Dipeptidyl Peptidase 4 Is a Functional Receptor for the Emerging Human Coronavirus-EMC

Total Page:16

File Type:pdf, Size:1020Kb

Dipeptidyl Peptidase 4 Is a Functional Receptor for the Emerging Human Coronavirus-EMC LETTER doi:10.1038/nature12005 Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC V. Stalin Raj1*, Huihui Mou2*, Saskia L. Smits1,3, Dick H. W. Dekkers4, Marcel A. Mu¨ller5, Ronald Dijkman6, Doreen Muth5, Jeroen A. A. Demmers4, Ali Zaki7, Ron A. M. Fouchier1, Volker Thiel6,8, Christian Drosten5, Peter J. M. Rottier2, Albert D. M. E. Osterhaus1, Berend Jan Bosch2 & Bart L. Haagmans1 Most human coronaviruses cause mild upper respiratory tract dis- antigen-related cell adhesion molecules (CEACAM)10 to enter cells, ease but may be associated with more severe pulmonary disease in whereas for several Alpha- and Betacoronaviruses, two peptidases immunocompromised individuals1. However, SARS coronavirus have been identified as receptors (aminopeptidase N (APN, CD13) caused severe lower respiratory disease with nearly 10% mortality for hCoV-229E and several animal coronaviruses11,12, and angiotensin and evidence of systemic spread2. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was a identified in patients with severe and sometimes lethal lower res- )] Vero –1 piratory tract infection3,4. Viral genome analysis revealed close 9 ml 8 5 50 relatedness to coronaviruses found in bats . Here we identify 7 dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional 6 5 receptor for hCoV-EMC. DPP4 specifically co-purified with the 4 receptor-binding S1 domain of the hCoV-EMC spike protein from 3 Relative cell number log[GE (TCID 0 20 40 lysates of susceptible Huh-7 cells. Antibodies directed against 0 101 102 103 104 DPP4 inhibited hCoV-EMC infection of primary human bronchial b )] COS-7 –1 epithelial cells and Huh-7 cells. Expression of human and bat 9 (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells ml 8 50 enabled infection by hCoV-EMC. The use of the evolutionarily 7 6 conserved DPP4 protein from different species as a functional 5 receptor provides clues about the host range potential of hCoV- 4 3 Relative cell number EMC. In addition, it will contribute critically to our understanding log[GE (TCID 0 101 102 103 104 0 20 40 of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention c Huh-7 )] strategies. –1 9 ml 8 Coronaviruses infect a wide range of mammals and birds. Their 50 7 tropism is primarily determined by the ability of the spike (S) entry 6 protein to bind to a cell surface receptor. Coronaviruses have zoonotic 5 potential due to the adaptability of their S protein to receptors of other 4 Relative cell number 3 6 1 2 3 4 species, most notably demonstrated by SARS-CoV , the causative 0 10 10 10 10 log[GE (TCID 0 20 40 7 agent of the SARS epidemic, which probably originated from bats . d Recently, a new coronavirus, named hCoV-EMC, has been identified Bat )] in 13 patients to date with seven fatalities that suffered from severe res- –1 9 3,4,8 ml 8 piratory illness, in some cases accompanied with renal dysfunction . 50 7 Genetically the virus is similar to bat coronaviruses HKU4 and 6 HKU5 and—based on phylogenetic analysis using a small fragment 5 4 of the virus—to a bat coronavirus found in Pipistrellus pipistrellus Relative cell number 3 1 2 3 4 in the Netherlands5. In recent years molecular surveillance studies 0 10 10 10 10 log[GE (TCID 02040 revealed the existence of at least 60 novel bat coronaviruses, including Fluorescence intensity Time after infection (h) some closely related to SARS-CoV9. As the human cases do not seem to originate from transmission from one source, the epidemiology of Figure 1 | Binding of hCoV-EMC S1 to cells is correlated with infection of hCoV-EMC may be explained by a concealed circulation in the human hCoV-EMC. a–d, Shown in the left panels are the FACS analyses of hCoV- population or by the repeated introduction from an intermediate ani- EMC S1–Fc binding (red line) to Vero (a), COS-7 (b), Huh-7 (c) and bat cells mal host. For a better understanding of the biology of this novel coro- (d). A feline CoV S1–Fc protein (blue line) and mock-incubated cells (grey shading) were used as controls. In the middle panels, hCoV-EMC-infected cells navirus, timely identification of the receptor could reveal important are visualized using an antiserum that recognizes the non-structural protein clues to its zoonotic transmission potential and pathogenesis and to NSP4. In the right panels, hCoV-EMC RNA levels in supernatants of the the design of possible intervention strategies. Two types of corona- infected cells at 0, 20 and 40 h after infection were quantified using a TaqMan virus protein receptors have been identified: the Betacoronavirus assay and expressed as genome equivalents (GE; half-maximal tissue-culture mouse hepatitis virus uses immunoglobulin-related carcinoembryonic infectious dose (TCID50) per ml). Error bars indicate s.e.m. 1Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands. 2Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, the Netherlands. 3Viroclinics Biosciences BV, 3029 AK Rotterdam, The Netherlands. 4Proteomics Department, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands. 5Institute of Virology, University of Bonn Medical Centre, 53105 Bonn, Germany. 6Institute of Immunobiology, Kantonal Hospital St Gallen, 9007 St Gallen, Switzerland. 7Virology Laboratory, Dr Soliman Fakeeh Hospital, Jeddah, Saudi Arabia. 8Vetsuisse Faculty, University of Zu¨rich, 8057 Zu¨ rich, Switzerland. *These authors contributed equally to this work. 14 MARCH 2013 | VOL 495 | NATURE | 251 ©2013 Macmillan Publishers Limited. All rights reserved RESEARCH LETTER a b green monkey kidney (Vero) and human liver (Huh-7) cells by immu- hCoV-EMC S1–Fc – – + + + – – – nofluorescence and fluorescence-activated cell sorting (FACS) analysis, SARS-CoV S1–Fc – – – – – + + + whereas kidney cells of the P. pipistrellus bat showed intermediate sDPP4 + – – + – – + – staining (Fig. 1). No S1 binding was detectable to COS-7 African green sACE2 – + – – + – – + SARS-CoV S1–Fc S1–Fc hCoV-EMC monkey kidney cells (Fig. 1b). Furthermore, no specific binding to any S1–Fc of these cells was observed with a feline coronavirus S1 domain, whereas kDa kDa dimer feline cells (Felis catus whole fetus, FCWF) showed strong reactivity 170 - 170 - 130 - 130 - sDPP4 (Supplementary Table 1). Binding of hCoV-EMC S1 was shown to correlate with susceptibility to hCoV-EMC infection and with viral 100 - 100 - sACE2 70 - 70 - genome detection in the culture medium of infected cells (Fig. 1). The hCoV-EMC S1 domain was demonstrated also to bind to cells from 55 - 55 - other species but its overall reactivity was more restricted compared to 40 - 40 - that observed for SARS-CoV S1 (Supplementary Table 1). 35 - 35 - To identify the cell surface protein(s) binding to S1 we affinity- 25 - 25 - isolated proteins from Vero and Huh-7 cells using the S1–Fc chimae- 15 - 15 - ric proteins. The hCoV-EMC S1–Fc protein—but not SARS-CoV , Figure 2 | hCoV-EMC S1 binding to DPP4. a, Huh-7 cell lysates were S1–Fc—extracted a protein of 110 kDa when analysed under non- incubated with hCoV-EMC and SARS-CoV S1–Fc proteins and affinity- reducing conditions from Huh-7 cell lysates (Fig. 2a). Mass spectro- isolated proteins were subjected to protein electrophoresis under non-reducing metric analysis identified this protein as dipeptidyl peptidase 4 (DPP4 conditions. The arrowhead indicates the position of the ,110-kDa DPP4 or DPP IV, also called CD26; Supplementary Fig. 2). Similar results protein specifically isolated using the hCoV-EMC S1–Fc protein. b, hCoV- were obtained using Vero cells (data not shown). We subsequently EMC and SARS-CoV S1–Fc proteins were mock-incubated or incubated with produced soluble (that is, non-membrane-anchored) forms of DPP4 soluble DPP4 (sDPP4) or soluble ACE2 (sACE2) followed by protein A and ACE2 and found that the hCoV-EMC S1–Fc protein bound the sepharose affinity isolation and subjected to protein electrophoresis under non- former but not the latter, whereas the opposite was seen with the SARS reducing conditions. S1–Fc protein (Fig. 2b). Soluble DPP4, but not soluble ACE2, inhibited infection of Vero cells by hCoV-EMC (Supplementary Fig. 3). More- converting enzyme 2 (ACE2) for SARS-CoV13). In addition, sialic acid over, transient expression of human DPP4 in the non-susceptible may act as a receptor for some coronaviruses14. COS-7 cells rendered these cells susceptible to binding the hCoV- Our initial experiments indicated that hCoV-EMC does not use EMC S1–Fc protein to their surface (Supplementary Fig. 4). These ACE2 as an entry receptor15. Therefore we first examined whether data indicate a direct and specific binding of hCoV-EMC S1 to human the amino-terminal receptor-binding spike domain S1 binds to cells DPP4. and investigated its correlation with cell susceptibility. We expressed The DPP4 protein displays high amino acid sequence conservation the S1 domain fused to the Fc region of human IgG, yielding a recom- across different species, including the sequence that we obtained from binant disulphide-bonded dimer of approximately 280 kDa (Sup- P. pipistrellus bat cells (Supplementary Fig. 5), particularly towards the plementary Fig. 1). Highly specific binding was observed to African carboxy-terminal end (Supplementary Fig. 6). Next, we tested surface a S1 binding DPP4 staining b Figure 3 | DPP4 is present on hCoV-EMC-susceptible cell lines hDPP4 hDPP4 COS-7 Huh-7 and human bronchiolar epithelial cells. a, COS-7 cells transfected with plasmids encoding human DPP4 number number (hDPP4), bat DPP4 (bDPP4) or a Relative cell Relative cell control plasmid (pcDNA) were 1 2 3 4 1 2 3 4 010 10 10 10 0 10 10 10 10 tested for S1 binding and staining with a polyclonal antiserum against bDPP4 bDPP4 Vero Bat DPP4.
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • JASON MARC GOLDSTEIN the Isolation, Characterization
    JASON MARC GOLDSTEIN The Isolation, Characterization and Cloning of Three Novel Peptidases From Streptoccocus gordonii: Their Potential Roles in Subacute Bacterial Endocarditis (Under the Direction of JAMES TRAVIS) Streptococcus gordonii is generally considered a benign inhabitant of the oral microflora yet is a primary etiological agent in the development of subacute bacterial endocarditis (SBE), an inflammatory state that propagates thrombus formation and tissue damage on the surface of heart valves. Colonization and adherence mechanisms have been identified, yet factors necessary to sustain growth remain unidentified. Strain FSS2 produced three extracellular aminopeptidase activities during growth in neutral pH- controlled batch cultures. The first included a serine-class dipeptidyl-aminopeptidase, an x-Pro DPP (Sg-xPDPP) found as an 85 kDa monomer by SDS-PAGE while appearing as a homodimer under native conditions. Kinetic studies indicated a unique and stringent x- Pro specificity comparable to the DPPIV/CD26 and lactococcal x-Pro DPP families. Isolation of the full-length gene uncovered a 759-amino acid polypeptide with a mass of 87,115 Da and theoretical pI of 5.6. Significant homology was found with PepX gene family members from Lactobacillus ssp. and Lactococcus ssp., and putative streptococcal x-Pro DPPs. The second activity was a putative serine-class arginine aminopeptidase (Sg- RAP) with some cysteine-class characteristics. It was found as a protein monomer of 70 kDa under denaturing conditions. Nested PCR cloning enabled the isolation of a 324 bp- long DNA fragment encoding the protein’s 108 amino acid N-terminus. Culture activity profiles and N-terminal sequence analysis indicated the release of this protein from the cell surface.
    [Show full text]
  • Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries with Limited Resources and for Triaging Cases Before
    AJCP /ORIGINAL ARTICLE Optimal Minimal Panels of Immunohistochemistry for Diagnosis of B-Cell Lymphoma for Application in Countries With Limited Resources and for Triaging Cases Before Referral to Specialist Centers Downloaded from https://academic.oup.com/ajcp/article-abstract/145/5/687/2195691 by World Health Organization user on 09 January 2019 Maria Giulia Disanto, MD,1 Maria Raffaella Ambrosio, MD, PhD,2 Bruno Jim Rocca, MD, PhD,2 Hazem A. H. Ibrahim, FRCPath, PhD,1,3 Lorenzo Leoncini, MD, PhD,2 and Kikkeri N. Naresh, MD, FRCPath1 From the 1Department of Histopathology, Imperial College Healthcare NHS Trust & Imperial College, London, United Kingdom; 2Department of Medical Biotechnologies, Section of Pathology, University of Siena, Siena, Italy; and 3Department of Histopathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. Key Words: Lymphoma; B-cell lymphoma; Immunohistochemistry; Diagnosis; Classification; Developing countries Am J Clin Pathol May 2016;145:687-695 DOI: 10.1093/AJCP/AQW060 ABSTRACT Lymphomas are a collection of different malignancies “arising” from lymphoid cells. They include about 49 entities, Objectives: Establish and validate optimal minimal and over 19 provisional entities and subsets.1 About 85% of immunohistochemistry panels for usage in a staged lymphomas are of B-cell origin. Precision in lymphoma diag- algorithmic manner for precise diagnosis of B-cell nosis requires expertise and infrastructure. The entities are lymphomas in countries with limited resources. Suggest defined based on morphology, immunohistochemistry (on short panels of immunostains to be used in referring units some occasions in situ hybridization), cytogenetics/fluores- that refer suspected lymphomas to specialist diagnostic cent in situ hybridization (FISH), molecular genetics and clin- centers in resourceful countries.
    [Show full text]
  • RA0358-C.5-IFU-RUO CD57 / B3GAT1 (Natural Killer Cell
    Instructions For Use RA0 35 8-C.5 -IFU -RUO Revision: 1 Rev. Date: Dec. 19, 2014 Page 1 of 2 P.O. Box 3286 - Logan, Utah 84323, U.S.A. - Tel. (800) 729-8350 – Tel. (435) 755-9848 - Fax (435) 755-0015 - www.scytek.com CD57 / B3GAT1 (Natural Killer Cell Marker); Clone NK/804 (Concentrate) Availability/Contents: Item # Volume RA0358-C.5 0.5 ml Description: Species: Mouse Immunogen: Recombinant human B3GAT1 protein Clone: NK/804 Isotype: IgM, kappa Entrez Gene ID: 27087 (Human) Hu Chromosome Loc.: 11q25 Synonyms: 3-Glucuronyltransferase 1; B3GAT1; Galactosylgalactosylxylosylprotein 3-beta- Glucuronosyltransferase 1; GLCATP; GlcUAT-P; Glucuronosyltransferase P; UDP GlcUA Glycoprotein beta 1, 3 Glucuronyltransferase. Mol. Weight of Antigen: ~110kDa Format: Bioreactor Concentrate with 0.05% Azide. Specificity: Anti-CD57 marks a subset of lymphocytes known as natural killer (NK) cells. Anti-CD57 also stains neuroendocrine cells and their derived tumors, including carcinoid tumors and medulloblastoma. Background: Follicular center cell lymphomas often contain many NK cells within the neoplastic follicles. Anti- CD57 can be useful in separating type B3 thymoma from thymic carcinoma when combined with a panel that includes antibodies against GLUT1, CD5, and CEA. Species Reactivity: Human. Does not react with Rat. Others not known. Positive Control: Lymph node or tonsil. Cellular Localization: Cell surface Titer/ Working Dilution: Immunohistochemistry (Frozen and Formalin-fixed): 1:50-1:100 Flow Cytometry: 5-10 µl/million cells Immunofluorescence: 1:50-1:100 Western Blotting: 1:100-1:200 Microbiological State: This product is not sterile. 8° C Storage: 2° C C ScyTek Laboratories, Inc. 205 South 600 West P EmergoEurope (31)(0) 70 345-8570 Logan, UT 84321 Molsnstraat 15 Doc: IFU-Template2-8rev2 U.S.A.
    [Show full text]
  • Flow Cytometry CPT: 88182, 88184, 88185, 88187, 88188, 88189, 86355, 86356, 86357, 86359, 86360, 86361, 86367
    Medicare Local Coverage Determination Policy Flow Cytometry CPT: 88182, 88184, 88185, 88187, 88188, 88189, 86355, 86356, 86357, 86359, 86360, 86361, 86367 CMS Policy for Alaska, Arizona, Idaho, Montana, North Dakota, Medically Supportive Oregon, South Dakota, Utah, Washington, and Wyoming ICD Codes are listed Local policies are determined by the performing test location. This is determined by the state on subsequent page(s) in which your performing laboratory resides and where your testing is commonly performed. of this document. Coverage Indications, Limitations, and/or Medical Necessity Flow cytometry (FCM) is a complex process to examine blood, body fluids, CSF, bone marrow, lymph node, tonsil, spleen and other solid tissues. The use of peripheral blood and fine needle aspirate material avoids more invasive procedures for diagnosis. A flow cytometer evaluates the physical and/or chemical characteristics of single cells as the cells pass individually in a fluid stream through a measuring device. Surface receptors, intracellular molecules, and DNA bind with fluorescent dyes that allow detection and evaluation. When light of one wave length excites electrons of certain chemicals to energy levels above their ground state and upon return to ground state emits light of a longer wavelength, fluorescence is produced. A flow cytometer detects cell characteristics by measuring the fluorescence produced by fluorochromes conjugated either directly with cell components or conjugated to antibodies directed against cell components. Indications • Cytopenias and Hypercellular Hematolymphoid Disorders Hematolymphoid neoplasia can present with cytopenias (anemia, leucopenia and/or thrombocytopenia) or elevated leukocyte counts. If medical review and preliminary laboratory testing fails to reveal a cause, bone marrow aspiration and biopsy are indicated to rule out an infiltrative process or a stem cell disorder.
    [Show full text]
  • CD3+CD5+CD4-CD8-) Alpha/Beta T Cell Receptor-Bearing Cells
    Mlsa generated suppressor cells. I. Suppression is mediated by double-negative (CD3+CD5+CD4-CD8-) alpha/beta T cell receptor-bearing cells. This information is current as of October 2, 2021. M Bruley-Rosset, I Miconnet, C Canon and O Halle-Pannenko J Immunol 1990; 145:4046-4052; ; http://www.jimmunol.org/content/145/12/4046 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on October 2, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1990 by American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. 0022-1767/90/14512-4046$02.00/0 THEJOURNAL OF IMMUNOLCGY Vol. 145.4046-4052. No. 12. December 15. 1990 Copyright 0 1990 by The American Association of lmmunologists Printed In U.S.A. Mls" GENERATED SUPPRESSORCELLS I. Suppression is Mediated by Double-Negative (CD3+CDVCD4-CD8-) a/@ T Cell Receptor-Bearing Cells' Grafting of cells from B10.D2 (H-2d)donors into H- The GVHR3 remains a major problem after bone mar- 2 compatible lethally irradiated (DBA/2 x B1O.DZ)Fl row transplantation, even in MHC-compatible donor-re- hostsresults in a severe graft-vs-host reaction cipient combinations.
    [Show full text]
  • High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma
    molecules Article High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma Elisa Maffioli 1,2 , Zhenze Jiang 3, Simona Nonnis 1,2 , Armando Negri 1,2, Valentina Romeo 1, Christopher B. Lietz 3, Vivian Hook 3,4, Giuseppe Ristagno 5, Giuseppe Baselli 6, Erik B. Kistler 7,8 , Federico Aletti 9, Anthony J. O’Donoghue 3,* and Gabriella Tedeschi 1,2,* 1 Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; elisa.maffi[email protected] (E.M.); [email protected] (S.N.); [email protected] (A.N.); [email protected] (V.R.) 2 Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy 3 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; [email protected] (Z.J.); [email protected] (C.B.L.); [email protected] (V.H.) 4 Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA 5 Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy; [email protected] 6 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; [email protected] 7 Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA 92093, USA; [email protected] 8 Department of Anesthesiology & Critical Care, VA San Diego HealthCare System, San Diego, CA 92161, USA 9 Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; [email protected] * Correspondence: [email protected] (A.J.O.); [email protected] (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.) Academic Editor: Paolo Iadarola Received: 28 July 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Proteomic technologies have identified 234 peptidases in plasma but little quantitative information about the proteolytic activity has been uncovered.
    [Show full text]
  • Ligand for Bovine CD5 the Identification and Characterization of A
    The Identification and Characterization of a Ligand for Bovine CD5 Karen M. Haas and D. Mark Estes This information is current as J Immunol 2001; 166:3158-3166; ; of September 27, 2021. doi: 10.4049/jimmunol.166.5.3158 http://www.jimmunol.org/content/166/5/3158 Downloaded from References This article cites 46 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/166/5/3158.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Identification and Characterization of a Ligand for Bovine CD51 Karen M. Haas* and D. Mark Estes2*† CD5, a type I glycoprotein expressed by T cells and a subset of B cells, is thought to play a significant role in modulating Ag receptor signaling. Previously, our laboratory has shown that bovine B cells are induced to express this key regulatory molecule upon Ag receptor cross-linking.
    [Show full text]
  • B-Cell Activation by Crosslinking of Surface Igm Or Ligation of CD40 Involves Alternative Signal Pathways and Results in Different B-Cell Phenotypes HENRY H
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3348-3352, April 1995 Immunology B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes HENRY H. WORTIS*t, MARK TEUTSCH*, MINDY HIGER*, JENNY ZHENG*, AND DAVID C. PARKERt§ *Department of Pathology, Tufts University School of Medicine, and Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111; and tDepartment of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655 Communicated by Salome G. Waelsch, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY December 7, 1994 ABSTRACT Treatment of small resting B cells with sol- direct contact with an activated T-helper cell such that the uble F(ab')2 fragments of anti-IgM, an analogue of T-inde- surface molecule gp39 [CD40 ligand (CD40L)] of the T cell pendent type 2 antigens, induced activation characterized by ligates the CD40 of the B cell (10). proliferation and the expression of surface CD5. In contrast, Our strategy to determine if minimal TD and TI-2 signals B cells induced to proliferate in response to thymus-dependent were sufficient to induce phenotypic differences in B cells was inductive signals provided by either fixed activated T-helper 2 to use an antigen that could be modified so as to initiate either cells or soluble CD40 ligand-CD8 (CD40L) recombinant pro- a TD or a TI-2 response. To produce a TD response we used tein displayed elevated levels of CD23 (FcJII receptor) and no monovalent Fab of rabbit anti-IgM and provided help in the surface CD5.
    [Show full text]
  • Flow Cytometric Analysis of B-Cell Lymphoproliferative Disorders
    Flow cytometric analysis of B-cell lymphoproliferative disorders David M. Dorfman, M.D., Ph.D. Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston, MA Objectives • Review basic principles of flow cytometric immunophenotypic analysis of B cell lymphoproliferative disorders • Discuss recent studies to overcome limitations and shortcomings – New markers – New methods Incidence of B-cell neoplasms, United States Subtype Incidence rate 2011-2012 New cases, 2016 per 100,000 Lymphoid neoplasms 34.4 136,960 Lymphoid neoplasms, B 29.0 93.3% 117,470 B-LL/L 1.4 82.2% 4,930 CLL/SLL 5.1 20,980 FL 3.4 13,960 DLBCL 6.3 27,650 MM 5.9 24,280 Lymphoid neoplasms, T/NK 2.1 8,380 T-LL/L 0.3 1,070 T-PLL <0.1 160 T-LGL 0.2 670 ATL/L <0.1 180 Teras et al. CA Cancer J Clin 2016; 66:443-459 (North American AssociationTeras of et Central al. CA Cancer Cancer Registries) J Clin 2016; 66:443-459 (North American Association of Central Cancer Registries) SS <0.1 Teras et al. CA Cancer J Clin70 2016; 66:443-459 (North American Association of Central Cancer Registries) 94% WHO revised 4th ed., 2017 Flow cytometric analysis of B-cell lymphoproliferative disorders • B-cell antigen expression (CD19, CD20, CD22) • Monoclonal surface immunoglobulin κ or λ light chain expression (or absence of surface immunoglobulin) • Expression of additional B-cell antigens or other antigens, including abnormal expression levels • Presence of cells with abnormal light scatter characteristics ( high forward scatter or side scatter) B-ALL MCL FL, HL MZL, CLL, MM LPL DLBCL DLBCL WHO revised 4th ed.
    [Show full text]
  • Functional Studies of Chronic Lymphocytic Leukemia B Cells Expressing Β2-Integrin Type Complement Receptors CR3 and CR4
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Functional studies of chronic lymphocytic leukemia B cells expressing β2-integrin type complement receptors CR3 and CR4 Barbara Uzonyia,1, Bernadett Mácsik-Valentb,1, Szilvia Lukácsib, Richárd Kissc, Katalin Törökb, Mariann Kremlitzkaa,2, Zsuzsa Bajtayb, Judit Demeterd, Csaba Bödörc, Anna Erdeia,b,* a MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary b Department of Immunology, Eötvös Loránd University, Budapest, Hungary c MTA-SE “Lendület” Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary d 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary 1 These authors contributed equally to this work 2 Present address: Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden * Corresponding author Anna Erdei Department of Immunology, Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest H-1117, Hungary Phone: (+36)-1-3812-175 Fax: (+36)-1-3812-176 e-mail: [email protected], [email protected] Abbreviations BCR: B cell receptor, CLL: chronic lymphocytic leukemia, CR: complement receptor, IL: interleukin Keywords CLL B cells, IL-10 production, expression of CR3 and CR4, adhesion and spreading 1 Abstract The expression and role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in B cells are not yet explored in contrast to myeloid cells, where these β2-integrin type receptors are known to participate in various cellular functions, including phagocytosis, adherence and migration. Here we aimed to reveal the expression and role of CR3 and CR4 in human B cells.
    [Show full text]
  • And Exopeptidases in a Processing Enzyme System: Activation
    Proc. Nail. Acad. Sci. USA Vol. 85, pp. 5468-5472, August 1988 Biochemistry Relationship between endo- and exopeptidases in a processing enzyme system: Activation of an endoprotease by the aminopeptidase B-like activity in somatostatin-28 convertase (brain cortex/basic amino acid pairs/peptide substrates/protease inhibitors/prohormone maturation) SOPHIE GOMEZ, PABLO GLUSCHANKOF, AGNES LEPAGE, AND PAUL COHEN Groupe de Neurobiochimie Cellulaire et Moldculaire, Universitd Pierre et Marie Curie, Unitd Associde 554 au Centre National de la Recherche Scientifique, 96 boulevard Raspail, 75006 Paris, France Communicated by I. Robert Lehman, April 8, 1988 (receivedfor review December 15, 1987) ABSTRACT The somatostatin-28 convertase activity in- somatostatin-14 and the amino-terminal dodecapeptide so- volved in vitro in the processing of somatostatin-28 into the matostatin-28-(1-12) (16). neuropeptides somatostatin-28-(1-12) and somatostatin-14 is We have described an endoprotease that cleaves the composed of an endoprotease and a basic aminopeptidase. We peptide bond on the amino side ofthe Arg-Lys doublet in the report herein on the purification to apparent homogeneity of somatostatin-28 sequence (17, 18), releasing the somato- these two constituents and on their functional interrelationship. statin-28-(1-12) fragment and [Arg-2,Lys-1]somatostatin-14. In particular we observed that after various physicochemical The released [Arg-2,Lys-']somatostatin-14 is further proc- treatments, the 90-kDa endoprotease activity was recovered essed by an aminopeptidase B-like activity (18, 19) that is also both at this molecular mass and as a 45-kDa entity. Moreover, present in the preparation. We report herein the purification the production of [Arg2,LysJllsomatostatin-14 from somato- to apparent homogeneity ofthese two activities.
    [Show full text]