Newsletter October 2009 Copy Without Surnames
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.F.)
UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. RAJERIARISON Charlotte Examinateurs : Dr. RABAKONANDRIANINA Elisabeth Dr. FALINIAINA Lucien Rapporteurs : Dr. RAKOUTH Bakolimalala Dr. EDWARD Louis Jr. 1 UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. Charlotte RAJERIARISON Examinateurs : Dr. Elisabeth RABAKONANDRIANINA Dr Lucien. FALINIAINA Rapporteurs : Dr. Bakolimalala RAKOUTH Dr. Louis Jr. EDWARD 2 REMERCIEMENTS En premier lieu, nous voudrions rendre gloire à Dieu pour sa bienveillance et sa bénédiction. Mené à terme ce mémoire, est le fruit de la collaboration entre -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
An Orchid Handbook Steven J. Royer, Editor Table of Contents
An Orchid Handbook Steven J. Royer, editor Michiana Orchid Society, 2003 Table of Contents Background Information [2] A Brief History [3] Classification [4] Growing Orchids [10] Commonly Cultivated Orchids and How to Grow Them [11] Awards for Orchids [16] Orchid Genera and Their Show Classes [17] Michiana Orchid Society Schedule of Classes [38] Basic Show Information [42] An Orchid Glossary [45] Orchid Collections in Botanic Gardens: United States and Canada [46] Background Information Orchids get their name from the root word ‘orchis’ which means testicles, in reference to the roots of some wild species especially of the genus Orchis, where the paired bublets give the appearance of the male sex organs. Of all the families of plants orchids are the largest. There are an estimated 750 to 1,000 genera and more than 25,000 species of orchids known today, with the number growing each year! The largest number of species is found in the Dendrobium (1,500 spp), Bulbophyllum (1,500 spp), and Pleurothalis (1,000 spp) genera. They are found on every continent in the world with the largest variety found in Asia. There are even species which use hot springs in Greenland to grow. Orchids can be epiphytic (growing high in the trees), terrestrial (growing in the ground), lithophytes (grow on rocks), and a few are saprophytic (living off decaying vegetation). The family is prized for its beautiful and diverse flowers. The only plant with an economic value to the common man is vanilla, which is a commonly enjoyed flavoring. The hybridizing of these flowers has become a major economic force worldwide for cut flowers and cultivation of plants by hobbyists. -
The Systematic Distribution of Vascular Epiphytes: an Update
Selbyana 9: 2-22 THE SYSTEMATIC DISTRIBUTION OF VASCULAR EPIPHYTES: AN UPDATE w. JOHN KREss Marie Selby Botanical Gardens, 811 South Palm Avenue, Sarasota, Florida 33577 ABSTRACT. The list of vascular plant families and genera containing epiphytic species published by Madison (1977) is updated here. Ten percent (23,456 species) of all vascular plant species are epiphytes. Seven percent (876) of the genera, 19 percent (84) of the families, 45 percent (44) of the orders and 75 percent (6) of the classes contain epiphytes. Twenty-three families contain over 50 epiphytic species each. The Orchidaceae is the largest family of epiphytes, containing 440 epiphytic genera and 13,951 epiphytic species. Forty-three genera of vascular plants each contain over 100 epiphytic species. In 1977 Madison published a list of the vas those plants that normally spend their entire life cular plant families and genera that contain epi cycle perched on another plant and receive all phytic species. Madison compiled this list from mineral nutrients from non-terrestrial sources. literature reports, consultation with taxonomic Hemi~epiphytes normally spend only part oftheir specialists, and a survey of herbarium material. life cycle perched on another plant and thus some He reported that 65 families contain 850 genera mineral nutrients are received from terrestrial and 28,200 species of epiphytes. His total ac sources. Hemi-epiphytes either begin their life counted for about ten percent of all species of cycle as epiphytes and eventually send roots and vascular plants. shoots to the ground (primary hemi-epiphytes), Madison's list was the most comprehensive or begin as terrestrially established seedlings that compilation of vascular epiphytes since the works secondarily become epiphytic by severing all of Schimper (1888) and Richards (1952) upon connections with the ground (secondary hemi which it was partly based. -
Reclassification of the Angraecum-Alliance(Orchidaceae, Vandoideae) Based
Biodiv. Res. Conserv. 29: 1-23, 2013 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2013-0004 Submitted 27.01.2013, Accepted 31.03.2013 Reclassification of theAngraecum -alliance (Orchidaceae, Vandoideae) based on molecular and morphological data Dariusz L. Szlachetko*, Piotr Tukałło, Joanna Mytnik-Ejsmont & Elżbieta Grochocka Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland * corresponding author (e-mail: [email protected]) Abstract: Results of molecular analysis compared with morphological studies were used for reclassification of theAngraecum - alliance (Orchidaceae). For the purpose of this study we sequenced the ITS region (ITS1-5.8S-ITS2) of nrDNA representing nuclear genome and the plastid region trnL-F (including intron of trnL gene and trnL-trnF intergenic spacer). The ITS matrix includes 97 samples representing 86 species and the trnL-F matrix includes 94 samples representing 86 species. We focus mainly on the genus Angraecum, however the other genera of Angraecinae are also included (Aeranthes, Campylocentrum, Dendrophylax, Cryptopus, Calyptrochilum, Lemurorchis, Jumellea, Neobathiea, Oeonia, Oeoniella, Sobennikoffia). Additional 43 sequences, including an outgroup (Polystachya modesta) and other representatives of the subtribes Aeridinae (Aerides) and Aerangidinae (Aerangis, Angraecopsis, Erasanthe, Solenangis), were obtained from NCBI resources. Bayesian analysis using MrBayes 3.1.2 on the combined ITS/trnL-F matrix were performed. The monophyly of Angraecinae with an inclusion of Aerangidinae is highly supported by both methods (93 BP/100 PP). The Angraecoid taxa formed two well supported clades, namely clade I (89 BP/100 PP) and clade II (84 BP/100 PP). New classification based on both molecular and classical tax- onomy studies is presented including a key to the genera. -
Madagascar Significant Trade – Plants Report for CITES Secretariat RBG Kew (July 2003) Andrew Newman
PC13 Inf. 8 (English only/Únicamente en inglés/Seulement en anglais) Madagascar Significant Trade – Plants Report for CITES Secretariat RBG Kew (July 2003) Andrew Newman Introduction The objective of this project was two fold: - To carry out an analysis of trade in plant species from Madagascar in order to assist the CITES Management and Scientific authorities of Madagascar. - To provide recommendations on the sustainable trade in wild-collected plants and on the commercial propagation of species with horticultural interest or those used for their derivatives. This project was carried out on the basis of an overview of trends in trade of Appendix II plant species from Madagascar, previous actions of the CITES authorities of Madagascar, recommendations of the Plants and Standing Committees, current concerns about compliance with the provisions of Article IV paragraphs 2a) and 3, institutional and administrative arrangements related to implementation of Article IV for exports of Appendix II species, and the close effectiveness of relevant national legislation and its implementation. The role of the Royal Botanic Gardens, Kew. Complete a desktop survey to: · Review the trade data available in the CITES database held at the World Conservation Monitoring Centre (WCMC-UNEP), regarding species occurring in Madagascar and on the trade to and from Madagascar. · Collect information on cultivation. · Assess conservation status. · Identify key species. A database was built to hold data from the desktop survey, on taxa recorded in the CITES trade data (held by UNEP-WCMC) reported as exported or imported from Madagascar. Taxa not found in the CITES trade data but considered to be in trade according to an expert panel have also been included. -
7Th International Orchid Conservation Congress
7TH INTERNATIONAL ORCHID CONSERVATION CONGRESS Jodrell Laboratory Royal Botanic Gardens, Kew 28 May – 1 June 2019 Welcome to Kew! The International Orchid Conservation Congress (IOCC) series started in Western Australia in 2001, and subsequent meetings were held in Florida, Costa Rica, the Czech Republic, La Réunion and Hong Kong. At the meeting in Hong Kong, it was decided that IOCCVII should be held at the Royal Botanic Gardens, Kew. The title for IOCCVII is “Orchid Conservation: the Next Generation”, and we hope that the focus will be on the importance of involving the next generation of orchid conservation biologists and on the use of next-generation techniques. We are delighted to welcome more than 150 delegates from around the world to share their experiences of orchid conservation with each other. Orchids are among the most highly threatened groups of plants, with threats to orchids including habitat destruction, legal and illegal trade and climate change. As a result, our mission to conserve orchids is of increasing importance – if we don’t act, then we may be the last generation to see some groups of orchids, notably slipper orchids, in the wild. We are grateful to the Royal Botanic Gardens, Kew, for the use of the venue and for logistical support. The Lennox Boyd Trust, the Linnean Society of London and Orchid Conservation International and friends and family of the late Amy Morris provided financial support which has allowed us to provide bursaries for orchid specialists from Developing Countries so that they can attend the congress. We have an exciting and busy programme – with many talks and posters and other events including a demonstration of orchid propagation, a “World Café” session on conservation planning (arranged with the Conservation Planning Specialist Group) and a meeting of the Orchid Specialist Group. -
Definitions of Terms Used in the Orchid Society of Canberra Spring Show Schedule
Definitions of terms used in the Orchid Society of Canberra Spring Show Schedule. These definitions are intended to clarify the classes used for judging in the Spring Orchid Show. Many of the genera included in this list are currently regarded as synonyms, however as more extensive DNA analysis is undertaken a better understanding of the generic and higher level relationships is developing. DNA analysis has also allowed a better understanding of some species and species complexes. Australian Native As stated in the Show Schedule, David L. Jones Native Orchid Orchids of Australia Including the Island Territories is the reference followed to determine Australian Native Species. Dendrobiinae and Anisopetala; Aporum; Callista; Ceraia; Coelandria; Grastidiinae Dendrobium; Distichorchis; Eurycaulis; Pedilonum; This grouping Abaxianthus; Australorchis; Bouletia; Cadetia; appears both in the Cannaeorchis; Cepobaculum; Ceratobium; Davejonesia; Australian Native Dendrobates; Dichopus; Diplocaulobium; Dockrillia; and Any Other Durabaculum; Eleutheroglossum; Eriopexis; Euphlebium; Sections, not all of Exochanthus; Flickingeria; Grastidium; Herpetophytum; these genera Inobulbum; Kinetochilus; Leioanthum; Microphytanthe; appear in both. Monanthos; Sarcocadetia; Sayeria; Stilbophyllum; Tetrabaculum; Tetrodon; Thelychiton; Trachyrhizum; Tropilis; Vappodes; Winika. Dockrillia In the case of this genus only, both exotic (PNG and elsewhere) and native species and hybrids will be judged within the Australian Native Section. Pterostylis complex Crangonorchis; -
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Gülden
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Gülden SANDAL DOKTORA TEZİ DOĞU AKDENİZ BÖLGESİ’NDE YETİŞEN ORKİDELER VE YETİŞME ORTAMI NİTELİKLERİ İLE TEHDİT FAKTÖRLERİNİN ARAŞTIRILMASI PEYZAJ MİMARLIĞI ANABİLİM DALI ADANA, 2009 ÖZ DOKTORA TEZİ DOĞU AKDENİZ BÖLGESİ’NDE YETİŞEN ORKİDELER VE YETİŞME ORTAMI NİTELİKLERİ İLE TEHDİT FAKTÖRLERİNİN ARAŞTIRILMASI Gülden SANDAL ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PEYZAJ MİMARLIĞI ANABİLİM DALI Danışman : Prof.Dr. Zerrin SÖĞÜT Yıl : 2009, Sayfa: 193 Jüri : Prof.Dr. Zerrin SÖĞÜT : Prof.Dr. İbrahim ORTAŞ : Prof.Dr.K.Tuluhan YILMAZ : DoçDr. Hakan ALPHAN : Yrd.Doç.Dr. Rüya YILMAZ Doğu Akdeniz Bölgesinde 75 doğal orkide taksonu (13 cins) yetişmektedir. Çalışmada Mersinden başlayarak, Kahramanmaraş’a uzanan bölgede (0-1777m) üç yıllık sürede 37 orkide türü saptanmıştır. Kanonik Uyum Analizi sonucunda orkide türlerinin dağılımında en etkili çevresel etkenin yükseklik olduğu belirlenmiştir. Mediterran-montan iklim kuşağına özgü tür belirlenememiş, ancak sadece Submediterran (5 tür) ve Mediterran (9 tür) kuşaklarda yetişen türler belirlenmiştir. Analizlere göre orkideler topraklarda bulunan N, P2O5, K2O, Karbon, Organik madde ve kum oranı ile ışık isteği yönünden seçici olabilmektedir. Üç yıl içinde sırasıyla en fazla yerleşim, insan etkisi, piknik yapma, tarımsal aktiviteler, otlatma, ulaşım aktivitelerinden olumsuz yönde etkilenme olmuş; bazı parseller (% 20.5) yok olmuştur. Koruma alanları, mezarlık ve ormanlar korumada en etkin kullanımlardır. Yaygınlık ve parsellerdeki sıklıkları değerlendirildiğinde -
Orchidaceae): the Evolution of Monopodial Leaflessness
MOLECULAR SYSTEMATICS AND ANATOMY OF VANDEAE (ORCHIDACEAE): THE EVOLUTION OF MONOPODIAL LEAFLESSNESS By BARBARA S. CARLSWARD A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Barbara S. Carlsward ACKNOWLEDGMENTS I would like to thank my advisor, William Louis Stern, for his invaluable guidance. He welcomed me into his lab at the beginning of my botany career and has continually nurtured my love of plants and their anatomy. I would also like to thank W. Mark Whitten, who has been a friend and mentor. Without his constant guidance, I would have failed miserably in the molecular laboratory. During the course of my doctoral degree, Norris H. Williams has offered useful counsel, allowed me unlimited access to his laboratory, and given me office space to write my dissertation. From the beginning of my botany career, Walter S. Judd has been instrumental in developing my love for plants and has always given helpful advice in the process of delimiting anatomical data for cladistic analysis. As a committee member, Robert J. Ferl provided insightful advice and guidance. Robert L. Dressler was always willing to help me identify orchids and gave helpful advice on tricky taxonomic issues. James D. Ackerman was also extremely generous with his taxonomic advice, especially regarding Dendrophylax. Gustavo Romero (AMES Herbarium, Harvard University, Massachusetts) provided assistance in finding the taxonomic articles necessary for the nomenclatural transfers of Solenangis. Alec M. Pridgeon has continually been willing to offer guidance and counsel, most notably with the interpretation of the vandaceous anatomy. -
Biogeography of Angraecum (Orchidaceae, Angraecinae), out of Madagascar Case-Dispersal
Université de Montréal Systématique évolutive et Biogéographie de Angraecum (Orchidaceae, Angraecinae) à Madagascar par Andriananjamanantsoa Herinandrianina Notahianjanahary Centre sur la Biodiversité Institut de Recherche en Biologie Végétale Département de Sciences Biologiques Faculté des Arts et Sciences Thèse présentée à la Faculté des Arts et Sciences en vue de l’obtention du grade de Philosophiæ Doctor en sciences biologiques Novembre, 2015 © Andriananjamanantsoa Herinandrianina N., 2015 Université de Montréal Faculté des études supérieures et postdoctorales Ce mémoire intitulé: Systématique évolutive et Biogéographie de Angraecum (Orchidaceae, Angraecinae) à Madagascar Présenté par: Andriananjamanantsoa Herinandrianina Notahianjanahary a été évalué par un jury composé des personnes suivantes: Luc Brouillet, directeur de recherche Edward Louis Jr., co-directeur de recherche Jeff Saarela, évaluateur externe François-Joseph Lapointe, membre du jury Simon Joly, président du jury Résumé Le genre Angraecum est un groupe d’orchidées tropicales qui compte environ 221 espèces réparties en Afrique subsaharienne, dans l’ouest de l’Océan Indien, et au Sri Lanka. Plus de la moitié des espèces se trouvent à Madagascar, dont au moins 90% sont endémiques à l’île. L’étude systématique et taxonomique du genre Angraecum a toujours été problématique à cause de sa grande diversité morphologique. Pour faciliter la classification, des sections ont été établies dont la plus connue est celle de Garay (1973), qui regroupe les espèces sous 19 sections. Plusieurs analyses phylogénétiques avaient montré que le genre Angraecum et les sections de Garay ne sont pas monophylétiques. Cependant, aucune révision systématique n’a été apportée à cause du faible échantillonnage dans ces analyses. En incorporant un plus grand nombre d'espèces et en ajoutant d’autres caractères morphologiques dans l’analyse, nous avons apporté une plus grande résolution à la reconstruction phylogénétique du groupe. -
Atlanta Orchid Society Newsletter
The Atlanta Affiliated with the American Orchid Orchid Society, the Orchid Digest Corporation and the Mid-America Orchid Congress. Society 2001 Recipient of the American Orchid Society’s Distinguished Affiliated Bulletin Societies Service Award Newsletter Editor: Danny Lentz Volume 46: Number 9 www.atlantaorchidsociety.org September 2005 SEPTEMBER EVENTS The Meeting: 8:00 Monday, September 12 at Atlanta Botanical Garden Alan Koch of Gold Country Orchids “Growing Your Orchids to the Maximum” Alan Koch owns and operates Gold Country Orchids where he specializes in miniature and compact Cattleyas. Alan started growing orchids in 1969 with 3 Cymbidiums given to him by an aunt. While in college he became interested in other orchids and discovered many would grow outdoors in Southern California. He has moved five times as his orchid obsession has led to the need for more growing space. With the last move, he purchased 10 acres of land in Lincoln, California for his 300,000 orchids. He is recognized as an expert in the Brazilian Cattleya alliance and a trend setter in miniature Cattleya breeding. Alan has been published in the Orchid Digest and AOS magazines. He is an internationally known speaker. For the AOS he is an accredited judge, has been involved in the judging and research committees, and is a past chair of the Pacific Central Judging Center. Alan also served two terms on the Orchid Digest Board of Directors. Alan will be bringing plants for sale. If you wish to place an order please submit it by Sept. 5. Orders of more than 5 plants will receive a 10% discount.