The Bothnian Extension of the Scandinavian-Mediterranean Core Network Corridor - Summary of European Added Values

Total Page:16

File Type:pdf, Size:1020Kb

The Bothnian Extension of the Scandinavian-Mediterranean Core Network Corridor - Summary of European Added Values The Bothnian Extension of The Scandinavian- Mediterranean Core Network Corridor Summary of European Added Values The Bothnian Extension of the Scan-Med Corridor Title of report: The Bothnian Extension of the Scandinavian-Mediterranean Core Network Corridor - Summary of European Added Values. Issued by: Intresseföreningen Norrtåg and the Bothnian Corridor regional collaboration. Contact: Joakim Berglund, project manager, The Bothnian Corridor Phone: +46 70-239 54 60 E-mail: [email protected] Web: www. bothniancorridor.com/en/ Author: Gustav Malmqvist, MIDEK AB Phone: +46 70-663 04 42 E-mail: [email protected] Norrtåg Intresseförening is a political association, founded in 2001, between the five northernmost regions of Sweden. In this association local and regional authorities collaborates on the development of railways in northern Sweden. Norrtåg Intresseförening initiated the establishment of Norrtåg AB which is the company responsible for the regional commuter trains in the northern half of Sweden. Norrtåg Intresseförening is co-ordinating the Bothnian Corridor regional collaboration since 2007, which involves the local and regional authorities but also collaboration with transport stakeholders, companies and industry associations. April 2018 – Version 1 2 The Bothnian Extension of the Scan-Med Corridor Table of Contents 1 Introduction ..........................................................................................................................................................................................4 1.1 Proposal for extension of the Scand-Med Corridor ........................................................................................4 1.2 Aim of this report.......................................................................................................................................................................4 2 Background of the Bothnian Corridor .............................................................................................................................. 5 3 Geography of the Bothnian Corridor ................................................................................................................................ 6 4 Bothnian Corridor and Scand-Med CNC goals.......................................................................................................... 7 5 Current status of the Bothnian Corridor ......................................................................................................................... 8 5.1 The multimodal dimension of the Bothnian Corridor ................................................................................... 8 5.2 Railways .......................................................................................................................................................................................... 9 5.3 ERTMS............................................................................................................................................................................................. 11 5.4 Roads ............................................................................................................................................................................................... 11 5.5 Alternative fuels ...................................................................................................................................................................... 12 5.6 Ports ................................................................................................................................................................................................. 13 5.7 Rail-road terminals ............................................................................................................................................................... 14 5.8 Airports .......................................................................................................................................................................................... 15 6 Development of the Bothnian Corridor ........................................................................................................................ 16 6.1 Summary of ongoing development......................................................................................................................... 16 6.2 Priority projects ....................................................................................................................................................................... 16 7 Pre-identified sections in the extended Scand-Med CNC............................................................................. 18 8 Conclusions ...................................................................................................................................................................................... 19 April 2018 – Version 1 3 The Bothnian Extension of the Scan-Med Corridor 1 Introduction 1.1 Proposal for extension of the Scand-Med Corridor The Swedish Government has in March 2018 proposed to the European Commission that the TEN-T Scandinavian-Mediterranean Core Network Corridor should be extended to the north with the so called Bothnian Corridor, to the border to Finland in Haparanda and to the Norwegian border at the Malmbanan Line. In the proposal is also included an extension to the east from Stockholm to Oslo.1 At the same time the government of Finland proposed to the commission that the North Sea Baltic Corridor should be extended from Helsinki to the border to Sweden in Torneå. This means that these two core network corridors will be aligned at the border crossing point of Haparanda/Torneå. The proposed extensions of the core network corridors are logical since much of the current cargo flows in the corridors are generated in northern Scandinavia, and the export industries in this area generates a huge European added value with importance for growth and prosperity of the whole European Union. The extensions are strongly supported by the industry and regional authorities in both Sweden and Finland. Considerable amounts of the goods generated in these regions are transported to central and southern Europe, via the Bothnian Corridor and further south in either of the Core Network Corridors. South of Sweden and Finland are included in the Scandinavian-Mediterranean Corridor and the Helsinki region is also connected to the North Sea-Baltic Corridor. 1.2 Aim of this report This summary of the European added values of the Bothnian Corridor (BC) aims for presenting the current status of the corridor and its contribution to the goals of the Scandinavian- Mediterranean CNC, which is continuously monitored by the corridor coordinator. The current status of the BC, ongoing and planned development, are described and compared with some of the performance KPI’s of the third corridor work plan for the Scan-Med CNC. Facts and figures in the report refer to studies made in the ongoing Bothnian Corridor collaboration since more than ten years and to studies from completed and ongoing EU projects funded by ERDF, Interreg and TEN-T/CEF, statistical sources such as Eurostat and SCB and information from the Swedish Transport Administration. The report is intended to provide the most essential information for the preparation for the inclusion of the Bothnian Corridor into the Scandinavian-Mediterranean Corridor, and for the drafting of updated CEF and TEN-T regulations. 1 Letter to the European Commission, from Swedish Government, Ministry of Enerprise and Innovation 21 March 2018 April 2018 – Version 1 4 The Bothnian Extension of the Scan-Med Corridor 2 Background of the Bothnian Corridor Since more than 20 years, politicians, regional stakeholders, industry and national authorities have collaborated for improving the transport infrastructure along the so called Bothnian Corridor for enabling the ongoing industrial growth in northern Scandinavia. The Bothnian Corridor has been acknowledged in both Sweden and Finland as the core north-south railway infrastructure at both sides of the Bothnian Gulf. In recent years the emphasis of the collaboration has been more and more on the development of the most environmentally friendly modes of transports such as railway and ports, but also on increasing the availability of alternative fuels for road transports. For many years the focus of the Bothnian Corridor has been the development of the railway infrastructure, even though the corridor involves all modes of transport. The heavy industries in northern Sweden depend on functional transport systems in the corridor, with all modes of transport: railways, roads, sea transports and air. Table 1: Socioeconomic indicators of the Scan-Med CNC and the Bothnian extension of the Corridor 2 3 2013 Inhabitants Employment GDP/GRP (M €) GRP/Cap EU 28 506,682,935 215,443,000 13,518,112 Scan-Med Corridor regions 76,687,130 36,173,000 2,697,799 35,179 € (NUTS 3) 15.1% 16.8% 20.0% Bothnian Extension 1,652,378 779,500 67,627 40,927 € (NUTS 3, 6 regions) % of EU 28 0.33% 0.36% 0.50% Even if regions at the Bothnian Corridor are less densely populated than many regions along the southern Scand-Med CNC, they contribute to 0.5 % of the GDP in EU 28 due to the many heavy industries, which is also shown by the much higher GDP per capita. The railways in the Bothnian corridor are critical for industries in the mining, steel, copper and forestry sectors. More than 90 % of the iron ore produced in Europe comes from the mines
Recommended publications
  • Ladda in Zoner
    RAPPORT Dnr TSJ 2015-4354 December 2015 Utveckling av utbud och priser på järnvägslinjer i Sverige 1990-2015 och Utvärdering av avreglering och konkurrens samt analys av regional utveckling RAPPORT Dnr TSJ 2015-4354 © Transportstyrelsen Väg- och järnvägsavdelningen Sektion Omvärld Rapporten finns tillgänglig på Transportstyrelsens webbplats www.transportstyrelsen.se Dnr/Beteckning TSJ 2015-4354 Författare Johan Brandström. Michael Stridsberg Månad År December 2015 Eftertryck tillåts med angivande av källa. 2 (14) RAPPORT Dnr TSJ 2015-4354 Förord Föreliggande rapport utgör en del av Transportstyrelsens marknadsövervakning rörande persontransporter på järnväg. Underlagsrapporten till denna rapport har utarbetats av Järnvägsgruppen vid Kungliga Tekniska Högskolan. Järnvägsgruppens arbete har resulterat i den rapport som återfinns som bilaga. Utöver detta har Transportstyrelsen ansett det relevant att lyfta och vidareutveckla vissa aspekter och observationer som görs i rapporten. Dessa tas upp i denna del och de slutsatser som dras står för Transportstyrelsen. Johan Brandström och Michael Stridsberg har varit ansvariga för rapportens framtagande på Transportstyrelsen. Borlänge december 2015 Stina Eklund tf. Sektionschef 3 (14) RAPPORT Dnr TSJ 2015-4354 Innehåll 1 BAKGRUND ...................................................................................................... 6 2 IAKTTAGELSER OCH SLUTSATSER ............................................................. 6 2.1 En mer prisvärd resa ..............................................................................
    [Show full text]
  • Geology of the Northern Norrbotten Ore Province, Northern Sweden Paper 11 (13) Editor: Stefan Bergman
    Rapporter och meddelanden 141 Geology of the Northern Norrbotten ore province, northern Sweden Paper 11 (13) Editor: Stefan Bergman Rapporter och meddelanden 141 Geology of the Northern Norrbotten ore province, northern Sweden Editor: Stefan Bergman Sveriges geologiska undersökning 2018 ISSN 0349-2176 ISBN 978-91-7403-393-9 Cover photos: Upper left: View of Torneälven, looking north from Sakkara vaara, northeast of Kiruna. Photographer: Stefan Bergman. Upper right: View (looking north-northwest) of the open pit at the Aitik Cu-Au-Ag mine, close to Gällivare. The Nautanen area is seen in the back- ground. Photographer: Edward Lynch. Lower left: Iron oxide-apatite mineralisation occurring close to the Malmberget Fe-mine. Photographer: Edward Lynch. Lower right: View towards the town of Kiruna and Mt. Luossavaara, standing on the footwall of the Kiruna apatite iron ore on Mt. Kiirunavaara, looking north. Photographer: Stefan Bergman. Head of department, Mineral Resources: Kaj Lax Editor: Stefan Bergman Layout: Tone Gellerstedt och Johan Sporrong, SGU Print: Elanders Sverige AB Geological Survey of Sweden Box 670, 751 28 Uppsala phone: 018-17 90 00 fax: 018-17 92 10 e-mail: [email protected] www.sgu.se Table of Contents Introduktion (in Swedish) .................................................................................................................................................. 6 Introduction ..............................................................................................................................................................................
    [Show full text]
  • Space-Related Education on the Kiruna Space Campus, Sweden
    Space-related Education on the Kiruna Space Campus, Sweden The town of Kiruna lies approximately 140 kilometres above the Arctic Circle Space research and industry in northern Sweden. The high latitude Carol Norberg, The largest research organization in Kiruna Reader in Space Physics, makes Kiruna an attractive base for is the Swedish Institute of Space Physics, which Department of Space Sci- international space-related projects of carries out research in experimental space and ence, atmospheric physics. Measurements are made from many kinds. A space research insti- Umeå University, the ground, with balloons, and from satellites. Prob- Box 812, S-981 28 Kiruna, tute was first created in Kiruna in the ably the most well-known space centre in Kiruna is Sweden. 1950’s. During the last decade, there Esrange, a space facility belonging to the Swedish Space Corporation. Esrange has its own satellite has been a rapid expansion in the area station, and facilities for launching sounding rockets of space-related education at university and stratospheric balloons. Close to Esrange is the Swedish Institute of Space level, which has its foundations on the European Space Agency satellite station at Salmi- järvi. The headquarters of the European Incoherent Physics, Headquarter in local expertise in space science and Scatter Scientific Association (EISCAT) are located Kiruna. engineering. Through cooperation with Picture: IRF the Swedish Space Corporation stu- dents in Kiruna are offered the opportu- nity to participate in rocket and balloon launches as part of their education. The two most northern universities in Swe- den, Luleå University of Technology and Umeå University have formed a joint Department of Space Science located on the Kiruna Space Campus togeth- er with the Swedish Institute of Space Physics.
    [Show full text]
  • International Rate Centers for Virtual Numbers
    8x8 International Virtual Numbers Country City Country Code City Code Country City Country Code City Code Argentina Bahia Blanca 54 291 Australia Brisbane North East 61 736 Argentina Buenos Aires 54 11 Australia Brisbane North/North West 61 735 Argentina Cordoba 54 351 Australia Brisbane South East 61 730 Argentina Glew 54 2224 Australia Brisbane West/South West 61 737 Argentina Jose C Paz 54 2320 Australia Canberra 61 261 Argentina La Plata 54 221 Australia Clayton 61 385 Argentina Mar Del Plata 54 223 Australia Cleveland 61 730 Argentina Mendoza 54 261 Australia Craigieburn 61 383 Argentina Moreno 54 237 Australia Croydon 61 382 Argentina Neuquen 54 299 Australia Dandenong 61 387 Argentina Parana 54 343 Australia Dural 61 284 Argentina Pilar 54 2322 Australia Eltham 61 384 Argentina Rosario 54 341 Australia Engadine 61 285 Argentina San Juan 54 264 Australia Fremantle 61 862 Argentina San Luis 54 2652 Australia Herne Hill 61 861 Argentina Santa Fe 54 342 Australia Ipswich 61 730 Argentina Tucuman 54 381 Australia Kalamunda 61 861 Australia Adelaide City Center 61 871 Australia Kalkallo 61 381 Australia Adelaide East 61 871 Australia Liverpool 61 281 Australia Adelaide North East 61 871 Australia Mclaren Vale 61 872 Australia Adelaide North West 61 871 Australia Melbourne City And South 61 386 Australia Adelaide South 61 871 Australia Melbourne East 61 388 Australia Adelaide West 61 871 Australia Melbourne North East 61 384 Australia Armadale 61 861 Australia Melbourne South East 61 385 Australia Avalon Beach 61 284 Australia Melbourne
    [Show full text]
  • Joint Barents Transport Plan Proposals for Development of Transport Corridors for Further Studies
    Joint Barents Transport Plan Proposals for development of transport corridors for further studies September 2013 Front page photos: Kjetil Iversen, Rune N. Larsen and Sindre Skrede/NRK Table of Contents Table Summary 7 1 Introduction 12 1.1 Background 12 1.2 Objectives and members of the Expert Group 13 1.3 Mandate and tasks 14 1.4 Scope 14 1.5 Methodology 2 Transport objectives 15 2.1 National objectives 15 2.2 Expert Group’s objective 16 3 Key studies, work and projects of strategic importance 17 3.1 Multilateral agreements and forums for cooperation 17 3.2 Multilateral projects 18 3.4 National plans and studies 21 4 Barents Region – demography, climate and main industries 23 4.1 Area and population 23 4.2 Climate and environment 24 4.3 Overview of resources and key industries 25 4.4 Ores and minerals 25 4.5 Metal industry 27 4.6 Seafood industry 28 4.7 Forest industry 30 4.8 Petroleum industry 32 4.9 Tourism industry 35 4.10 Overall transport flows 37 4.11 Transport hubs 38 5 Main border-crossing corridors in the Barents Region 40 5.1 Corridor: “The Bothnian Corridor”: Oulu – Haparanda/Tornio - Umeå 44 5.2 Corridor: Luleå – Narvik 49 5.3 Corridor: Vorkuta – Syktyvkar – Kotlas – Arkhangelsk - Vartius – Oulu 54 5.4 Corridor: “The Northern Maritime Corridor”: Arkhangelsk – Murmansk – The European Cont. 57 5.5 Corridor: “The Motorway of the Baltic Sea”: Luleå/Kemi/Oulu – The European Continent 65 5.6 Corridor: Petrozavodsk – Murmansk – Kirkenes 68 5.7 Corridor: Kemi – Salla – Kandalaksha 72 5.8 Corridor: Kemi – Rovaniemi – Kirkenes 76
    [Show full text]
  • Railway Standard
    Railway standard Possible extension of the ScanMed Corridor from the Mälardalen Task 5.3 Catching the goods transport from the northern areas to CNCs’ Responsible partner: Region Örebro County Version: Final draft, 2017-12-14 Lead Partner Content List of figures ........................................................................................................................................ 3 List of tables ......................................................................................................................................... 4 Abbreviations ....................................................................................................................................... 5 1. Summary ...................................................................................................................................... 6 2. Introduction ................................................................................................................................. 7 2.1 TENTacle ................................................................................................................................ 7 2.2 Present situation .................................................................................................................... 8 2.3 Objectives ............................................................................................................................ 10 2.4 Purpose ...............................................................................................................................
    [Show full text]
  • New Research Supports Volcanic Origin of Kiruna-Type Iron Ores 12 April 2019
    New research supports volcanic origin of Kiruna-type iron ores 12 April 2019 The origin and actual process of formation of Kiruna- type ores has remained highly controversial for over 100 years, with suggestions including a purely low-temperature hydrothermal origin, sea floor precipitation, a high-temperature volcanic origin from magma, and high-temperature magmatic fluids. To clarify the origins of Kiruna-type ores, a team of scientists from Uppsala University, the Geological Survey of Sweden, the Geological Survey of Iran, the Indian Institute of Technology in Bombay, and the Universities of Cardiff and Cape Town, led by Uppsala researcher Prof. Valentin Troll, employed Fe and O isotopes, the main elements in magnetite (Fe3O4), from Sweden, Chile and Iran to chemically fingerprint the processes that Credit: CC0 Public Domain led to formation of these ores. By comparing their data from Kiruna-type iron ores with an extensive set of magnetite samples from The origin of so-called Kiruna-type apatite-iron volcanic rocks as well as from known low- oxide ores has been the topic of a longstanding temperature hydrothermal iron ore deposits, the debate for over 100 years. In a new article researchers were able to show that more than 80 published in Nature Communications, a team of percent of their magnetite samples from Kiruna- scientists presents new and unambiguous data in type apatite-iron oxide ores were formed by high- favour of a magmatic origin for these important iron temperature magmatic processes in what must ores. The study was led by researchers from represent volcanic to shallow sub-volcanic settings.
    [Show full text]
  • Finnish Perspective on the TEN-T Core Network Corridors Extension
    Finnish perspective on the TEN-T Core Network Corridors Extension Marko Mäenpää Finnish Transport and Communications Agency 26th February 2021 1 TEN-T CORE NETWORK EXTENSION IN FINLAND North Sea–Baltic Corridor from Helsinki to Tornio and further to Luleå Scandinavian– Mediterranean Corridor from Stockholm via Luleå to Narvik and Oulu. 2 TEN-T Core Network TEN-T CORE NETWORK IN FINLAND TEN-T Core Network Includes: Roads E18 Turku–Vaalimaa, Main roads 4 and 29 Helsinki–Tornio–border Track sections Turku–Helsinki–Lahti–Kouvola– Kotka/Vainikkala and Helsinki–Tampere–Oulu–Tornio– border Saimaa inland waterways Airports of Helsinki and Turku Ports of HaminaKotka, Helsingin, Turku and Naantali Kouvola RRT Urban nodes of Helsinki and Turku TEN-T Core Network Coverage: Core network road and railway network length is approx. 2 460 km Length of Saimaa area deep channel is approx. [Esityksen nimi] 780 km 3 The National Transport System Plan The first, comprehensive, long-term strategic plan for development of the transport system in Finland. The Plan will cover all transport modes, passenger and goods transport, transport networks, services and support measures for the transport system. The Plan is drawn up for a period of 12 years (2021–2032) and will be updated each Government term. The preparations are guided by a parliamentary steering group. The decision on the Plan will be made by the Government. According to the Plan, the TEN-T Corridors, reform of the TEN-T Guidelines and CEF funding are important and Finland wants to influence and utilise them. The emphasis is on railways. 4 Challenges on the railway network and TEN-T criteria The extension is very welcomed and The most critical renovation needs The most challenging rail sections creates new possibilities to improve on railway network.
    [Show full text]
  • LKAB Is Looking for Talented Engineers in Mining
    LKAB is looking for talented Engineers in Mining LKAB is currently engaged in an important process to increase production, develop and streamline the existing production systems in our mines, and design new smart and fossil-free mining systems below our current main levels in our underground mines in Kiruna and Malmberget. These great challenges and opportunities will require additional talented mining engineers. Therefore, we are looking for mining engineers that are interested in being part of our journey towards the future, and are interested in technical development, innovation, and research in mining, with a focus on mine design, mining methods, rock mechanics, autonomous mining and underground logistics. Your qualifications All positions require a strong interest in identifying and overcoming the challenges that will be faced when mining below the present mining system. Qualities fundamental to these jobs are a passion for technology and problem-solving, a strong interest in suggesting and testing new solutions, and good analytical abilities. You enjoy teamwork and have good communication skills, and are interested in creating an international network of contacts. You hold a MSc or a PhD in one of the following areas: • mine design • mining methods • rock mechanics • geotechnical numerical analysis • mine seismology • autonomous mining • mining systems or • underground logistics Industrial experience is of great importance but all candidates will be considered. Those with similar backgrounds are also welcome to apply for one of the positions. You will be based in the city of Kiruna or Gällivare, close to the mining operations. Kiruna and Gällivare are situated in Swedish Lapland, above the Arctic Circle.
    [Show full text]
  • Kingdom of Sweden
    Johan Maltesson A Visitor´s Factbook on the KINGDOM OF SWEDEN © Johan Maltesson Johan Maltesson A Visitor’s Factbook to the Kingdom of Sweden Helsingborg, Sweden 2017 Preface This little publication is a condensed facts guide to Sweden, foremost intended for visitors to Sweden, as well as for persons who are merely interested in learning more about this fascinating, multifacetted and sadly all too unknown country. This book’s main focus is thus on things that might interest a visitor. Included are: Basic facts about Sweden Society and politics Culture, sports and religion Languages Science and education Media Transportation Nature and geography, including an extensive taxonomic list of Swedish terrestrial vertebrate animals An overview of Sweden’s history Lists of Swedish monarchs, prime ministers and persons of interest The most common Swedish given names and surnames A small dictionary of common words and phrases, including a small pronounciation guide Brief individual overviews of all of the 21 administrative counties of Sweden … and more... Wishing You a pleasant journey! Some notes... National and county population numbers are as of December 31 2016. Political parties and government are as of April 2017. New elections are to be held in September 2018. City population number are as of December 31 2015, and denotes contiguous urban areas – without regard to administra- tive division. Sports teams listed are those participating in the highest league of their respective sport – for soccer as of the 2017 season and for ice hockey and handball as of the 2016-2017 season. The ”most common names” listed are as of December 31 2016.
    [Show full text]
  • This-Is-Lkab.Pdf
    THIS IS LKAB PERFORMANCE IN IRONMAKING IT STARTS WITH THE IRON 1696 The ore-rich mountains 1912 Kiruna Church is completed, 1982 LKAB takes the decision 2010 LKAB earmarks a budget Luossavaara and Kiirunavaara, a gift from the company to the to introduce large-scale sub-level of billions of kronor for future after which LKAB was named, parish. The church will be moved caving, increasing productivity urban transformations in Kiruna are mentioned for the first time to the new centre of Kiruna as part noticeably. LKAB develops olivine and Malmberget. in a document by Samuel Mört, of the urban transformation. pellets, which prove to be a highly a bookkeeper at the Kengis works. competitive pellet product. 2011 LKAB makes record profits. 1940 Narvik is invaded by the The same year the LKAB Academy 1888 The first ore train rolls Germans and the port is blown up. 1989 The subsidiary Minelco, foundation is established to along the Ore Railway from Malm- Ore traffic focuses on Luleå until now LKAB Minerals, is estab- secure future recruitment. berget to Luleå. the port of Narvik is rebuilt. lished. Its task is to develop markets for the iron ore outside 2015 LKAB celebrates 125 1890 The company 1955 LKAB’s first pelletising of the steel industry. years and publishes a book about Luossavaara-Kiirunavaara plant – the first such plant in the company’s history. Aktiebolag – LKAB – is formed. Europe – is taken into operation 1997 Wireless communication in Malmberget, increasing the is introduced into LKAB’s under- 2018 The starting shot for the 1898 Hjalmar Lundbohm is degree to which the iron ore is ground mines using the Wireless SUM (Sustainable Underground appointed as local manager in upgraded and thus also the value Underground Communication Mining) initiative to develop a new Kiruna.
    [Show full text]
  • Finnish Swedish Infrastructure.Pdf
    The Swedish-Finnish railway bridge over Torne River in Haparanda/Tornio. The Swedish part is blue and the Finnish part is grey. Photo: Thomas Johansson Abstract North Finland and North Sweden are sparsely populated areas with rich natural resources, forests, nature as tourist industry and especially exploitable deposits. There are also plenty of activities supporting that industry in the area. Long transports pose a challenge. A driving force behind this study is the demand for raw materials on the world market and the rise in market prices which led the mining industry to invest in research in the region. This is combined with the need to regard national infrastructure development also in a European and international perspective. This study is concentrated on iron ore transports in Pajala-Kolari area because the mines, with a size comparable with the Swedish iron ore mine in Malmberget, cannot be opened without an efficient chain of logistics. The transports from and to the planned mines will also mean considerable changes to the transport patterns in the North. The mining activities will create up to 1800 new jobs in Sweden and Finland and the investments in the necessary infrastructure will add the job opportunities during the construction period. The cost benefits of the different alternatives of the whole chain of transport from mine to customer as well as the models of implementation suitable for major infrastructure construction projects, were evaluated and compared. In addition the socio-economical consequences of the mining operations and costs for the construction of infrastructure and transports were assessed. The result is thus based on several technical and economical sub-surveys made during this study as background studies.
    [Show full text]