Starting Active-HDL As the Default Simulator in Xilinx

Total Page:16

File Type:pdf, Size:1020Kb

Starting Active-HDL As the Default Simulator in Xilinx 7/29/13 Support - Resources - Documentation - Application Notes - Aldec 日本語 Sign In | Register Search aldec.com SOLUTIONS PRODUCTS EVENTS COMPANY SUPPORT DOWNLOADS Home Support Resources Documentation Application Notes RESOURCES Starting Active-HDL as the Default Simulator in Xilinx ISE « Prev | Next » Documentation Application Notes Introduction FAQ This document describes how to start Active-HDL simulator from Xilinx ISE Project Navigator to run behavioral and timing simulations. This Manuals application note has been verified on Active-HDL 9.1 and Xilinx ISE 13.4. This interface allows users to run mixed VHDL, Verilog and White Papers System Verilog (design ) simulation using Active-HDL as a default simulator. Tutorials Installing Xilinx libraries in Active-HDL Multimedia Demonstration In order to run the simulation successfully, depending on the design both VHDL and Verilog libraries for Xilinx may have to be installed in Videos Active-HDL. You can check what libraries are currently installed in your Active-HDL using Library Manager tool. You can access the Library Manager from the menu View>Library Manger>. Recorded Webinars You can install precompiled libraries in multiple ways: 1. If you are using Active-HDL DVD to install the software, during the installation, you will get the option to select and install the Xilinx libraries 2. If you have received a web link to download Active-HDL, on the same page you will find the links to download Xilinx libraries. 3. At any time you can visit the update center to download the latest Xilinx libraries at http://www.aldec.com/support Set Active-HDL as Simulator in Xilinx Project Navigator After creating a project, open your Xilinx project in ISE Project Navigator. Now we will have to replace the link to Model Tech simulator with the Active-HDL executable file. To do that open Preferences window in Project Navigator (use menu Edit | Preferences). In the Preferences window, go to the Integrated Tools section under ISE General category. Point to the Xilinx ISE .bat file (C:\Program File\Aldec\Active-HDL X.X\BIN\xilinx_ise.bat) in the Model Tech Simulator box as shown below. Figure 1 Setting up the executable for Active-HDL Click Open and then OK to close the Preferences window. Setting Simulator Properties in Xilinx Project Navigator After setting up Active-HDL as a simulator, you need to set up the simulator properties. In the Project menu, go to Design Properties and set the Simulator setting to Modelsim-SE Mixed. www.aldec.com/en/support/resources/documentation/articles/1259 1/6 7/29/13 Support - Resources - Documentation - Application Notes - Aldec Figure 2 Setting the Simulator to Modelsim-SE Mixed After that you should be able to see the ModelSim Simulator command in the Processes tab as shown below. Figure 3 Selecting Simulation Property Now right-click on Simulate Behavioral Model and select the Process Properties option from the context menu. In the Process Properties window select Simulation Properties. Change the Compiled Library Directory to point to Vlib within the Active-HDL installation. In the Other VSIM Command Line Options field, add +access+r. This enables the access to add signals to the waveform viewer. www.aldec.com/en/support/resources/documentation/articles/1259 2/6 7/29/13 Support - Resources - Documentation - Application Notes - Aldec Figure 4 Setting up the display property Under the Display Properties. Make sure all the options are unchecked as shown below in the figure 5. Figure 5 Setting up the display property Starting Active-HDL from Xilinx ISE To start Active-HDL simulator, right-click on Simulate Behavioral Model in the Processes tab and select Run. Active-HDL will be started. The source and script files will be added to the created design, compiled, and simulated. www.aldec.com/en/support/resources/documentation/articles/1259 3/6 7/29/13 Support - Resources - Documentation - Application Notes - Aldec Figure 6 Simulation launched in Active-HDL To Run A Timing simulation To run a timing simulation, switch the design view to Implementation. Figure 7 Design View: Implementation Run the synthesis and implementation process by pressing the Implement Top Module button or by right-clicking the top-level module and selecting Implement Top Module. Figure 8 Run Synthesis and Implementation Process Expand Implement Design and run the Generate Post-Place & Route Simulation Model process. www.aldec.com/en/support/resources/documentation/articles/1259 4/6 7/29/13 Support - Resources - Documentation - Application Notes - Aldec Figure 9 Generate Post-Place & Route Simulation Model Switch the design view to Simulation and change the drop down box from Behavioral to Post Route. Figure 10 Post Route Simulation Right-click on Simulate Post-Place & Route Model in the processes window and select Process Properties. You can observe the additional field Delay Values To Be Read from SDF, this indicates an SDF was created to run a timing simulation. Figure 11 Process Properties for Timing Simulation The Display Properties should remain the same as the previous simulation. Under Simulation Model Properties you can also observe the -sdf switches used for the timing simulation. www.aldec.com/en/support/resources/documentation/articles/1259 5/6 7/29/13 Support - Resources - Documentation - Application Notes - Aldec Figure 12 Simulation Model Properties Run the simulation by right-clicking on Simulate Post-Place & Route Model and select run. Previous article Next article ©2013 Aldec, Inc. Disclaimer | Site Map | RSS Feeds | Feedback www.aldec.com/en/support/resources/documentation/articles/1259 6/6.
Recommended publications
  • Xilinx Synthesis and Verification Design Guide
    Synthesis and Simulation Design Guide 8.1i R R Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes. Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design. THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES.
    [Show full text]
  • Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2014 Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure Bill Jason Pidlaoan Tomas University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and Computer Engineering Commons Repository Citation Tomas, Bill Jason Pidlaoan, "Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2152. http://dx.doi.org/10.34917/5836171 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CO-EMULATION OF SCAN-CHAIN BASED DESIGNS UTILIZING SCE-MI INFRASTRUCTURE By: Bill Jason Pidlaoan Tomas Bachelor‟s Degree of Electrical Engineering Auburn University 2011 A thesis submitted
    [Show full text]
  • AN 307: Altera Design Flow for Xilinx Users Supersedes Information Published in Previous Versions
    Altera Design Flow for Xilinx Users June 2005, ver. 5.0 Application Note 307 Introduction Designing for Altera® Programmable Logic Devices (PLDs) is very similar, both in concept and in practice, to designing for Xilinx PLDs. In most cases, you can simply import your register transfer level (RTL) into Altera’s Quartus® II software and begin compiling your design to the target device. This document will demonstrate the similar flows between the Altera Quartus II software and the Xilinx ISE software. For designs, which the designer has included Xilinx CORE generator modules or instantiated primitives, the bulk of this document guides the designer in design conversion considerations. Who Should Read This Document The first and third sections of this application note are designed for engineers who are familiar with the Xilinx ISE software and are using Altera’s Quartus II software. This first section describes the possible design flows available with the Altera Quartus II software and demonstrates how similar they are to the Xilinx ISE flows. The third section shows you how to convert your ISE constraints into Quartus II constraints. f For more information on setting up your design in the Quartus II software, refer to the Altera Quick Start Guide For Quartus II Software. The second section of this application note is designed for engineers whose design code contains Xilinx CORE generator modules or instantiated primitives. The second section provides comprehensive information on how to migrate a design targeted at a Xilinx device to one that is compatible with an Altera device. If your design contains pure behavioral coding, you can skip the second section entirely.
    [Show full text]
  • Implementation, Verification and Validation of an Openrisc-1200
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 1, 2019 Implementation, Verification and Validation of an OpenRISC-1200 Soft-core Processor on FPGA Abdul Rafay Khatri Department of Electronic Engineering, QUEST, NawabShah, Pakistan Abstract—An embedded system is a dedicated computer system in which hardware and software are combined to per- form some specific tasks. Recent advancements in the Field Programmable Gate Array (FPGA) technology make it possible to implement the complete embedded system on a single FPGA chip. The fundamental component of an embedded system is a microprocessor. Soft-core processors are written in hardware description languages and functionally equivalent to an ordinary microprocessor. These soft-core processors are synthesized and implemented on the FPGA devices. In this paper, the OpenRISC 1200 processor is used, which is a 32-bit soft-core processor and Fig. 1. General block diagram of embedded systems. written in the Verilog HDL. Xilinx ISE tools perform synthesis, design implementation and configure/program the FPGA. For verification and debugging purpose, a software toolchain from (RISC) processor. This processor consists of all necessary GNU is configured and installed. The software is written in C components which are available in any other microproces- and Assembly languages. The communication between the host computer and FPGA board is carried out through the serial RS- sor. These components are connected through a bus called 232 port. Wishbone bus. In this work, the OR1200 processor is used to implement the system on a chip technology on a Virtex-5 Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open- FPGA board from Xilinx.
    [Show full text]
  • Simulating Altera Designs
    1. Simulating Altera Designs May 2013 QII53025-13.0.0 QII53025-13.0.0 This document describes simulating designs that target Altera® devices. Simulation verifies design behavior before device programming. The Quartus® II software supports RTL and gate level design simulation in third-party EDA simulators. Altera Simulation Overview Simulation involves setting up your simulator working environment, compiling simulation model libraries, and running your simulation. Generate simulation files in an automated or custom flow. Refer to Figure 1–1 and Table 1–3. Figure 1–1. Simulation in Quartus II Design Flow Design Entry (HDL, Qsys, DSP Builder) Altera Simulation RTL Simulation Models Quartus II Design Flow Gate-Level Simulation Post-synthesis functional Post-synthesis Analysis & Synthesis simulation netlist functional simulation EDA Fitter Netlist Post-fit functional Post-fit functional (place-and-route) Writer simulation netlist simulation Post-fit timing TimeQuest Timing Analyzer (Optional)Post-fit timing Post-fit simulation netlist (1) timing simulation simulation (3) Device Programmer (1) Timing simulation is not supported for Arria® V, Cyclone® V, Stratix® V, and newer families. You can use the Quartus II NativeLink feature to automatically generate simulation files and scripts. NativeLink can launch your simulator a from within the Quartus II software. Use a custom flow for more control over all aspects of simulation file generation. © 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html.
    [Show full text]
  • RTL Design and IP Generation Tutorial
    RTL Design and IP Generation Tutorial PlanAhead Design Tool UG675(v14.5) April 10, 2013 This tutorial document was last validated using the following software version: ISE Design Suite 14.5 If using a later software version, there may be minor differences between the images and results shown in this document with what you will see in the Design Suite.Suite. Notice of Disclaimer The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
    [Show full text]
  • In the United States District Court for the Eastern District of Texas Tyler Division
    Case 6:06-cv-00480-LED Document 1 Filed 11/08/06 Page 1 of 8 IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS TYLER DIVISION NARPAT BHANDARI § § Plaintiff § § v. § Case No. 6:06-cv-480 § CADENCE DESIGN SYSTEMS, INC.; § MAGMA DESIGN AUTOMATION, § INC.; DYNALITH SYSTEMS, INC.; § JURY TRIAL DEMANDED ALTERA CORP.; MENTOR GRAPHICS § CORP.; AND ALDEC, INC. § § Defendants § § § § § PLAINTIFF’S ORIGINAL COMPLAINT Plaintiff, Narpat Bhandari (“Bhandari”), files this Original Complaint against Defendants, Cadence Design Systems, Inc. (“Cadence”), Magma Design Automation, Inc. (“Magma”), Dynalith Systems, Inc. (“Dynalith”), Altera Corp. (“Altera”), Mentor Graphics Corp. (“Mentor”), and Aldec, Inc. (“Aldec”) and alleges as follows: THE PARTIES 1. Bhandari is an individual who resides at 14530 Deer Park Court, Los Gatos, CA 95032. 2. Cadence, on information and belief, is a corporation organized under the laws of the State of Delaware. Cadence is doing business in Texas, and, on information and belief, has a principal place of business at 2655 Seely Ave, Building 5, San Jose, CA 95134-1931. Case 6:06-cv-00480-LED Document 1 Filed 11/08/06 Page 2 of 8 Cadence may be served with process by serving its registered agent, CT Corp System at 350 N. St. Paul Street, Dallas, TX 75201. 3. Magma, on information and belief, is a corporation organized under the laws of the State of Delaware. Magma is doing business in Texas, and, on information and belief, has a principal place of business at 5460 Bayfront Plaza, Santa Clara, CA 95054. Magma may be served with process by serving its registered agent, Corporation Service Company, d/b/a CSC-Lawyers Incorporating Service Company at 701 Brazos Street Suite 1050, Austin, TX 78701.
    [Show full text]
  • Quartus Prime Standard Edition Handbook Volume 3: Verification
    Quartus Prime Standard Edition Handbook Volume 3: Verification Subscribe QPS5V3 101 Innovation Drive 2015.11.02 San Jose, CA 95134 Send Feedback www.altera.com Simulating Altera Designs 1 2015.11.02 QPS5V3 Subscribe Send Feedback This document describes simulating designs that target Altera devices. Simulation verifies design behavior before device programming. The Quartus® Prime software supports RTL- and gate-level design simulation in supported EDA simulators. Simulation involves setting up your simulator working environ‐ ment, compiling simulation model libraries, and running your simulation. Simulator Support The Quartus Prime software supports specific EDA simulator versions for RTL and gate-level simulation. Table 1-1: Supported Simulators Vendor Simulator Version Platform Aldec Active-HDL 10.2 Update 2 Windows Aldec Riviera-PRO 2015.06 Windows, Linux Cadence Incisive Enterprise 14.2 Linux Mentor ModelSim-Altera (provided) 10.4b Windows, Linux Graphics Mentor ModelSim PE 10.4b Windows Graphics Mentor ModelSim SE 10.4b Windows, Linux Graphics Mentor QuestaSim 10.4b Windows, Linux Graphics Synopsys VCS/VCS MX 2014,12-SP1 Linux Simulation Levels The Quartus Prime software supports RTL and gate-level simulation of IP cores in supported EDA simulators. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 9001:2008 products and services at any time without notice.
    [Show full text]
  • Xilinx Xcell 25
    Issue 25 Second Quarter 1997 THE QUARTERLYX JOURNALCELL FOR XILINX PROGRAMMABLE LOGIC USERS R PRODUCT INFORMATION The Programmable Xilinx Delivers Next Logic CompanySM Generation Platform Inside This Issue: The new XACTstep version M1 release enables GENERAL The Fawcett - FPGAs, Power users to increase design performance while & Packages .......................................... 2 leveraging high-level design methodologies ... Guest Editorial: See pages 12 & 19 HardWire and PCI LogiCOREs ...... 3 Customer Success Story ...................... 5 WebLINX Enhancements .................... 6 XC4000 Series: The World’s “Power of Innovation” Seminars ...... 7 Technical Training Update ................. 7 Upcoming Events .................................. 8 Largest and Fastest FPGAs New Product Literature ....................... 8 The world’s highest-capacity FPGA, the XC4085XL, Financial Results .................................... 8 begins sampling as the world’s highest-performance PRODUCTS FPGAs, the XC4000E-1 family, move into production ... XC4000E-1 Speed Grade .................... 9 See Pages 9 & 11 XC95288 CPLD in Production ........ 10 XC4085XL Now Largest FPGA ....... 11 New 64,000-Gate XC6264 .............. 11 DESIGN TIPS & HINTS DEVELOPMENT SYSTEMS XACTstep M1 Software Released .. 12 Xilinx Shipping Cadence Interface . 13 XC9500 CPLD CORE Generator for PCI .................. 14 DSP CORE Generator ........................ 15 Programming HINTS & ISSUES Simple XC9500 CPLD Guidelines Programming Guidelines ............... 16 To reap
    [Show full text]
  • Small Soft Core up Inventory ©2019 James Brakefield Opencore and Other Soft Core Processors Reverse-U16 A.T
    tool pip _uP_all_soft opencores or style / data inst repor com LUTs blk F tool MIPS clks/ KIPS ven src #src fltg max max byte adr # start last secondary web status author FPGA top file chai e note worthy comments doc SOC date LUT? # inst # folder prmary link clone size size ter ents ALUT mults ram max ver /inst inst /LUT dor code files pt Hav'd dat inst adrs mod reg year revis link n len Small soft core uP Inventory ©2019 James Brakefield Opencore and other soft core processors reverse-u16 https://github.com/programmerby/ReVerSE-U16stable A.T. Z80 8 8 cylcone-4 James Brakefield11224 4 60 ## 14.7 0.33 4.0 X Y vhdl 29 zxpoly Y yes N N 64K 64K Y 2015 SOC project using T80, HDMI generatorretro Z80 based on T80 by Daniel Wallner copyblaze https://opencores.org/project,copyblazestable Abdallah ElIbrahimi picoBlaze 8 18 kintex-7-3 James Brakefieldmissing block622 ROM6 217 ## 14.7 0.33 2.0 57.5 IX vhdl 16 cp_copyblazeY asm N 256 2K Y 2011 2016 wishbone extras sap https://opencores.org/project,sapstable Ahmed Shahein accum 8 8 kintex-7-3 James Brakefieldno LUT RAM48 or block6 RAM 200 ## 14.7 0.10 4.0 104.2 X vhdl 15 mp_struct N 16 16 Y 5 2012 2017 https://shirishkoirala.blogspot.com/2017/01/sap-1simple-as-possible-1-computer.htmlSimple as Possible Computer from Malvinohttps://www.youtube.com/watch?v=prpyEFxZCMw & Brown "Digital computer electronics" blue https://opencores.org/project,bluestable Al Williams accum 16 16 spartan-3-5 James Brakefieldremoved clock1025 constraint4 63 ## 14.7 0.67 1.0 41.1 X verilog 16 topbox web N 4K 4K N 16 2 2009
    [Show full text]
  • Cyberworkbench® High-Level Synthesis and Verification By
    CyberWorkBench® High-Level Synthesis and Verification by: SystemC ANSI-C High-Level Synthesis and Verification CyberWorkBench® enables higher design efficiency, low power Source Code Debugger and high performance of the chip by allowing designers to Behavioral Synthesizer implement hardware at the algorithmic level. This “All-in-C” Property Checker Behavioral Simulator high-level synthesis and verification tool set for ASIC and FPGAs Library Characterizer Cycle Level Simulator C-RTL (Xilinx/Altera) reduces the development time and cost Equivalence Prover QoR Analyzer Testbench Generator significantly. Formal Verification High-Level Synthesis Simulation Designers can describe hardware at higher abstraction level using SystemC and ANSI-C and using CyberWorkBench they can generate highly optimized RTL for their ASIC and FPGAs RTL (Xilinx/Altera) chip. Automatic pipelining, power optimization and powerful parallelism extraction allows designers to ASIC FPGA generate smaller and low power designs compared to manual RTL design approach. “All-in-C” Synthesis Behavioral synthesizer in CyberWorkBench can synthesize any Top Benef its type of application including control dominated circuits and datapath. This best-in-class high-level synthesizer features • Support for both control dominated circuits and automatic pipelining, power optimization and powerful datapath module parallelism extraction to reduce chip area and power through maximum resource sharing. Designers with IP/RTL legacy Dedicated technology support for Altera® & Xilinx® • modules can use top level structural description generator FPGAs and can easily connect to C-based modules. To improve • Best-in-class High-Level Synthesizer that features the design productivity CyberWorkBench also includes automatic pipelining, power optimization, powerful numerous behavioral IPs that can be retargeted to different parallelism extraction implementation technologies or system requirements.
    [Show full text]
  • Introduction to Verilog
    Introduction to Verilog Some material adapted from EE108B Introduction to Verilog presentation In lab, we will be using a hardware description language (HDL) called Verilog. Writing in Verilog lets us focus on the high‐level behavior of the hardware we are trying to describe rather than the low‐level behavior of every single logic gate. Design Flow Verilog Source Synthesis and Implementation Tools (Xilinx ISE) Gate‐level Netlist Place and Route Tools (Xilinx ISE) Verilog Source with Testbench FPGA Bitstream ModelSim Compiler Bitstream Download Tool (ChipScope) Simulation FPGA ModelSim SE Xilinx XC2VP30 Figure 1. Simulation flow (left) and synthesis flow (right) The design of a digital circuit using Verilog primarily follows two design flows. First, we feed our Verilog source files into a simulation tool, as shown by the diagram on the left. The simulation tool simulates in software the actual behavior of the hardware circuit for certain input conditions, which we describe in a testbench. Because compiling our Verilog for the simulation tool is relatively fast, we primarily use simulation tools when we are testing our design. When we are confident that design is correct, we then use a hardware synthesis tool to turn our high‐level Verilog code to a low‐level gate netlist. A mapping tool then maps the netlist to the applicable resources on the device we are targeting—in our case, a field programmable grid array (FPGA). Finally, we download a bitstream describing the way the FPGA should be reconfigured onto the FPGA, resulting in an actual digital circuit. Philosophy Verilog has a C‐like syntax.
    [Show full text]