Biohealth Science Bulletin 2010, 2(2), 38 - 42 Radaideh K M et al. 2010 Radaideh K M1, Alzoubi A S2 Factors impacting the dose at maximum depth dose (dmax) for 6 MV high-energy photon beams using different dosimetric 1School of Physics, Universiti detectors Sains Malaysia, Penang, Malaysia. Objectives: Deciding the tumorcidal dose is very important in radiation therapy as it is 2Advanced Medical & Dental limited by skin dose. The aims of this study were to investigate the impacts of using Institute, Universiti Sains physical wedge filter, different source to surface distances (SSD) and field sizes (FS) on the Malaysia, Penang, Malaysia dose at the depth of maximum dose (dmax) using 6 MV high-energy photon beams. Materials and methods: The measurements were made in Solid Water Phantom at (Received July 6th, 2010 Revised August different settings of SSD and FS for 6 MV high-energy photon beams using LiF: Mg; Ti TLD 25th, 2010 Accepted August 25th, 2010 and FC65-G Ionization Chamber. Published online Disember 22nd, 2010.) Results: It was observed that when physical wedge was used at reference settings, the doses at dmax decreased significantly as compared with open fields. Moreover, these Correspondence: Ahmad Saleem Salem doses decreased proportionally with an increase in the wedge angle until 45°, after which Alzoubi the dose increased slightly. The doses at dmax were also inversely related to SSD while it Email:
[email protected] had an extrusive relationship with field size. Conclusion: This study shows that for high energy photon beams the doses at dmax are affected by the use of wedge filter, SSD and FS as confirmed by two different detectors.