaping Jiang, Haiyang Chen, Yuwei Hong, Binghua Wu and Ying Miao * Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Y.R.); [email protected] (J.Y.); [email protected] (B.L.); [email protected] (Y.J.); [email protected] (H.C.); [email protected] (Y.H.); [email protected] (B.W.) * Correspondence: [email protected]; Tel.:/Fax: +86-591-8639-2987 † These authors contributed equally to this work. Received: 7 August 2017; Accepted: 4 September 2017; Published: 8 September 2017 Abstract: Chinese narcissus (Narcissus tazetta var. chinensis) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus “Jinzhanyintai” to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. -
Infection by a Giant Virus (Aav) Induces Widespread Physiological Reprogramming in Aureococcus Anophagefferens CCMP1984 – a Harmful Bloom Algae
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-19-2018 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman University of Tennessee, Knoxville Eric R. Gann University of Tennessee, Knoxville Steven W. Wilhelm University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Recommended Citation Moniruzzaman, Mohammad, Eric R. Gann, and Steven W. Wilhelm. “Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae.” Frontiers in Microbiology 9 (2018). https://doi.org/10.3389/fmicb.2018.00752. This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. fmicb-09-00752 April 18, 2018 Time: 16:59 # 1 ORIGINAL RESEARCH published: 19 April 2018 doi: 10.3389/fmicb.2018.00752 Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae Mohammad Moniruzzaman1,2, Eric R. Gann1 and Steven W. Wilhelm1* 1 Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States, 2 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, United States While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to Edited by: be associated with important ecological processes, including the collapse of algal Akio Adachi, Tokushima University, Japan blooms. -
Method 240 SL 2.5 Gal 84942561D 200928AV1 Etl 061821.Qxp Method 240 SL 2.5 Gal 84942561D 200928AV1 Etl 061821 6/18/21 10:52
Method 240 SL 2.5 gal 84942561D 200928AV1 etl 061821.qxp_Method 240 SL 2.5 gal 84942561D 200928AV1 etl 061821 6/18/21 10:52 4.5625" GROUP 4 HERBICIDE DO NOT USE PLANT MAATTERIAL TREAATTED WITH METHOD® 240SL HERBICIDE FOR MULCH OR COMPOST Method 240SL2 HERBICIDE 7.75" Soluble Liquid For Non-Crop Use ACTIVE INGREDIENT: BWBy Weiihtght Potassium salt of aminocyclopyrachlor Potassium salt of 6-amino-5-chloro-2 -cyclopropyl-4-pyrimidinecarboxylic acid* .........25% OTHER INGREDIENTS: ....................................75% TOTAL:A 100% *Acid Equivalent:6-Amino-5-chloro-2- cyclopropyl-4-pyrimidinecarboxylic acid - 2 pounds acid per gallon or 21.2% EPA Reg. No. 432-1565 KEEP OUT OF REACH OF CHILDREN CAUTION Not for sale, sale into, distribution, and/or use in Nassau and Suffolk counties of New Yoork State. Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand this label, find someone to explain it to you in detail.) See Back Panel for First Aid Instructions and Booklet for Complete Precautionary Statements and Directions for Use. Nonrefillable Container Net Contents 2.5 Gallons 84099295 84942561D 200928AV1V 1 Method 240 SL 2.5 gal 84942561D 200928AV1 etl 061821.qxp_Method 240 SL 2.5 gal 84942561D 200928AV1 etl 061821 6/18/21 10:52 4.5625" FIRST AID If in eyes: • Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. • Call a poison control center or doctor for treatment advice. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
Biochemical and Transcriptome Analyses of a Novel Chlorophyll
Wang et al. BMC Plant Biology 2014, 14:352 http://www.biomedcentral.com/1471-2229/14/352 RESEARCH ARTICLE Open Access Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar Lu Wang1,2,3?,ChuanYue1,3?,HongliCao1,3, Yanhua Zhou1,3,JianmingZeng1,2,3,YajunYang1,2,3* and Xinchao Wang1,2,3* Abstract Background: The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Recently, many leaf color genotypes have been developed during tea plant breeding and have become valuable materials in the processing of green tea. Although the physiological characteristics of some leaf color mutants of tea plants have been partially revealed, little is known about the molecular mechanisms leading to the chlorina phenotype in tea plants. Results: The yellow-leaf tea cultivar Zhonghuang 2 (ZH2) was selected during tea plant breeding. In comparison with Longjing 43 (LJ43), a widely planted green tea cultivar, ZH2 exhibited the chlorina phenotype and displayed significantly decreased chlorophyll contents. Transmission electron microscopy analysis revealed that the ultrastructure of the chloroplasts was disrupted, and the grana were poorly stacked in ZH2. Moreover, thecontentsoftheanineand free amino acids were significantly higher, whereas the contents of carotenoids, catechins and anthocyanin were lower in ZH2 than in LJ43. Microarray analysis showed that the expression of 259 genes related to amino acid metabolism, photosynthesis and pigment metabolism was significantly altered in ZH2 shoots compared with thoseofLJ43plants.Pathwayanalysisof4,902differentially expressed genes identified 24 pathways as being significantly regulated, including ?cysteine and methionine metabolism?, ?glycine, serine and threonine metabolism?, ?flavonoid biosynthesis?, ?porphyrin and chlorophyll metabolism?and ?carotenoid biosynthesis?. -
Identification and Functional Characterization of the First Two
Identification and functional characterization of the first two aromatic prenyltransferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae Fazeelat Karamat To cite this version: Fazeelat Karamat. Identification and functional characterization of the first two aromatic prenyl- transferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae. Agronomy. Université de Lorraine, 2013. English. NNT : 2013LORR0029. tel-01749560 HAL Id: tel-01749560 https://hal.univ-lorraine.fr/tel-01749560 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, -
A Recruiting Protein of Geranylgeranyl Diphosphate Synthase Controls Metabolic Flux Toward Chlorophyll Biosynthesis in Rice
A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice Fei Zhoua,1, Cheng-Yuan Wangb,1, Michael Gutensohnc,1, Ling Jiangd, Peng Zhangb, Dabing Zhange, Natalia Dudarevaf,2, and Shan Lua,2 aState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; bState Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; cDivision of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505; dState Key Laboratory of Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China; eState Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; and fDepartment of Biochemistry, Purdue University, West Lafayette, IN 47907 Edited by Joanne Chory, The Salk Institute for Biological Studies and Howard Hughes Medical Institute, La Jolla, CA, and approved May 18, 2017 (received for review April 6, 2017) In plants, geranylgeranyl diphosphate (GGPP) is produced by is shared by several vital metabolic pathways, particularly in plastidic GGPP synthase (GGPPS) and serves as a precursor for vital plastids, including the biosynthesis of carotenoids and their deriv- metabolic branches, including chlorophyll, carotenoid, and gibber- atives (e.g., plant hormones abscisic acid and strigolactones), as ellin biosynthesis. However, molecular mechanisms regulating GGPP well as gibberellins, plastoquinones, tocopherols, and the phytyl tail allocation among these biosynthetic pathways localized in the same of chlorophylls (3). However, it remains largely unknown how al- subcellular compartment are largely unknown. -
Cogongrass Eradication Research in Alabama
Cogongrass Eradication Research in Alabama Stephen Enloe, Nancy Loewenstein and James Miller Cogongrass (Imperata cylindrica (L.) Beauv.) • Warm season rhizomatous grass • Native to Southeast Asia • Introduced at Grand Bay, AL in ~1910 • Tested as a forage in the 1920’s‐1940’s • Considered to be one of the greatest invasive plant threats to much of the Southeastern United States It is all coming together… • 2007 Cogongrass Conference • 2008 AL Cogongrass State Task Force – MOU – Strategic Plan • What was missing? $$$$$$$$$$$$$$ Alabama Forestry Commission • American Recovery and Reinvestment Act of 2009 – 6.3 million dollar cogongrass grant – 3 year period • Goals of grant – Create jobs – Stimulate economy – Get it done on the ground! • www.forestry.alabama.gov Cogongrass ERADICATION?!??! • What does that mean? Eradication Definition (Part 1) • The complete elimination of ALL living propagules, including sexual and asexual… – Seeds – Rhizomes – Shoots – Roots – Corms – Tubers – Crowns Cogongrass Seed • No seed dormancy mechanisms have been found • Complete loss of viability after 12 months Cogongrass Rhizomes Eradication definition (Part 2) • The complete elimination of ALL living propagules, including sexual and asexual… • …within a defined boundary • Single patch • Watershed • County • State • National • Continental • Private, Federal or State lands Cogongrass Strategies Clear Zone Outliers Advancing Front Special Severely Infested or Habitat Occupied Zones Cogongrass Zones Free Zone 35ºN Outlier Zone 30ºN Occupied Zone Advancing Front -
(2006.01) A01N 25/32 (2006.01) North Lindbergh Boulevard, St
( (51) International Patent Classification: souri 63167 (US). QUECK, Thomas James, Jr.; 800 A01N 25/00 (2006.01) A01N 25/32 (2006.01) North Lindbergh Boulevard, St. Louis, Missouri 63 167 A01N 25/02 (2006.01) A01N 43/66 (2006.01) (US). WELLS, Sheryl; 800 North Lindbergh Boulevard, A01N 25/04 (2006.01) A01P 13/02 (2006.01) St. Louis, Missouri 63 167 (US). SHIEH, Aileen; 800 North Lindbergh Boulevard, St. Louis, Missouri 63 167 (US). (21) International Application Number: PCT/US2020/0 14524 (74) Agent: SAMONEK, Michelle L.; Bayer CropScience LP, 890 Embarcadero Drive, West Sacramento, California (22) International Filing Date: 95605 (US). 22 January 2020 (22.01.2020) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection av ailable) . AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/796,213 24 January 2019 (24.01.2019) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicant: BAYER CROPSCIENCE LP [US/US]; 800 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, North Lindbergh Boulevard, St. Louis, Missouri 63 167 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (72) Inventors: ESSIG, Kenneth J.; 800 North Lindbergh TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. -
Comparative Transcriptome Analyses of Oleaginous Botryococcus Braunii
Cheng et al. Biotechnol Biofuels (2018) 11:333 https://doi.org/10.1186/s13068-018-1331-5 Biotechnology for Biofuels RESEARCH Open Access Comparative transcriptome analyses of oleaginous Botryococcus braunii race A reveal signifcant diferences in gene expression upon cobalt enrichment Pengfei Cheng1, Chengxu Zhou1, Yan Wang1, Zhihui Xu1, Jilin Xu1, Dongqing Zhou2,3, Yinghui Zhang2,3, Haizhen Wu2,3, Xuezhi Zhang4, Tianzhong Liu5, Ming Tang6, Qiyong Yang6, Xiaojun Yan7* and Jianhua Fan2,3* Abstract Background: Botryococcus braunii is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydro- carbon synthesis and it has little efect on growth of B. braunii cells. However, mechanisms beyond the cobalt enrich- ment remain unknown. This study seeks to explore the physiological and transcriptional response and the metabolic pathways involved in cobalt-induced hydrocarbon synthesis in algae cells. Results: Growth curves were similar at either normal or high cobalt concentration (4.5 mg/L), suggesting the absence of obvious deleterious efects on growth introduced by cobalt. Photosynthesis indicators (decline in Fv/Fm ratio and chlorophyll content) and reactive oxygen species parameters revealed an increase in physiological stress in the high cobalt concentration. Moreover, cobalt enrichment treatment resulted in higher crude hydrocarbon content (51.3% on day 8) compared with the control (43.4% on day 8) throughout the experiment (with 18.2% improvement fnally). Through the de novo assembly and functional annotation of the B. braunii race A SAG 807-1 transcriptome, we retrieved 196,276 non-redundant unigenes with an average length of 1086 bp.