UNDERSTANDING LEVERS by Mitch Ricketts Math Toolbox Is Designed to Help Readers Apply STEM Principles to Everyday Safety Issues

Total Page:16

File Type:pdf, Size:1020Kb

UNDERSTANDING LEVERS by Mitch Ricketts Math Toolbox Is Designed to Help Readers Apply STEM Principles to Everyday Safety Issues MATH TOOLBOX UNDERSTANDING LEVERS By Mitch Ricketts Math Toolbox is designed to help readers apply STEM principles to everyday safety issues. Many readers may feel apprehensive about math and science. This series employs various communication strategies to make the learning process easier and more accessible. This Math Toolbox article is the is a push or pull in a particular direction class levers are commonplace in anatomy, second of two installments on the role of (e.g., up, down, left, right, rotational). however, as illustrated by the human el- levers in occupational safety. In the first The magnitude (or amount) of force is bow, where the bicep exerts upward effort, installment (“The Case of the Tipping often specified in units of weight, such the elbow serves as the fulcrum, and the Forklift,” PSJ September 2020, pp. 45-51), as ounces, pounds or newtons. In a tendon attachment denotes the line of we considered the hazards associated first-class lever, the effort arm and load applied effort on the forearm. with out-of-control levers in workplaces. arm are located on opposite sides of the Recall from the first installment on This article will delve more deeply to un- fulcrum, and effort is applied in the same levers that the rotational force of a pivot- derstand the three main classes of levers, direction as the force exerted by the load. ing lever is known as torque (τ). Torque the concept of mechanical advantage and In a second-class lever (Figure 2), the is stated in units of distance times some associated calculations. effort arm and load arm are located on the weight, such as foot-pounds (ft-lb) and same side of the fulcrum. Effort is applied newton-meters (N-m). The direction of Classes of Levers in the opposite direction, compared with torque may be denoted with a positive Figure 1 depicts two examples of the force exerted by the load. Furthermore, sign for clockwise motion and a negative first-class levers: a stylized lever at top the load lies between the point of effort sign for counterclockwise rotation. As in and a pry bar as an everyday example at and the fulcrum. A wheelbarrow is an ev- the first installment, we will simplify by bottom. Remember from the first install- eryday example of a second-class lever. using the directionless, absolute value of ment that a lever is a rigid device that In a third-class lever (Figure 3), the ef- torque, designated as |τ|. pivots on a fulcrum. The fulcrum is the fort arm and load arm are located on the pivot point, or the point about which the same side of the fulcrum. The direction of Calculating Torque lever rotates. The lever has two “arms”: effort is opposite the direction of the force for Each Lever Class The load arm (or output arm) is the por- exerted by the load. Uniquely for third- In the first installment, we applied the tion of the lever directly connected to the class levers, the point of effort lies between formula for torque (absolute value) to load. The effort arm (or arm of applied the load and the fulcrum. Since these first-class levers as follows: force) is the portion of the lever to which levers tend to be inefficient, they are less we apply the effort, or input force. Force common in everyday technology. Third- || = ∙ FIGURE 1 FIGURE 2 FIGURE 3 FIRST-CLASS SECOND-CLASS THIRD-CLASS LEVER EXAMPLES LEVER EXAMPLES LEVER EXAMPLES 52 PSJ PROFESSIONAL SAFETY OCTOBER 2020 assp.org FIGURE 4 OPPOSING TORQUES OF EFFORT & LOAD IN A FIRST-CLASS LEVER FIGURE 5 EXAMPLE: BALANCED FIRST-CLASS LEVER Example problem. Equivalent torques result in a balanced first-class lever. In this case, a 30-lb force applied to an effort arm of 1.5 ft bal- ances the torque created by a 45-lb force applied to a load arm of 1 ft. where: consider this 30-lb force to be applied at a •The weight applies a downward force |τ| = torque (absolute value); a turning point that represents the average location of 45 lb perpendicularly to the load arm. or twisting force where your hand presses on the lever, which This is the value of f2 in the formula. f = force applied perpendicularly (at a in this case is a distance of 1.5 ft to the left •The weight applies this force at an right angle) to the lever arm of the fulcrum. We will assume the weights average distance of 1 ft from the fulcrum. d = distance at which the force is ap- of the lever arms are negligible (or, alterna- This is the value of d2 in the formula. plied; the distance from the fulcrum to tively, that the weights of the lever arms are Based on these data, we calculate the line of applied force (measured per- balanced on both sides of the fulcrum). We torque generated by the load arm (|τload|) pendicularly to the line of applied force) will also assume friction is negligible. Under in ft-lb as follows: Note: When force is not applied per- these conditions, how many foot-pounds of Step 1: Start with the equation for pendicularly to the lever arm, a more torque are created by the effort arm to bal- torque of the load arm: general formula is used to account for the ance the torque created by the load arm? angle of applied force: τ = f ∙ d ∙ sin θ. We calculate torque created by the effort Continuing our review, we can calculate arm (|τeffort|) based on the following data: #$%& ) ) torque for both sides of a first-class lever •Your hand applies a downward force Step 2: Insert| the| known= ∙ values for as shown in Figure 4. For the effort arm, of 30 lb perpendicularly to the effort arm. weight of the load (f2 = 45 lb) and distance torque may be designated as |τeffort|. Force This is the value of f1 in the formula. (d2 = 1 ft). Then solve forτ | load| in ft-lb: and distance in the effort arm may be des- •Your hand applies this force at an av- ignated as f1 and d1, respectively. For the erage distance of 1.5 ft from the fulcrum. load arm, torque may be designated as |τload|, This is the value of d1 in the formula. |#$%&| = ) ∙ ) = 45 ∙ 1 = 45 − with force and distance in the load arm Based on these data, we calculate Step 3: Our calculation indicates denoted as f2 and d2. If the opposing torques torque generated by the effort arm that the load arm is generating a torque are equal, then |τeffort| = |τload| and the lever (|τeffort|) in ft-lb as follows: of 45 ft-lb, which is equal to the torque will be balanced. On the other hand, if Step 1: Start with the equation for of the effort arm, meaning the torques torque created by the effort arm is greater torque of the effort arm: are balanced. In contrast, if the torques than torque created by the load arm, then had been unbalanced, the load would |τeffort| > |τload| and the load will rise. Finally, either rise (if |τeffort| > |τload|) or descend if torque created by the effort arm is less #$$%&' * * (if |τeffort| < |τload|). than torque created by the load arm, then Step 2: Insert! the! known= ∙ values for Second-class lever calculated example: |τeffort| < |τload| and the load will descend. applied force (f1 = 30 lb) and distance (d1 We calculate torque for a second-class First-class lever calculated example: = 1.5 ft). Then solve forτ | effort| in ft-lb: lever using the same formula. However, Imagine you have used a first-class lever note that the effort and load arms over- to raise a load consisting of a 45-lb weight, lap because they are located on the same as illustrated in Figure 5. The load’s center #$$%&' * * side of the fulcrum, as shown in Figure of gravity is located 1 ft to the right of the !Step 3:! Our= ∙calculation = 30 ∙ 1. 5indicates= 45 −that 6 (p. 54). Also note that in second-class fulcrum. (Center of gravity is the average the effort arm is generating a torque of levers the effort is applied in a direction location of a body’s weight, or the location 45 ft-lb to balance the torque created by opposite to the direction of the force of where a body’s total weight is assumed to the load arm. the load. The value of d1 will be the entire be concentrated.) We will now calculate torque created distance from the fulcrum to the average To keep the load balanced (so it moves by the load arm (|τload|) to confirm that point of applied effort. The value of d2 neither up nor down), you exert a down- the torques are balanced, based on the will be the distance from the load’s center ward force of 30 lb with your hand. We will following data: of gravity to the fulcrum. Once again, assp.org OCTOBER 2020 PROFESSIONAL SAFETY PSJ 53 MATH TOOLBOX the opposing torques are designated as force of 15 lb with your hand. Your Based on these data, we calculate |τeffort| and |τload|. Similarly, the effort and hand exerts this force at an average dis- torque generated by the effort arm load forces designated as f1 and f2, and tance of 2 ft to the left of the fulcrum. (|τeffort|) in ft-lb as follows: the distances are designated as d1 and d2 Assuming friction and the weights of Step 1: Start with the equation for for the effort and load arms respectively.
Recommended publications
  • From Ancient Greece to Byzantium
    Proceedings of the European Control Conference 2007 TuA07.4 Kos, Greece, July 2-5, 2007 Technology and Autonomous Mechanisms in the Mediterranean: From Ancient Greece to Byzantium K. P. Valavanis, G. J. Vachtsevanos, P. J. Antsaklis Abstract – The paper aims at presenting each period are then provided followed by technology and automation advances in the accomplishments in automatic control and the ancient Greek World, offering evidence that transition from the ancient Greek world to the Greco- feedback control as a discipline dates back more Roman era and the Byzantium. than twenty five centuries. II. CHRONOLOGICAL MAP OF SCIENCE & TECHNOLOGY I. INTRODUCTION It is worth noting that there was an initial phase of The paper objective is to present historical evidence imported influences in the development of ancient of achievements in science, technology and the Greek technology that reached the Greek states from making of automation in the ancient Greek world until the East (Persia, Babylon and Mesopotamia) and th the era of Byzantium and that the main driving force practiced by the Greeks up until the 6 century B.C. It behind Greek science [16] - [18] has been curiosity and was at the time of Thales of Miletus (circa 585 B.C.), desire for knowledge followed by the study of nature. when a very significant change occurred. A new and When focusing on the discipline of feedback control, exclusively Greek activity began to dominate any James Watt’s Flyball Governor (1769) may be inherited technology, called science. In subsequent considered as one of the earliest feedback control centuries, technology itself became more productive, devices of the modern era.
    [Show full text]
  • The Impacts of Technological Invention on Economic Growth – a Review of the Literature Andrew Reamer1 February 28, 2014
    THE GEORGE WASHINGTON INSTITUTE OF PUBLIC POLICY The Impacts of Technological Invention on Economic Growth – A Review of the Literature Andrew Reamer1 February 28, 2014 I. Introduction In their recently published book, The Second Machine Age, Erik Brynjolfsson and Andrew McAfee rely on economist Paul Krugman to explain the connection between invention and growth: Paul Krugman speaks for many, if not most, economists when he says, “Productivity isn’t everything, but in the long run it’s almost everything.” Why? Because, he explains, “A country’s ability to improve its standard of living over time depends almost entirely on its ability to raise its output per worker”—in other words, the number of hours of labor it takes to produce everything, from automobiles to zippers, that we produce. Most countries don’t have extensive mineral wealth or oil reserves, and thus can’t get rich by exporting them. So the only viable way for societies to become wealthier—to improve the standard of living available to its people—is for their companies and workers to keep getting more output from the same number of inputs, in other words more goods and services from the same number of people. Innovation is how this productivity growth happens.2 For decades, economists and economic historians have sought to improve their understanding of the role of technological invention in economic growth. As in many fields of inventive endeavor, their efforts required time to develop and mature. In the last five years, these efforts have reached a point where they are generating robust, substantive, and intellectually interesting findings, to the benefit of those interested in promoting growth-enhancing invention in the U.S.
    [Show full text]
  • Chapter 8 Glossary
    Technology: Engineering Our World © 2012 Chapter 8: Machines—Glossary friction. A force that acts like a brake on moving objects. gear. A rotating wheel-like object with teeth around its rim used to transmit force to other gears with matching teeth. hydraulics. The study and technology of the characteristics of liquids at rest and in motion. inclined plane. A simple machine in the form of a sloping surface or ramp, used to move a load from one level to another. lever. A simple machine that consists of a bar and fulcrum (pivot point). Levers are used to increase force or decrease the effort needed to move a load. linkage. A system of levers used to transmit motion. lubrication. The application of a smooth or slippery substance between two objects to reduce friction. machine. A device that does some kind of work by changing or transmitting energy. mechanical advantage. In a simple machine, the ability to move a large resistance by applying a small effort. mechanism. A way of changing one kind of effort into another kind of effort. moment. The turning force acting on a lever; effort times the distance of the effort from the fulcrum. pneumatics. The study and technology of the characteristics of gases. power. The rate at which work is done or the rate at which energy is converted from one form to another or transferred from one place to another. pressure. The effort applied to a given area; effort divided by area. pulley. A simple machine in the form of a wheel with a groove around its rim to accept a rope, chain, or belt; it is used to lift heavy objects.
    [Show full text]
  • Engineering Philosophy Louis L
    Engineering Philosophy Louis L. Bucciarelli ISBN 90-407-2318-4 Copyright 2003 by Louis L. Bucciarelli Table of Contents Introduction 1 Designing, like language, is a social process. 9 What engineers don’t know & why they believe it. 23 Knowing that and how 43 Learning Engineering 77 Extrapolation 99 Index 103 1 Introduction “Let’s stop all this philosophizing and get back to business”1 Philosophy and engineering seem worlds apart. From their remarks, we might infer that engineers value little the problems philosophers address and the analyses they pursue. Ontological questions about the nature of existence and the categorial structure of reality – what one takes as real in the world – seem to be of scant inter- est. It would appear that engineers don’t need philosophy; they know the differ- ence between the concrete and the abstract, the particular and the universal – they work within both of these domains every day, building and theorizing, testing and modeling in the design and development of new products and systems. Possible worlds are not fictions but the business they are about. As Theodore Von Karman, an aerospace engineer and educator, reportedly claimed Scientists discover the world that exists; engineers create the world that never was. Epistemological questions about the source and status of engineering knowl- edge likewise rarely draw their attention.2 Engineers are pragmatic. If their pro- ductions function in accord with their designs, they consider their knowledge justified and true. Such knowledge, they will show you, is firmly rooted in the sci- entific explanation of phenomenon which, while dated according to physicists, may still provide fertile grounds for innovative extension of their understanding of how things work or might work better.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Levers and Gears: a Lot for a Little
    Physics Levers and Gears: A lot for a little A surprising number of the tools and machines we rely on every day – from door handles and cricket bats to clocks and bikes – can be explained in terms of a few simple ideas. The same principles allowed ancient civilizations to build enormous pyramids and the mysterious astronomical device known as the Antikythera Mechanism. In this lesson you will investigate the following: • How do simple machines allow us to achieve a lot with little effort? • What is mechanical advantage and how does it apply to levers, wheels and gears? • How do gear systems work? So gear up for a look at how some of our most useful machines work. This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmosforschools.com Introduction: Levers and Gears A reconstruction of the Antikythera Mechanism. In 1900 a team of divers discovered a 2000-year-old shipwreck near the Greek island of Antikythera. Inside the wreck they found an incredible range of treasures including beautiful bronze statues and glass bowls. They also found a plain-looking lump of bronze no bigger than a shoebox. Closer examination revealed that the object had gear wheels embedded in it – as though it was some kind of ancient clock. It soon became known as the Antikythera Mechanism but its internal structure and purpose remained mysterious for decades. Later investigations using X-rays uncovered thirty interlocking gears and inscriptions of the ancient Greek words for “sphere” and “cosmos”.
    [Show full text]
  • Lever Lifting
    Lever Lifting Simple machines can help us accomplish a task by trading force and distance. As the distance we apply a force goes up, we need to put in less force to do the same thing. A lever is a type of simple machine, and in this activity, students will experiment with the connection between force and distance. Materials 12-inch ruler (optional) a second ruler for making measurements 2 small paper cups (Dixie cups would work) Tape Weights (such as marbles, steel nuts, or dead AA batteries) Dry erase marker, or some other cylinder to use as a fulcrum Table (Page 4) Making the Lever The students will be making a lever out of the ruler and thick marker. The marker will be the fulcrum, and the ruler will be the bar. Start off by placing the marker underneath the ruler at the 6‐inch line. The ruler should be able to easily tilt back and forth. In order to do tests with this lever, we will tape one paper cup on each end of the ruler (perhaps around 1‐inch and 11‐inches), facing up. Have them write the letter L (Load) on the cup near the 1‐inch mark. This will act as our load, what we are trying to lift. Mark the other cup with the letter E (Effort). Now to experiment with the lever, we can put some number of weights in the load cup and see how many weights we have to add to the effort cup to lift it up. By moving where the fulcrum is, the students can test out the effects of changing a lever.
    [Show full text]
  • 1 - Partnerships Implementing Engineering Education Worcester Polytechnic Institute – Worcester Public Schools Supported By: National Science Foundation
    Partnerships Implementing Engineering Education Worcester Polytechnic Institute – Worcester Public Schools Supported by: National Science Foundation Simple Machines: 4.G.3 _______________________________ Levers Grade Level 4 Sessions 1 – 50 minutes each Seasonality N/A Instructional Mode(s) Whole class Team Size Whole class WPS Benchmarks 04.SC.IS.03 04.SC.IS.04 04.SC.IS.05 04.SC.TE.03 MA Frameworks 3-5.IS.03 3-5.IS.04 3-5.IS.05 3-5.TE.1.3 Key Words Simple Machines, Levers, Engineering Design Process Summary The students will learn about the advantages of using different types of levers. The students will then apply what they have learned and the engineering design process to solve a problem. Learning Objectives 2002 Worcester Public Schools (WPS) Benchmarks for Grade 4 04.SC.IS.03 Keep accurate records while conducting simple investigations or experiments. 04.SC.IS.04 Conduct multiple trials to test a prediction. Compare the results of an investigation or experiment with the prediction. 04.SC.IS.05 Recognize simple patterns in data and use data to create a reasonable explanation for the results of an investigation or experiment. 04.SC.TE.03 Identify and explain the difference between simple and complex machines (e.g., hand can opener that includes multiple gears, wheel, wedge gear, lever). Additional Learning Objectives 1. 04.SC.IS.03 Keep accurate records while conducting simple investigations or experiments. - 1 - Partnerships Implementing Engineering Education Worcester Polytechnic Institute – Worcester Public Schools Supported by: National Science Foundation 2. 04.SC.IS.04 Conduct multiple trials to test a prediction.
    [Show full text]
  • Mechanical Systems
    UNIT Mechanical Systems How many mechanical systems have you used today? You may not realize it, but you use mechanical systems all the time to do simple tasks. When you ride a bicycle, open a can, or sharpen a pencil, you have used a mechanical system to help you complete a task. All mechanical systems have an energy source. The energy could come from electricity, gasoline, or solar energy, but often the energy comes from humans. (Remember that huge structures such as the pyramids were built solely using human power!) The energy needed to move this bicycle and this plane, for example, comes from a pedalling human. Can you see how machines help us perform tasks we might find difficult to do otherwise? Imagine opening a can without a can opener. Could you fly without a plane or other type of aircraft? In this unit, you will learn how some small, human-powered mechanical devices work. You will see that tools as simple as a pair of scissors function on the same principles as massive equipment powered by fluid pressure and heat engines. You will discover the main factors in the efficient operation of mechanical systems. You will also design and build your own mechanical devices — including some powered by hydraulics and pneumatics — and investigate their efficiency. Finally, this unit examines how machines have changed as science and technology have changed. 266 Unit Contents TOPIC 1 Levers and Inclined Planes 270 TOPIC 2 The Wheel and Axle,Gears, and Pulleys 285 TOPIC 3 Energy, Friction, and Efficiency 296 TOPIC 4 Force, Pressure, and Area 304 TOPIC 5 Hydraulics and Pneumatics 313 TOPIC 6 Combining Systems 326 TOPIC 7 Machines Throughout History 332 TOPIC 8 People and Machines 342 UNIT 4 • How do we use How many machines have you used today? machines to do work and How do we use mechanical devices such as to transfer energy? levers and pulleys to help us perform tasks? In Topics 1–3, you will learn about lots of How can we design and • mechanical devices.
    [Show full text]
  • Simple Machines and Building the Great Pyramid B.Indd
    Systems and Simple Machines Simple Machines and Building the Great Pyramid Correlation Fountas & Pinnell N DRA 30 Estimated Lexile Measure 660L Written under funding from Monroe 2–Orleans BOCES by: Antonietta Quinn, Resource Teacher Danielle Hoch, Reading Specialist Designed and Printed by the BOCES 2 Printing and Graphics Services. 10/11 Copyright 2011 by the Board of Cooperative Educational Services for the Second Supervisory District of Monroe and Orleans Counties, Elementary Science Program. All rights reserved. This publication may only be reproduced for one-time classroom use. No part of this publication may be stored in a retrieval system, or transmitted or reproduced, in any form by any means, electronic, mechanical photocopying, recording, or otherwise, without the prior written permission of Monroe 2–Orleans BOCES, Elementary Science Program. Elementary Science Program www.espsciencetime.orgwww espsciencetime or Table of Contents Background .........................................................3 Great Pyramid ....................................................4 Gather and Move Stone ..................................6 Levers and Inclined Planes .............................7 Wedges.............................................................. 11 Conclusion .........................................................12 Glossary .............................................................13 2 15 Background Lever The pyramids of Egypt are amazing. They a stiff bar that sits or turns on a fulcrum were built without the tools we use today. used to raise or move a load. There were no computers. There were no complex machines to cut and move the Limestone large stones. The Egyptians did not have a rock used as a building stone. electricity. Still they were able to build these giant pyramids. Pharaoh About four thousand years ago, Egypt was an ancient Egyptian king. ruled by kings. These kings were called Quarry pharaohs (fair-ohs). When the pharaohs a pit where stone is gathered.
    [Show full text]
  • Glossary Definitions
    TC 9-524 GLOSSARY ACRONYMS AND ABBREVIATIONS TC - Training Circular sd - small diameter TM - Technical Manual Id - large diameter AR - Army Regulation ID - inside diameter DA - Department of the Army TOS- Intentional Organization for Standardization RPM - revolutions per minute LH - left hand SAE - Society of Automotive Engineers NC - National Coarse SFPM - surface feet per minute NF - National Fine tpf -taper per foot OD - outside diameter tpi taper per inch RH - right hand UNC - Unified National Coarse CS - cutting speed UNF - Unified National Fine AA - aluminum alloys SF -standard form IPM - feed rate in inches per minute Med - medical FPM - feet per minute of workpiece WRPM - revolutions per minute of workpiece pd - pitch diameter FF - fraction of finish tan L - tangent angle formula WW - width of wheel It - length of taper TT - table travel in feet per minute DEFINITIONS abrasive - natural - (sandstone, emery, corundum. accurate - Conforms to a standard or tolerance. diamonds) or artificial (silicon carbide, aluminum oxide) material used for making grinding wheels, Acme thread - A screw thread having a 29 degree sandpaper, abrasive cloth, and lapping compounds. included angle. Used largely for feed and adjusting screws on machine tools. abrasive wheels - Wheels of a hard abrasive, such as Carborundum used for grinding. acute angle - An angle that is less than 90 degrees. Glossary - 1 TC 9-524 adapter - A tool holding device for fitting together automatic stop - A device which may be attached to various types or sizes of cutting tools to make them any of several parts of a machine tool to stop the interchangeable on different machines.
    [Show full text]
  • History and Technology
    This article was downloaded by:[Forman, Paul] [Forman, Paul] On: 23 April 2007 Access Details: [subscription number 777307305] Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK History and Technology An International Journal Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713643058 The Primacy of Science in Modernity, of Technology in Postmodernity, and of Ideology in the History of Technology To cite this Article: , 'The Primacy of Science in Modernity, of Technology in Postmodernity, and of Ideology in the History of Technology', History and Technology, 23:1, 1 - 152 To link to this article: DOI: 10.1080/07341510601092191 URL: http://dx.doi.org/10.1080/07341510601092191 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]