Additional File 1

Total Page:16

File Type:pdf, Size:1020Kb

Additional File 1 Additional file 1 Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys Jialin Hou, Stefan M. Sievert, Yinzhao Wang, Jeff S. Seewald, Vengadesh Perumal Natarajan Fengping Wang*, Xiang Xiao* a b 100 100 75 75 Taxa Alphaproteobacteria Taxa Betaproteobacteria Aquificae Deinococcus-Thermus Campylobacteria Deltaproteobacteria 50 Euryarchaeata 50 Euryarchaeata Others Gammaproteobacteria Percentage Percentage Thermodesulfobacterium Muproteobacteria Unclassified Nitrospirae Others Unclassified 25 25 0 0 aclA aclB cdhA cdhC napA napB norB nosZ sat soxA soxC soxY soxZ sqr aprA aprB dsrA dsrB narG nirB PRK rbcL rbcS Gene Gene Figure S1 Taxonomic classification of key functional genes retrieved from the L- and M-vent chimeny.(a) The key genes enriched in the active L-vent chimney. (b) The key genes enriched in the recently inactive M-vent chimney. Reductive bacterial type Reductive archaeal type Chlorobi group Archaeoglobus(3) Oxidative bacterial type Crenarchaeota Alphaproteobacteria(1/16) Nitrospirae(12) Acidobacteria(1/14) Betaproteobacteria Firmicutes groups Gammaproteobacteria (20) Tree scale: 1 Deltaproteobacteria(9/10) Reductive bacterial type Figure S2 Maximum-likelihood phylogeny of dsrA genes retrieved from L- and M-vent chimney. The red branches represent the dsrA genes recovered from active the L-vent chimney, while the blue ones are those from recently inactive M-vent chimney. Numbers of dsrA gene for each sample are displayed in the parenthesis after the clade name. W W W W W W W WP P P W 4 P WP P P P P 2 0 0 007601690 1 thiosulfohydrolase SoxB Bradyrhizobium sp WSM1253 P W W 0 003614695 1 MUL 008967367 1 thiosulfohydrolase SoxB Bradyrhizobium sp STM 3843 6 1 063684315 1 thiosulfohydrolase SoxB Bradyrhizobium stylosanthis W W W 7 0 057197484 1 thiosulfohydrolase SoxB Bradyrhizobium sp Leaf396 5 WP W 0 0 3 W P P 6 1 P P 4 P 9 2 2 06311 012752908 1 thiosulfohydrolase SoxB Methylobacterium extorquens P 2 3 037019901 1 thiosulfohydrolase SoxB RhizobialesP bacterium 015821 1 1 0 041750721 1 thiosulfohydrolase SoxB Bradyrhizobium sp BT N 1 WP 056910972 1 thiosulfohydrolase SoxB Pseudolabrys 0504233 sp Root14621 WP 1 5 056201494 1 thiosulfohydrolase SoxB Methylobacterium sp Leaf123 4 0 1 C W 4 9 7 8 3 W S 2 8 W 5 4 P 068025945 1 thiosulfohydrolase SoxB Rhodoplanes sp Z2 5 5 069275816 1 thiosulfohydrolase SoxB Bradyrhizobium elkanii 6 6 3 4 p 4 P 0 02 P 1224 1 thiosulfohydrolase SoxB Methylobacterium radiotolerans Aquificae Gammaproteobacteria 5 9 3 s 1 4 1 W C 063987252 1 thiosulfohydrolase SoxB Methylobacterium populi 8 3 0 7 159 1 thiosulfohydrolase SoxB Methylobacterium extorquens 1 1 A t 1 4080312 1 t C P 1 m af07 h h 1 t W 1 3 L u W R V t 0 i h i i o h o t 1 1 1 thiosulfohydrolase SoxB Bradyrhizobium tropiciagri r i h p P p p s o 6 P i s W 6 e o Afipia s s i s t 850 008389056 1 u e u s o 029031962 1 thiosulfohydrolase SoxB Salinarimonas rosea 5 W W s P c l u l a s a 7 TISPECIES thiosulfohydrolase SoxB Methylosinus f a u f a o 046021260 1 thiosulfohydrolaseP SoxB Magnetospira sp QH 2 o l u P e e 9 e f W W l b f 3 h o h l s 0 s 069189482 1 thiosulfohydrolase SoxB s 7 26 o f 560 1 th o y h y o o P o P l o h T W W 28879728 1 t ngens d 1 Actinobacteria y Campylobacteria d t h y B 047029550 1 t B hiosulfo y 5 02 B a W r d r y h P d 5 P t o YS 1r o W t r h d B B 2 B 054309588P 1 r l o 7284263 1 thiosulfohydrola l 0647 e a i o r x a x W x P o ardiphaga sp l W o s a l o 0 o s o M T s 03553062 a l P e Afipia sp P52 10 s m sp N 404492 e um W a i S P u S osulfohydrolase So s S D4 v 03 e B Afipia broomeae s l thiosulfohydrolase SoxB Rhodovulum sp PH10 e 043 S 89 hy S Afipia sp Root123D2 m barat f P e e x e e o biu S gil o s o s 0 S s W o 1 HTCC2 8034880 drolase SoxB Magnetospiril h o 185 S x o a bium marinum x a a o l S l P 24588 y l m B m 6 B x o 646 B hiosulfohydr o x o d o o u richSK drii u 01 B O e 41 1 thiosulfohydrolase SoxB Hoeflea phototrophica r x r onas coralicida Deinococcus-Thermus Chlorobi r B B r T n H s B d 1 o d hios d lla pfennigii NS P ph 7 r 8 a y y 17 y X W l y r 0 l e xa a thi t a s 21 1 H Ad13 r p h h hiosulfohydrol h a e 053 1 thiosulfohyd o d o P 13 s l h r y o o o o ulfohydrolase SoxB Hoeflea sp n bae y s e 1 thi f f oxB Rhiz a 0 f Afif zia sp i p l d o l s l bacteri t r t W 557 n h y h s h h u 3 ul m S u a u o sp thi 1 xB Lutibaculu i 0V17 MB20 o s e h i s P 80 o Aurantim m s o foh z trifican E os thiosu i b o c o u c o m o se S ale osulf x o i i f 014515003W 58 1 i ibri r lum olas o l r a So i B b h ulfohy h o h ydr xB i eni t m u h thiosulfoh t c e c P t rolase SoxB Nitratireductor pacificus ov i 17 b d u s s t cte r Alphaproteobacteria Betaproteobacteria 038 S d m sp e 1 i 1 i o SoxB 1 op m a o o c u e So W ol t Magnetospir i olase SoxB Rhizobium sp Root482 u 4 r l b d a b hydro s r r 9 i m 3 W fohy 1 TISPECIES thiosulfohydrolase SoxB 1 h ase S o f bi a i o onas sp 2 P ase Sox r l W e t sis d e SoxB Polymo seud dr 6 u rol 6 L 7 0 k o b 0241 P t S u s d m atlantic n i 1 P m d 5 5 P 47 e a 1 im olas i su 0 hio xB t i u e a u 0 e 8 icr o e SoxB Labre 3 01 d y o z oroseobacter sh a B Nisaea ri 09 8 1 1 se SoxB Ho m s 80 lase So 5 z ola n 3 t rola a 5 yd x o lfohyd n uv h 1 8 s oxB r l R 8 te a i 3 2 um g tim 0 B Rubritepid o thios T T e 46292 0 1945 1 ulf e SoxB t l A 3 1 t n c h 1 W v lum r n 9 erasakiella spe PR1 3 9 r p 1 f Sox oxB 4 i drolase SoxB Labrenzia sp CP4 a o olase f a 9 B Mes a i o M s f 2 oh rasakiella pusilla 4 i 6 h osu Def P 0 r hydr 1664487 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris y b i c S A KPD29122 1 t e SoxB v c r s 4 0 ovu 6 T 0 luen d 0 01 i ase SoxB Candidatus Filomicr ti DI z ydrola i W ul e 1 thiosulfohy hi c l B gr c 1504631 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris h illum m a yd e d ubr W 7 1 t 5 T 056714039 1 thiosulfohydrolase SoxB Bosea sp Leaf344 lfo c Acidithiobacillia Deltaproteobacteria h 057191334 1 thiosulfohydrolase SoxB Bosea sp Root483D1 055728613 1 thiosulfohydrolase SoxB Bosea thiooxidans ia philum YIM 77505 i h nf r N xB Cae u 047574680 1 thiosulfohydrolase SoxB Methylobacterium sp ZNC0032 x W l 1 OL 65 1 thiosulfohy h fohydrolaseiosu So P e n se 5 n P 01 drolase SoxB Labrenzlase P n P l u al Ai1 027279129 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris A o D P 84 a 044409978 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris 1 t o A rola s i y ho a 1 047308425 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris 083 1 thiosulfohydrolase SoxB Stappia stellulata y i s M s P YC6860 s la ch SoxB Ma i 0 lfo ra 027 Thermopet assospira pro i ro W Co W 041798973 1 thiosulfohydrolase SoxB Rhodopseudomonas palustris or phiswaldense W 0 O 7 os h WP 068732006 1 thiosulfohydrolase SoxB o rm 02 61 t WP i u d K WP 034463065 1 thiosulfohydrolase SoxB 38 lfoh WP 8664 oh WP e ios h efl 063676819 1 thiosulfohydrolase SoxB Bradyrhizobium neotropicale 63 hydro se hizobium sp 1M WP m ZK WP 006019993 1 thiosulfohydrolase SoxB lf h A WP o 876 38 iosul 056301239 1 thiosulfohydrolase SoxB hy nticu t 1 u 2 0 o WP th ydro xB R aschi s sp t s M scaffold21824 WP li ea sp BAL378 a f 062314242 1 thiosulfohydrolase SoxB Bradyrhizobium sp CCH10 C7 lf ase S SoxB oxB a sp 3 isop 2 7 ulfoh S n WP 67333538 1 thiosulfohydrolase SoxB Stappia indica 1 o u a 91 1 6 ydrolase s WP 024919724 1 MU su i W 8 i IMCC20628 859 33 1 thiosulfohydrolase SoxB Fulvimarina pelagi u S m M L 9 0505 1 thiosu is hoef WP o oh ol x C0 g 6 878 coviens WP P s ell 8 1 th ox locculans 0 02905 6 i f hydrolase SoxB Rho So Jannas u P 4 WP l i n M hi fo p h o o ase rib 55 WP P 138 1 thiosulfohydrolase hydrolase SoxB Di va Eh o s 4 M M g 00 63404 f a l 027881 ydrolas h B i W 67 1 l xB tan B u 1 1 t o ne rill M scaffold31746 gene9 052639129 1 thiosulfohydrola o ase vi e 1 u rol l k i p um H e 7 s y scaffold10 r l W 037153841 1 thiosulfohydrolase SoxB Rhizobium0 sp M vax atla C i Th scaffo ea sp 2 05 20 1 thios hiosulf lase crob s 1 thio os d obact WP P ohydr d i n t ulf xB um 53436 7430 1 thiosulfoh6 vi m C i drolase SoxB M toco WP P y oxB Jann hiosulfoh r M 023430402 1 thiosulfohydrola 1 thi hiosu Lo u andonensig h u ola S fund W P 07 6 8 1 t xB ose i cus o ermu s 026379258 1 thiosulfohydrolase SoxB dro h lim p i e W ydro o l hia t W io hy lfoh T sca 0 1 t R s rru s oxB salinarum W thios fo h osei c r w 193 1 s e S se caf 13 415 0744 1 t l s e rc P he c WP P 02435 48 iosulf oxB cter f a ul sulfoh drol l er sp 624 8 1 u a ter 008 y d5787 cus m i WP 0 h lfo cte r l So s mar WW 67 51 t lfohy s lase S se S S f f drola oxB rm fo ffold454 1 W P 0 79364 u ae bacteria o oh T a 06 e Rube nn ac 1 WP 4 1 thiosulf1 s ro a b h yd as he P a cte r ant 285 thiosul us mylo ld544 W 55 64 982 6 o d oxB R o a s yd yd xB gen P 009469448 1 thiosulfohydrolase3177 SoxB Roseibium sp J ob ace d te W ydro 63 TC1 i W 0 4 6 thio 1 partial y xB b aquimarie W r e Sox s P 4669 29 hi se SoxB o r o s T r ar hiosu 1 lfohydrolase So o d P 94 o rolase s m ge W 94 t t ydrol a e S Roseibaod ter ac i P l e S hermusThe thermophil 4 P 0 7 ne u oh So h rh d ter l ase Thermus thermophilusp inu W gene8 f h ol o b ro 0 01 a u liqu gene8 e5 P 063 1 1 s r as o o W 1 9 se la CC s 0 g W ul o SoxB xB d e fohydrol g n P 028 21 7 9 io f rh d P 2 1 S s B o r cal W ge s o u o o 9 W 0 e x m e9 s P 00803 h o fohydrolas obac 0125 6 t 88 SoxB Meio e ene1 en W 25 sul l hyd S d hi oxB S T B B P 70 se rh a 4 P S u fa W 01 9 157 hi o o rolase u o c osulfoh o herm idi 0358441 253205 t i lf d SoxB Rhodobac r spha i 1 1 oxB Th s ig US3 UF1 cie e9 P 1 olase se P d hod t W 4 0 17 xB W 53 54 8 1 t h y
Recommended publications
  • Caldimonas Taiwanensis Sp. Nov., a Amylase Producing Bacterium
    ARTICLE IN PRESS Systematic and Applied Microbiology 28 (2005) 415–420 www.elsevier.de/syapm Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring Wen-Ming Chena,Ã, Jo-Shu Changb, Ching-Hsiang Chiua, Shu-Chen Changc, Wen-Chieh Chena, Chii-Ming Jianga aDepartment of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan bDepartment of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan cTajen Institute of Technology, Yen-Pu, Pingtung, Taiwan Received 22 February 2005 Abstract During screening for amylase-producing bacteria, a strain designated On1T was isolated from a hot spring located in Pingtung area, which is near the very southern part of Taiwan. Cells of this organism were Gram-negative rods motile by means of a single polar flagellum. Optimum conditions for growthwere 55 1C and pH 7. Strain On1T grew well in minimal medium containing starchas thesole carbon source, and its extracellular products expressed amylase activity. The 16S rRNA gene sequence analysis indicates that strain On1T is a member of b-Proteobacteria. On the basis of a phylogenetic analysis of 16S rDNA sequences, DNA–DNA similarity data, physiological and biochemical characteristics, as well as fatty acid compositions, the organism belonged to the genus Caldimonas and represented a novel species within this genus. The predominant cellular fatty acids of strain On1T were 16:0 (about 30%), 18:1 o7c (about 20%) and summed feature 3 (16:1o7c or 15:0 iso 2OH or both[about 31%]). Its DNA base ratio was 65.9 mol% G+C.
    [Show full text]
  • Cecilia Gonzales Marin
    MOLECULAR DETECTION OF BACTERIA FROM A POSSIBLE MATERNAL ORAL ORIGIN IN NEONATAL GASTRIC ASPIRATES OBTAINED FROM COMPLICATED PREGNANCIES Thesis submitted to the University of London to obtain the degree of DOCTOR OF PHILOSOPHY Cecilia Gonzales Marin Institute of Dentistry Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2011 SUPERVISORS: Rob Allaker, PhD Queen Mary University of London Barts and The London School of Medicine and Dentistry Centre for Clinical and Diagnostic Oral Sciences David Spratt, PhD University College London Eastman Dental Institute Division of Microbial Diseases 2 ABSTRACT It has been suggested that periodontal disease, a disease that affects the supporting tissues of the teeth, represents a risk factor for adverse pregnancy outcomes. Certain oral pathogens possess a demonstrated ability to translocate and invade the amniotic tissues. Once in the amniotic environment, these opportunistic colonisers could then initiate or contribute to a perinatal infection, and in this way be involved in the complications. The overall aim of this study was to determine the presence, and confirm the origin, of suspected maternal oral microbiota in neonatal gastric aspirates (swallowed amniotic fluid) collected due to complications during pregnancy and/or evidence of neonatal sepsis. Non-cultural PCR-based methods directed to the ribosomal encoding genes (rDNA) were applied to analyse neonatal and maternal samples. The use of universal and species-specific primers that target the bacterial 16S rRNA gene allowed identification and quantification of broad-range and specific bacteria to the species level. Sequence comparative analysis of a more variable fragment, the intergenic spacer region located between the 16S and the 23S rDNA, was finally used to compare strains obtained from the neonates and their counterparts in the respective mother’s oral and vaginal samples.
    [Show full text]
  • (PHA) Biopolyesters by Extremophiles?
    MOJ Polymer Science Review Article Open Access Production of Poly Hydroxyalkanoate (PHA) biopolyesters by extremophiles? Abstract Volume 1 Issue 2 - 2017 The article reviews the current state of knowledge of the production of Martin Koller polyhydroxyalkanoate (PHA) biopolyesters under extreme environmental conditions. University of Graz, Austria Although PHA production by extremophiles is not realized yet at industrial scale, significant PHA accumulation under high salinity or extreme pH- or temperature Correspondence: Martin Koller, University of Graz, Office of Research Management and Service, c/o Institute of Chemistry, conditions was reported for diverse representatives of the microbial domains of both Heinrichstrasse 28/III, 8010 Graz, Austria, Tel +43-316-380-5463, Archaea and Bacteria. Several mechanisms were proposed to explain the mechanistic Email [email protected] role of PHA and their monomers as microbial cell- and enzyme protective chaperons and the factors boosting PHA biosynthesis under environmental stress conditions. Received: February 13, 2017 | Published: June 01, 2017 The potential of selected extremophile strains, isolated from extreme environments like glaciers, hot springs, saline brines, or from habitats highly polluted with heavy metals or solvents, for efficient future PHA production on an industrially relevant scale is assessed based on the basic data available in the scientific literature. The article reveals that, beside the needed optimization of other cost-decisive factors like inexpensive raw materials or efficient downstream processing, the application of extremophile production strains can drastically safe energy costs, are easily accessible towards long-term cultivation in chemostat processes, and therefore might pave the way towards cost-efficient PHA production, even combined with safe disposal of industrial waste streams.
    [Show full text]
  • IDENTIFIKASI MOLEKULER BAKTERIPADA SALIVA ANJING (Canis Lupus Familiaris) RAS GOLDEN RETRIEVER
    IDENTIFIKASI MOLEKULER BAKTERIPADA SALIVA ANJING (Canis lupus familiaris) RAS GOLDEN RETRIEVER Skripsi Diajukan Untuk Memenuhi Salah Satu Syarat Meraih Gelar Sarjana Sains Jurusan Biologi Fakultas Sains dan Teknologi Pada Fakultas Sains Dan Teknologi UIN Alauddin Makassar Oleh: FITRIA RAMADANA NIM: 60300114014 FAKULTAS SAINS DAN TEKNOLOGI UIN ALAUDDIN MAKASSAR 2018 i ii iii iv KATA PENGANTAR بسم اهلل الرحمن الرحيم Setelah melalui proses pengerjaan yang cukup panjang, akhirnya skripsi ini dapat juga terselesaikan. Untuk itu, penulis memanjatkan segala pujian dan rasa syukur tertinggi atas segala limpahan rahmat dan karunia-Nya.Dialah Allah, Tuhan semesta alam yang mengajarkan kepada manusia semua ilmu di muka bumi ini. Dia pulalah yang memberikan potensi kesuksesan kepada manusia.Memberikan akal, penglihatan, pendengaran dan hati kepada manusia untuk dapat meraih sesuatu yang diinginkan.Salawat dan salam semoga dilimpahkan kepada para Nabi, para Rasul dan pengikut mereka hingga akhir zaman. Salawat dan salam paling sempurna semoga senantiasa dilimpahkan kepada baginda Rasulullah Muhammad saw. yang tak kenal lelah menyampaikan risalah, amanat dan nasehat kepada seluruh manusia. Semoga Allah memberinya kebaikan, wasilah, keutamaan, kemuliaan dan kedudukan yang terpuji. Skripsi ini dapat terselesaikan dengan adanya bantuan yang penulis peroleh dari berbagai pihak.Tidak mungkin menyebutkan mereka satu persatu di sini.Meskipun begitu, pihak yang secara langsung terkait dan berjasa dalam pengerjaan tulisan ini harus disebutkan.Namun, penulis memohon pengertian mereka yang seharusnya disebutkan namun tak disebutkan karena keterbatasan ruang. Pertama-tama penulis menyampaikan ucapan terima kasih yang dalam dan tulus kepada kedua orang tua penulis yakni ayahanda Hasan dan ibunda v vi Masnu’ayang senantiasa merawat dan mendidik penulis dari kecil hingga sekarang.Terutama bagi ibu penulis semoga Allah senantiasa memberikan tempat terbaik.Penulis menyadari bahwa ucapan terima kasih penulis tidak sebanding dengan pengorbanan yang dilakukan oleh keduanya.
    [Show full text]
  • (PHA) Production
    bioengineering Advances in Polyhydroxy- alkanoate (PHA) Production Edited by Martin Koller Printed Edition of the Special Issue Published in Bioengineering www.mdpi.com/journal/bioengineering Advances in Polyhydroxyalkanoate (PHA) Production Special Issue Editor Martin Koller MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Martin Koller University of Graz Austria Editorial Office MDPI AG St. Alban‐Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Bioengineering (ISSN 2306‐5354) from 2016–2017 (available at: http://www.mdpi.com/ journal/bioengineering/special_issues/PHA). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Author 1; Author 2. Article title. Journal Name Year, Article number, page range. First Edition 2017 ISBN 978‐3‐03842‐637‐0 (Pbk) ISBN 978‐3‐03842‐636‐3 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2017 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY‐NC‐ND (http://creativecommons.org/licenses/by‐nc‐nd/4.0/). Table of Contents About the Special Issue Editor ..................................................................................................................... v Preface to “Advances in Polyhydroxyalkanoate (PHA) Production” ................................................... vii Martin Koller Advances in Polyhydroxyalkanoate (PHA) Production Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 ...........................
    [Show full text]
  • Biocorrosion and Biofilm Formation in a Nutrient Limited Heating System
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Universidade do Minho: RepositoriUM Biofouling Vol. 25, No. 8, November 2009, 727–737 Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions B.V. Kjellerupa,b*, K.U. Kjeldsenc, F. Lopesd, L. Abildgaardc, K. Ingvorsenc, B. Frølunde, K.R. Sowersb and P.H. Nielsena aDepartment of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark; bCenter of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St, Baltimore, MD 21202, USA; cDepartment of Biological Sciences, Section for Microbiology, Aarhus University, Ny Munkegade, Building 1540, DK-8000 A˚rhus C., Denmark; dDepartment of Biological Engineering, University of Minho, Campus de Gualtar, 4710–057 Braga, Portugal; eDanish Technological Institute, Centre for Chemical and Water Technology, Teknologiparken, DK-8000 A˚rhus C., Denmark (Received 17 March 2009; final version received 10 June 2009) Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer.
    [Show full text]
  • Outline Release 7 7C
    Taxonomic Outline of Bacteria and Archaea, Release 7.7 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 4 – The Bacteria: Phylum “Proteobacteria”, Class Betaproteobacteria George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall Class Betaproteobacteria VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.16162 Order Burkholderiales VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1617 Family Burkholderiaceae VP Garrity et al 2006. N4Lid DOI: 10.1601/nm.1618 Genus Burkholderia VP Yabuuchi et al. 1993. GOLD ID: Gi01836. GCAT ID: 001596_GCAT. Sequenced strain: SRMrh-20 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 2 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1619 Burkholderia cepacia VP (Palleroni and Holmes 1981) Yabuuchi et al. 1993. <== Pseudomonas cepacia (basonym). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High-quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank). GOLD ID: Gc00309. GCAT ID: 000301_GCAT. Entrez genome id: 10695. Sequenced strain: ATCC 17760, LMG 6991, NCIMB9086 is from a non-type strain. Genome sequencing is completed. Number of genomes of this species sequenced 1 (GOLD) 1 (NCBI). N4Lid DOI: 10.1601/nm.1620 Pseudomonas cepacia VP (ex Burkholder 1950) Palleroni and Holmes 1981. ==> Burkholderia cepacia (new combination). Synonym links through N4Lid: 10.1601/ex.2584. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 25416. High- quality 16S rRNA sequence S000438917 (RDP), U96927 (Genbank).
    [Show full text]
  • Molecular Detection of Bacteria from a Possible Material Oral Origin in Neonatal Gastric Aspirates Obtained from Complicated Pregnancies Gonzales Marin, Cecilia
    Molecular detection of bacteria from a possible material oral origin in neonatal gastric aspirates obtained from complicated pregnancies Gonzales Marin, Cecilia The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/1299 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] MOLECULAR DETECTION OF BACTERIA FROM A POSSIBLE MATERNAL ORAL ORIGIN IN NEONATAL GASTRIC ASPIRATES OBTAINED FROM COMPLICATED PREGNANCIES Thesis submitted to the University of London to obtain the degree of DOCTOR OF PHILOSOPHY Cecilia Gonzales Marin Institute of Dentistry Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2011 SUPERVISORS: Rob Allaker, PhD Queen Mary University of London Barts and The London School of Medicine and Dentistry Centre for Clinical and Diagnostic Oral Sciences David Spratt, PhD University College London Eastman Dental Institute Division of Microbial Diseases 2 ABSTRACT It has been suggested that periodontal disease, a disease that affects the supporting tissues of the teeth, represents a risk factor for adverse pregnancy outcomes. Certain oral pathogens possess a demonstrated ability to translocate and invade the amniotic tissues. Once in the amniotic environment, these opportunistic colonisers could then initiate or contribute to a perinatal infection, and in this way be involved in the complications.
    [Show full text]
  • Zhizhongheella Caldifontis Gen. Nov., Sp. Nov., a Novel Member of the Family Comamonadaceae
    Antonie van Leeuwenhoek (2014) 105:755–761 DOI 10.1007/s10482-014-0131-6 ORIGINAL PAPER Zhizhongheella caldifontis gen. nov., sp. nov., a novel member of the family Comamonadaceae Lei Dong • Hong Ming • Lan Liu • En-Min Zhou • Yi-Rui Yin • Yan-Yan Duan • Guo-Xing Nie • Hui-Geng Feng • Wen-Jun Li Received: 10 December 2013 / Accepted: 29 January 2014 / Published online: 12 February 2014 Ó Springer International Publishing Switzerland 2014 Abstract An alkalitolerant, thermotolerant, strictly 8.0–9.0 and in the presence of 0–3 % (w/v) NaCl. The aerobic and Gram-staining negative bacterial strain, predominant ubiquinones were Q-8 and Q-9. The T designated YIM 78140 , was isolated from a water major fatty acids were C16:0, C17:0 cyclo, C18:1 x7c and sample in Hehua hot spring, Tengchong, Yunnan summed feature 3. The G?C content of genomic DNA province, south-west China. The colonies were light was 70.8 mol%. The results of physiological and brown, convex and circular. Phylogenetic analysis of biochemical characteristics, phylogenetic analysis the 16S rRNA gene sequence of strain YIM 78140T allowed the phenotypic and genotypic differentiation indicated that it was clustered with members of of strain YIM 78140T from its closest phylogenetic b-Proteobacteria (with the similarity from 96.9 to neighbours. Therefore, the strain YIM 78140T repre- 93.6 %). Good growth occurred at 40–50 °C, pH sents a novel genus of the family Comamonadaceae, for which the name Zhizhongheella caldifontis gen. nov., sp. nov. is proposed. The type strain is YIM 78140T (= BCRC 80649T = KCTC 32557T).
    [Show full text]
  • Oxidizing Bacteria Are Prevalent in Drinking Water Systems
    Environmental Microbiology Reports (2017) 9(2), 120–128 doi:10.1111/1758-2229.12508 Diverse manganese(II)-oxidizing bacteria are prevalent in drinking water systems Daniel N. Marcus,1,2 Ameet Pinto,3 how microbial communities influence the quality of Karthik Anantharaman,1 Steven A. Ruberg,4 drinking water. Eva L. Kramer,1 Lutgarde Raskin2 and Gregory J. Dick1* 1Department of Earth and Environmental Science, Introduction University of Michigan, Ann Arbor, MI, USA. The presence of manganese (Mn) in source waters 2Department of Civil and Environmental Engineering, used for drinking water (DW) production is a common University of Michigan, Ann Arbor, MI, USA. concern, primarily due to the impact of Mn on the aes- 3Department of Civil and Environmental Engineering, thetic quality of finished water (Kohl and Medlar, 2006). Northeastern University, Boston, MA, USA. Mn is regulated by the U.S. Environmental Protection 4Great Lakes Environmental Research Laboratory, Agency at a nonenforceable secondary maximum con- National Oceanic and Atmospheric Administration, taminant level (MCL) of 0.05 mg/l (EPA, 2013). Regard- Ann Arbor, MI, USA less of the possible direct effects of Mn on human health (Bouchard et al., 2011; Khan et al., 2012), the Summary presence of Mn oxides in DW can strongly alter other aspects of water chemistry (Tebo et al., 2004), thus they Manganese (Mn) oxides are highly reactive minerals may indirectly influence the quality of DW. that influence the speciation, mobility, bioavailability Mn oxides can rapidly oxidize other metals and metal- and toxicity of a wide variety of organic and inorganic loids (metal(loid)s hereafter), affecting their speciation, compounds.
    [Show full text]
  • Downloaded in GI List Format
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046896; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with 2 large scale dilution-to-extinction cultivation 3 4 5 6 Michael W. Henson1,#, V. Celeste Lanclos1, David M. Pitre2, Jessica Lee Weckhorst2,†, Anna M. 7 Lucchesi2, Chuankai Cheng1, Ben Temperton3*, and J. Cameron Thrash1* 8 9 1Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, 10 U.S.A. 11 2Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, 12 U.S.A. 13 3School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K. 14 #Current affiliation: Department of Geophysical Sciences, University of Chicago, Chicago, IL 15 60637, U.S.A. 16 †Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, 17 TX 77030, U.S.A. 18 19 *Correspondence: 20 21 J. Cameron Thrash 22 [email protected] 23 24 Ben Temperton 25 [email protected] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Running title: Evaluation of large-scale DTE cultivation 40 41 42 Keywords: dilution-to-extinction, cultivation, bacterioplankton, LSUCC, microbial ecology, 43 coastal microbiology 44 45 46 Page 1 of 43 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046896; this version posted April 18, 2020.
    [Show full text]
  • Antonie Van Leeuwenhoek, Vol.104(6); 2013; 1217-1225
    Author version: Antonie van Leeuwenhoek, vol.104(6); 2013; 1217-1225 Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India K. Rakshak 1, K. Ravinder 1, Nupur1, T. N. R. Srinivas2, P. Anil Kumar1* 1Microbial Type Culture Collection and Gene bank, CSIR- Institute of Microbial Technology, Sector 39A, Chandigarh – 160 036, INDIA 2CSIR-National Institute of Oceanography, Regional centre, 176, Lawsons Bay Colony, Visakhapatnam – 530 017, INDIA Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh – 160 036, INDIA Email: [email protected] Telephone: 00-91-172-6665170 Running title Caldimonas meghalayensis sp. nov. Subject category New taxa (Betaproteobacteria) The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AK31T is HF562216 E-mail address of each author [email protected] (Correspondence and reprints); [email protected], [email protected], [email protected]; [email protected] Abstract While studying the microbial diversity of hot spring of North-east India we isolated a strain AK31T from the Jakrem hot spring of Meghalaya. The strain formed light yellow colony on nutrient agar and was Gram negative, non spore-forming rods, motile with single polar flagellum. The strain was positive for oxidase and catalase and hydrolysed starch and weakly urea. The predominant cellular fatty acids were C16:0 (34.8%), C17:0 cyclo (27.1%), C16:1 ω7c and/or iso-C15:0 2OH (summed feature T 3) (9.6%), C10:0 3OH (8.0%), C12:0 (5.8%), C14:0 (5.3%) and C18:1 ω7c (5.3%).
    [Show full text]