Zhizhongheella Caldifontis Gen. Nov., Sp. Nov., a Novel Member of the Family Comamonadaceae

Total Page:16

File Type:pdf, Size:1020Kb

Zhizhongheella Caldifontis Gen. Nov., Sp. Nov., a Novel Member of the Family Comamonadaceae Antonie van Leeuwenhoek (2014) 105:755–761 DOI 10.1007/s10482-014-0131-6 ORIGINAL PAPER Zhizhongheella caldifontis gen. nov., sp. nov., a novel member of the family Comamonadaceae Lei Dong • Hong Ming • Lan Liu • En-Min Zhou • Yi-Rui Yin • Yan-Yan Duan • Guo-Xing Nie • Hui-Geng Feng • Wen-Jun Li Received: 10 December 2013 / Accepted: 29 January 2014 / Published online: 12 February 2014 Ó Springer International Publishing Switzerland 2014 Abstract An alkalitolerant, thermotolerant, strictly 8.0–9.0 and in the presence of 0–3 % (w/v) NaCl. The aerobic and Gram-staining negative bacterial strain, predominant ubiquinones were Q-8 and Q-9. The T designated YIM 78140 , was isolated from a water major fatty acids were C16:0, C17:0 cyclo, C18:1 x7c and sample in Hehua hot spring, Tengchong, Yunnan summed feature 3. The G?C content of genomic DNA province, south-west China. The colonies were light was 70.8 mol%. The results of physiological and brown, convex and circular. Phylogenetic analysis of biochemical characteristics, phylogenetic analysis the 16S rRNA gene sequence of strain YIM 78140T allowed the phenotypic and genotypic differentiation indicated that it was clustered with members of of strain YIM 78140T from its closest phylogenetic b-Proteobacteria (with the similarity from 96.9 to neighbours. Therefore, the strain YIM 78140T repre- 93.6 %). Good growth occurred at 40–50 °C, pH sents a novel genus of the family Comamonadaceae, for which the name Zhizhongheella caldifontis gen. nov., sp. nov. is proposed. The type strain is YIM 78140T (= BCRC 80649T = KCTC 32557T). Lei Dong and Hong Ming contributed equally to this work. Electronic supplementary material The online version of Keywords Family Comamonadaceae Á this article (doi:10.1007/s10482-014-0131-6) contains supple- Zhizhongheella gen. nov. Á Zhizhongheella mentary material, which is available to authorized users. caldifontis sp. nov. Á Hehua hot spring Á L. Dong Á H. Ming Á L. Liu Á E.-M. Zhou Á Polyphasic taxonomy Y.-R. Yin Á W.-J. Li (&) Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, and Laboratory for Introduction Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People’s Republic of China The family Comamonadaceae was first described by e-mail: [email protected]; [email protected] (Willems et al. 1991). The members are Gram-staining negative and motile by means of either one polar H. Ming Á H.-G. Feng College of Life Sciences and Technology, Xinxiang flagellum. At the time of writing, 34 genera have been Medical University, Xinxiang 453003, People’s Republic validly described (http://www.bacterio.net/). Strains of China of the family Comamonadaceae were obtained from soil, hot spring water, freshwater, waste water, acti- Y.-Y. Duan Á G.-X. Nie College of Fisheries, Henan Normal University, vated sludge, pond water, salt mine and so on (Du- Xinxiang 453007, People’s Republic of China binina and Grabovich 1984; Takeda et al. 2002; 123 756 Antonie van Leeuwenhoek (2014) 105:755–761 Grabovich et al. 2006; Heylen et al. 2008; Hiraishi shaken flasks (approximately 150 rpm.) by using ISP 2 et al. 1995; Spring et al. 2005; Yu et al. 2011; Zhang broth medium at 45 °C for about 1 week. et al. 2012), which indicated that this evolutionary cluster had a wide spectrum of habitat and varied Morphological, cultural, physiological metabolic pathways. Some strains were capable of and biochemical characteristics degrading hydrocarbons (Rouvie`re and Chen 2003), accumulating phosphorous (Blackall et al. 2002; Lee Anaerobic growth was observed after incubation in an et al. 2003), oxidizing ammonia (Juretschko et al. anaerobic chamber for 7 days at 45 °C on ISP 2 agar 2002; Purkhold et al. 2000) and performing denitrifi- plate. Gram staining was carried out by using the cation (Ginige et al. 2004). Here we report the char- standard gram reaction and was confirmed by using acterization of strain YIM 78140T, which was isolated the KOH lysis test method (Cerny 1978). The from hot spring water in south-west China. morphological characteristics of strain YIM 78140T During investigating thermophilic microbial was observed by light microscopy (model BH 2; resources at Hehua hot spring in Tengchong, Yunnan Olympus) and transmission electron microscopy province, south-west China, we obtained strain YIM (JEOL JEM-2100), after incubation on ISP 2 agar 78140T from the Hehua hot spring site. In the present medium at 45 °C for 3 days. The procedure of study, polyphasic taxonomic study of strain YIM preparing the sample for transmission electron micros- 78140T was carried out. Based on the morphological, copy was described by Ming et al. (2012). Growth physiological, chemotaxonomic results and phyloge- temperature was tested at 4, 10, 15, 20, 25, 30, 35, 40, netic analysis, strain YIM 78140T represents a novel 45, 50, 55 and 60 °C on ISP 2 agar medium for genus of the family Comamonadaceae, for which the 15 days. NaCl-tolerance tests were examined at name Zhizhongheella caldifontis gen. nov., sp. nov. is different NaCl concentrations (0, 0.5, 1, 1.5, 2, 3, 5, proposed. 7, 10, 12, and 15 % w/v) ISP 2 agar medium at 45 °C. The pH growth range was investigated between pH 4.0 and 11.0 at intervals of 1 pH unit, by using the buffer Materials and methods system described by Yu et al. (2013), for growth was tested at 45 °C for 15 days by culturing the strain on Strain YIM 78140T was isolated from a water sample ISP 2 broth medium. Carbon source utilization was (N 24.9728°, W 98.39706°). Sample collected from investigated by the methods described by Shirling and Hehua hot spring, Tengchong, Yunnan province, Gottlieb (1966); Locci (1989). Biolog GN3 micro- south-west China. After one week incubation on plates were also used for characterization of single- R2A medium (BD; Becton, Dickinson and Company) carbon-source assimilation and chemical sensitivity at 45 °C, the colony of strain YIM 78140T was picked assays, according to the manufacturer’s instructions; and repeatedly re-streaked onto International Strepto- plates were incubated at 45 °C and read after 48 h. myces Project agar medium (ISP) 2 (Shirling and Nitrogen source utilization was determined according Gottlieb 1966)at45°C, until purity was confirmed. to Williams et al. (1989). Catalase activity was The reference strains used (type strains) were obtained detected by the production of bubbles after the from RIKEN BioResource Center, Japan Collection of addition of a drop of 3 % (v/v) H2O2. Oxidase activity Microorganisms (JCM) for Caldimonas manganoxi- was determined by the oxidation of tetramethyl-p- dans JCM 10698T and Bioresource Collection and phenylenediamine. Tests for hydrolysis of cellulose, Research Center (BCRC), Taiwan for Caldimonas gelatin, starch and Tweens 20, 40, 60 and 80, milk taiwanensis BCRC 17405T. The purified strain YIM coagulation and peptonization, utilization of urea and 78140T and reference type strains were routinely nitrate reduction, were performed as described by cultivated and stored as aqueous glycerol suspensions Gonzalez et al. (1978). Enzyme activity and other (20 %, v/v) at -80 °C. Since the reference type strains biochemical characteristics were determined by using can also be cultivated on ISP 2 medium at 45 °C, the API ZYM, API 20 NE and API 50 CH systems biomasses for chemical and molecular studies were (bioMe´rieux, France) according to the manufacturer’s obtained for all three type strains by cultivation in instructions. 123 Antonie van Leeuwenhoek (2014) 105:755–761 757 Table 1 Differential phenotypic characteristics of strain YIM 78140T and phylogenetically related taxa in the family Comamonadaceae Characteristic 1 2 3 4 5 Colony colour Light brown Creamy-grey Light yellow White Cream or white Oxidase ?? - ? w Catalase ?? w ?- Nitrate reduction ?? ? - ? Glucose fermentation ?- - - - Assimilation of Acetate ?- ? ? ? Adipate ?- ? - ? Citrate ?? - ? - D-Arabinose ?? - ? - D-Fructose -? ? - - D-Trehalose -- ? - - D-Mannitol -? ? - - Galactose ?? - - - L-Glutamic acid ?? ? ? - Malate ?? - - - Maltose ?? ? - ? Phenylacetate -- ? - ? Sucrose -? - - - Optimum growth temperature (°C) 40–50 50 55 50 50 Optimum growth pH 8.0–9.0 7.0–8.0 7.0 7.0 7.0 Isolation source Hot spring Hot spring Hot spring Activated sludge Hot spring DNA G?C content (mol%) 70.8 65.9 66.2 70.0 69.2 Taxa: 1, YIM 78140T (data from this study); 2, Caldimonas manganoxidans JCM 10698T (data from this study); 3, Caldimonas taiwanensis On1T (data from this study); 4, Schlegelella thermodepolymerans K14T (Elbanna et al. 2003); 5, Schlegelella aquatica wcf1T (Chou et al. 2006). ‘‘?’’ positive, ‘‘-’’ negative, w weak reaction All the strains are positive for C4 esterase, C8 esterase lipase, leucine arylamidase, naphthol-AS-BI-phosphohydrolase and assimilation of gluconate, L-lactic acid, pyruvate and scucinic acid. The following characteristics are negative for all the strains: a-chymotrypsin, a-galactosidase, b-galactosidase, b-glucuronidase, b-glucosidase, N-acetyl-b-glucosaminidase, a-mannosidase, b-fucosidase and assimilation of adonitol, erythritol, D-mannose, L-rhamnose, inositol and xylitol Chemotaxonomy Molecular analysis Biomass for chemical analysis was obtained by Extraction of genomic DNA and PCR amplification of cultivation in shaken flasks by using ISP 2 broth the 16S rRNA gene were performed from strain YIM medium at 45 °C for about 3 days. Cellular fatty 78140T as described previously (Li et al. 2007). The acid analysis was performed by using the Microbial resulting 16S RNA gene sequence was compared with Identification System (Sherlock Version 6.1; MIDI available 16S rRNA gene sequences of cultured database: TSBA6). The quinones were extracted by species from GenBank via the BLAST program and using the method of Collins et al. (1977) and the EzTaxon-e server (http://eztaxon-e.ezbiocloud. separated by HPLC (Kroppenstedt 1982). The G?C net/; Kim et al.
Recommended publications
  • Publication List – Michael Wagner
    Publication list – Michael Wagner I have published between 1992 – April 2021 in my six major research fields (nitrification, single cell microbiology, microbiome, wastewater microbiology, endosymbionts, sulfate reduction) 269 papers and more than 30 book chapters. According to Scopus (April 2021) my publications have been cited 40,640 (ISI: 37,997; Google Scholar: 59,804) and I have an H-index of 107 (ISI: 103; Google Scholar: 131). Seven of my publications appeared in Nature (plus a News & Views piece), three in Science, 13 in PNAS (all direct submission) and two in PLoS Biology. More info about my publications can be found at: Scopus: https://www.scopus.com/authid/detail.uri?authorId=57200814774 ResearcherID: https://publons.com/researcher/2814586/michael-wagner/ GoogleScholar: https://scholar.google.com/citations?user=JF6OQ_0AAAAJ&hl=de 269. Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier-Menches SM, Gerner C. 2021. Interaction with ribosomal proteins accompanies stress induction of the anticancer metallodrug BOLD-100/KP1339 in the endoplasmic reticulum. Angew Chem Int Ed Engl, 60:5063-5068 268. Willeit P, Krause R, Lamprecht B, Berghold A, Hanson B, Stelzl E, Stoiber H, Zuber J, Heinen R, Köhler A, Bernhard D, Borena W, Doppler C, von Laer D, Schmidt H, Pröll J, Steinmetz I, Wagner M. 2021. Prevalence of RT-qPCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 prospective cohort study. The Lancet Regional Health - Europe, 5:100086 267. Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, Wagner M, Stocker R.
    [Show full text]
  • Bacterial Population Dynamics and Separation of Active Degraders by Stable Isotope Probing During Benzene Degradation in a Btex-Impacted Aquifer
    Rev. Int. Contam. Ambient. 25 (3) 147-156, 2009 BACTERIAL POPULATION DYNAMICS AND SEPARATION OF ACTIVE DEGRADERS BY STABLE ISOTOPE PROBING DURING BENZENE DEGRADATION IN A BTEX-IMPACTED AQUIFER Arturo ABURTO1,2*, and Andrew S. BALL1,3 1 Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom. *Corresponding author: Arturo Aburto. Tel.: +52 55 58044600 ext 2677, Fax: +52 55 58046407. E-mail address: [email protected] 2 Present address: Universidad Autonoma Metropolitana, Artificios 40, Miguel Hidalgo, Cuajimalpa, México. 3 Present address: School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, South Australia 5001 (Recibido agosto 2008, aceptado febrero 2009) Key words: aerobic benzene degradation, SIP, groundwater, population dynamics ABSTRACT The activity and diversity of a groundwater bacterial community was studied during the degradation of benzene in samples from a BTEX-contaminated aquifer (SIReN, UK) through the use of denaturing gradient gel electrophoresis (DGGE), followed by excision and sequencing of dominant bands. Rapid aerobic benzene degradation occurred in all samples, with 60-70 % degradation of benzene. DGGE analysis revealed that unique, stable bacterial communities were formed in each sample. Pseudomonas putida and Aci- dovorax delafieldii were identified in groundwater samples 308s and W6s respectively, suggesting they are the important taxa involved in the degradation of benzene. Further work based on stable isotope probing (SIP) of RNA using 13C benzene was carried out. Prominent bands were identified as Acidovorax and Malikia genera; the latter is very similar to the benzene-degrader Hydrogenophaga, which confirms the presence of ac- tive benzene degraders in the groundwater samples.
    [Show full text]
  • Additional File 1
    Additional file 1 Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys Jialin Hou, Stefan M. Sievert, Yinzhao Wang, Jeff S. Seewald, Vengadesh Perumal Natarajan Fengping Wang*, Xiang Xiao* a b 100 100 75 75 Taxa Alphaproteobacteria Taxa Betaproteobacteria Aquificae Deinococcus-Thermus Campylobacteria Deltaproteobacteria 50 Euryarchaeata 50 Euryarchaeata Others Gammaproteobacteria Percentage Percentage Thermodesulfobacterium Muproteobacteria Unclassified Nitrospirae Others Unclassified 25 25 0 0 aclA aclB cdhA cdhC napA napB norB nosZ sat soxA soxC soxY soxZ sqr aprA aprB dsrA dsrB narG nirB PRK rbcL rbcS Gene Gene Figure S1 Taxonomic classification of key functional genes retrieved from the L- and M-vent chimeny.(a) The key genes enriched in the active L-vent chimney. (b) The key genes enriched in the recently inactive M-vent chimney. Reductive bacterial type Reductive archaeal type Chlorobi group Archaeoglobus(3) Oxidative bacterial type Crenarchaeota Alphaproteobacteria(1/16) Nitrospirae(12) Acidobacteria(1/14) Betaproteobacteria Firmicutes groups Gammaproteobacteria (20) Tree scale: 1 Deltaproteobacteria(9/10) Reductive bacterial type Figure S2 Maximum-likelihood phylogeny of dsrA genes retrieved from L- and M-vent chimney. The red branches represent the dsrA genes recovered from active the L-vent chimney, while the blue ones are those from recently inactive M-vent chimney. Numbers of dsrA gene for each sample are displayed in the parenthesis after the clade name.
    [Show full text]
  • Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
    The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number .
    [Show full text]
  • Bioflocculation of Wastewater Organic Matter at Short Retention Times
    Bioflocculation of Wastewater Organic Matter at Short Retention Times Lena Faust Thesis committee Promotor Prof. dr. ir. H.H.M. Rijnaarts Professor, Chair Environmental Technology Wageningen University Co-promotor Dr. ir. H. Temmink Assistant professor, Sub-department of Environmental Technology Wageningen University Other members Prof. Dr A.J.M. Stams, Wageningen University Prof. Dr. I. Smets, University of Leuven, Belgium Prof. Dr. B.-M. Wilen, Chalmers University of Technology, Sweden Prof. Dr. D.C. Nijmeijer, University of Twente, The Netherlands This research was conducted under the auspices of the Graduate School SENSE (Socio- Economic and Natural Sciences of the Environment) Bioflocculation of Wastewater Organic Matter at Short Retention Times Lena Faust Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 3rd of December 2014 at 1.30 p.m. in the Aula. Lena Faust Bioflocculation of Wastewater Organic Matter at Short Retention Times, 163 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in English and Dutch ISBN 978-94-6257-171-6 ˮDa steh ich nun, ich armer Tor, und bin so klug als wie zuvor.ˮ Dr. Faust (in Faust I written by Johann Wolgang von Goethe) Contents 1 GENERAL INTRODUCTION ....................................................................................................................1
    [Show full text]
  • 1 Microbial Transformations of Organic Chemicals in Produced Fluid From
    Microbial transformations of organic chemicals in produced fluid from hydraulically fractured natural-gas wells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Morgan V. Evans Graduate Program in Environmental Science The Ohio State University 2019 Dissertation Committee Professor Paula Mouser, Advisor Professor Gil Bohrer, Co-Advisor Professor Matthew Sullivan, Member Professor Ilham El-Monier, Member Professor Natalie Hull, Member 1 Copyrighted by Morgan Volker Evans 2019 2 Abstract Hydraulic fracturing and horizontal drilling technologies have greatly improved the production of oil and natural-gas from previously inaccessible non-permeable rock formations. Fluids comprised of water, chemicals, and proppant (e.g., sand) are injected at high pressures during hydraulic fracturing, and these fluids mix with formation porewaters and return to the surface with the hydrocarbon resource. Despite the addition of biocides during operations and the brine-level salinities of the formation porewaters, microorganisms have been identified in input, flowback (days to weeks after hydraulic fracturing occurs), and produced fluids (months to years after hydraulic fracturing occurs). Microorganisms in the hydraulically fractured system may have deleterious effects on well infrastructure and hydrocarbon recovery efficiency. The reduction of oxidized sulfur compounds (e.g., sulfate, thiosulfate) to sulfide has been associated with both well corrosion and souring of natural-gas, and proliferation of microorganisms during operations may lead to biomass clogging of the newly created fractures in the shale formation culminating in reduced hydrocarbon recovery. Consequently, it is important to elucidate microbial metabolisms in the hydraulically fractured ecosystem.
    [Show full text]
  • Rpon (Σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola Tertiaricarbonis Strain
    Lawrence Berkeley National Laboratory Recent Work Title RpoN (σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Permalink https://escholarship.org/uc/item/9f26h2cp Journal Applied and environmental microbiology, 83(14) ISSN 0099-2240 Authors Yu, Dianzhen Xia, Ming Zhang, Liping et al. Publication Date 2017-07-01 DOI 10.1128/aem.00709-17 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RpoN (σσ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain Dianzhen Yu,a,b Ming Xia,a,b Liping Zhang,a Yulong Song,a You Duan,a,b Tong Yuan,d,f Minjie Yao,c Liyou Wu,d Chunyuan Tian,e Zhenbin Wu,a Xiangzhen Li,c Jizhong Zhou,d Dongru Qiua Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Chinaa ; University of Chinese Academy of Sciences, Beijing, Chinab; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Chinac ; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USAd; School of Life Sciences and Technology, Hubei Engineering University, Xiaogan, Chinae; College of Life Science, Henan Agricultural University, Zhengzhou, Chinaf ABSTRACT Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincola tertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation.
    [Show full text]
  • Caldimonas Taiwanensis Sp. Nov., a Amylase Producing Bacterium
    ARTICLE IN PRESS Systematic and Applied Microbiology 28 (2005) 415–420 www.elsevier.de/syapm Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring Wen-Ming Chena,Ã, Jo-Shu Changb, Ching-Hsiang Chiua, Shu-Chen Changc, Wen-Chieh Chena, Chii-Ming Jianga aDepartment of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan bDepartment of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan cTajen Institute of Technology, Yen-Pu, Pingtung, Taiwan Received 22 February 2005 Abstract During screening for amylase-producing bacteria, a strain designated On1T was isolated from a hot spring located in Pingtung area, which is near the very southern part of Taiwan. Cells of this organism were Gram-negative rods motile by means of a single polar flagellum. Optimum conditions for growthwere 55 1C and pH 7. Strain On1T grew well in minimal medium containing starchas thesole carbon source, and its extracellular products expressed amylase activity. The 16S rRNA gene sequence analysis indicates that strain On1T is a member of b-Proteobacteria. On the basis of a phylogenetic analysis of 16S rDNA sequences, DNA–DNA similarity data, physiological and biochemical characteristics, as well as fatty acid compositions, the organism belonged to the genus Caldimonas and represented a novel species within this genus. The predominant cellular fatty acids of strain On1T were 16:0 (about 30%), 18:1 o7c (about 20%) and summed feature 3 (16:1o7c or 15:0 iso 2OH or both[about 31%]). Its DNA base ratio was 65.9 mol% G+C.
    [Show full text]
  • Biosynthesis of 2-Hydroxyisobutyric Acid (2-HIBA) from Renewable Carbon Thore Rohwerder*, Roland H Müller
    Rohwerder and Müller Microbial Cell Factories 2010, 9:13 http://www.microbialcellfactories.com/content/9/1/13 RESEARCH Open Access Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon Thore Rohwerder*, Roland H Müller Abstract Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for bio- based building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds posses- sing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxi- dation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely bio- technological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system pro- ducing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA.
    [Show full text]
  • Full-Text (PDF)
    Vol. 9(7), pp. 404-413, 18 February, 2015 DOI: 10.5897/AJMR2014.7249 Article Number: 562D89A50630 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Bacterial community in two subtropical fishponds in São Paulo, Brazil Aylan Kener Meneghine1, Daniele Belarmino da Silva1, Rodrigo Ney Millan2, Lucia Helena Sipaúba-Tavares3, Eliana Gertrudes de Macedo Lemos1 and Lúcia Maria Carareto Alves1* 1Faculdade de Ciências Agrárias e Veterinárias. UNESP – Univ Estadual Paulista, Campus de Jaboticabal, Departamento de Tecnologia. Programa de Pós-graduação em Microbiologia Agropecuária, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Brazil. 2Universidade do Estado de Minas Gerais. Av. Prof. Mario Palmerio, 1001, Centro, 38200000 - Frutal, MG – Brazil. 3Faculdade de Ciências Agrárias e Veterinárias, UNESP – Univ Estadual Paulista. Campus de Jaboticabal, Aquaculture Center. Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Brazil. Received 4 November, 2014; Accepted 2 February, 2015 The knowledge concerning fishpond microorganisms is important considering the aquatic microbial ecology and water quality. In this study, we compared the bacterial communities present in freshwaters of two fish farm ponds from Brazil, one used as water reservoir (P1) and the other with conditions of high nutrient load (P4). The aim of this study was to identify and compare the bacterial population in two fishponds during dry and rainy seasons. The determination of the bacterial population was conducted through sequencing of the 16S rRNA gene. The results show that the bacterial population is different in the ponds and it changes according to the climatic period.
    [Show full text]
  • The Handbook of Environmental Chemistry
    The Handbook of Environmental Chemistry Editor-in-Chief: O. Hutzinger Volume 5 Water Pollution Part R Advisory Board: D. Barceló · P. Fabian · H. Fiedler · H. Frank · J. P. Giesy · R. A. Hites M. A. K. Khalil · D. Mackay · A. H. Neilson · J. Paasivirta · H. Parlar S. H. Safe · P.J. Wangersky The Handbook of Environmental Chemistry Recently Published and Forthcoming Volumes Environmental Specimen Banking Emerging Contaminants from Industrial and Volume Editors: S. A. Wise and P.P.R. Becker Municipal Waste Vol. 3/S Volume Editors: D. Barceló and M. Petrovic Vol. 5/S Polymers: Chances and Risks Volume Editors: P. Eyerer, M. Weller Marine Organic Matter: Biomarkers, and C. Hübner Isotopes and DNA Vol. 3/V Volume Editor: J. K. Volkman Vol. 2/N, 2005 The Rhine Volume Editor: T.P. Knepper Environmental Photochemistry Part II Vol. 5/L, 03.2006 Volume Editors: P. Boule, D. Bahnemann and P. Robertson Persistent Organic Pollutants Vol. 2/M, 2005 in the Great Lakes Volume Editor: R. A. Hites Air Quality in Airplane Cabins Vol. 5/N, 2006 and Similar Enclosed Spaces VolumeEditor:M.B.Hocking Antifouling Paint Biocides Vol. 4/H, 2005 VolumeEditor:I.Konstantinou Vol. 5/O, 2006 Environmental Effects of Marine Finfish Aquaculture Estuaries VolumeEditor:B.T.Hargrave VolumeEditor:P.J.Wangersky Vol. 5/M, 2005 Vol. 5/H, 2006 The Mediterranean Sea The Caspian Sea Environment Volume Editor: A. Saliot Volume Editors: A. Kostianoy and A. Kosarev Vol. 5/K, 2005 Vol. 5/P, 2005 Environmental Impact Assessment of Recycled The Black Sea Environment Wastes on Surface and Ground Waters Volume Editors: A.
    [Show full text]
  • Diversity of Mat-Forming Sulfide-Oxidizing Bacteria at Continental Margins
    Diversity of Mat-forming Sulfide-oxidizing Bacteria at Continental Margins Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Stefanie Grünke Bremen, April 2010 Die vorliegende Doktorarbeit wurde in der Zeit von Juni 2006 bis April 2010 am Max- Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 4. Juni 2010 Diese Arbeit ist all denjenigen gewidmet, die ihre Segel setzen, um neue Welten gu erkunden. Seien sie sich gewiss, dass auf Sturm immer ruhiges Wasserfolgt. Wertrauen sie auf ihr größtes Gut — ihre Freunde und Familie. Nutgen sie ihre Schwächen, um neue Stärken gu finden. Soll Zuversicht ihr Kompass sein! Summary In the oceans, microbial mats formed by chemosynthetic sulfide-oxidizing bacteria are mostly found in so-called ‘reduced habitats’ that are characterized by chemoclines where energy-rich, reduced substances, like hydrogen sulfide, are transported into oxic or suboxic zones. There, these organisms often thrive in narrow zones or gradients of their electron donor (sulfide) and their electron acceptor (mostly oxygen or nitrate). Through the build up of large biomasses, mat-forming sulfide oxidizers may significantly contribute to primary production in their habitats and dense mats represent efficient benthic filters against the toxic gas hydrogen sulfide. As gradient organisms, these mat-forming sulfide oxidizers seem to be adapted to very defined ecological niches with respect to oxygen (or nitrate) and sulfide gradients. However, many aspects regarding their diversity as well as their geological drivers in marine sulfidic habitats required further investigation.
    [Show full text]