And Mission-Critical Applications in Industrial Wireless Sensor Networks

Total Page:16

File Type:pdf, Size:1020Kb

And Mission-Critical Applications in Industrial Wireless Sensor Networks Enabling Time- and Mission-Critical Applications in Industrial Wireless Sensor Networks Hossam Farag Department of Information Systems and Technology Mid Sweden University Licentiate Thesis No. 151 Sundsvall, Sweden 2019 Mittuniversitetet Informationssystem och -teknologi ISBN 978-91-88527-84-4 SE-851 70 Sundsvall ISNN 1652-8948 SWEDEN Akademisk avhandling som med tillstand˚ av Mittuniversitetet i Sundsvall framlagges¨ till offentlig granskning for¨ avllaggande¨ av teknologie licentiatexamen Onsdagen den 30 januari 2019 i M102, Mittuniversitetet, Holmgatan 10, Sundsvall. c Hossam Farag, 2019 Tryck: Tryckeriet Mittuniversitetet My Wife My Parents iv Abstract Nowadays, Wireless Sensor Networks (WSNs) ”have gained importance as a flexible, easier deployment/maintenance and cost-effective alternative to wired net- works, e.g., Fieldbus and Wired-HART, in a wide-range of applications. Initially, WSNs were mostly designed for military and environmental monitoring applications where energy efficiency is the main design goal. The nodes in the network were expected to have a long lifetime with minimum maintenance while providing best-effort data delivery which is acceptable in such scenarios. With re- cent advances in the industrial domain, WSNs have been subsequently extended to support industrial automation applications such as process automation and con- trol scenarios. However, these emerging applications are characterized by stringent requirements regarding reliability and real-time communications that impose chal- lenges in the design of Industrial Wireless Sensor Networks (IWSNs) to effectively support time- and mission-critical applications. Typically, time- and mission-critical applications support different traffic cate- gories ranging from relaxed requirements, such as monitoring traffic to firm require- ments, such as critical safety and emergency traffic. The critical traffic is mostly acyclic in nature and occasionally occurs at unpredictable time instants. Once it is generated, it must be delivered within strict deadlines. Exceeding the delay bound could lead to system instability, economic loss, or even endanger human life in the working area. The situation becomes even more challenging when an emergency event triggers multiple sensor nodes to transmit critical traffic to the controller si- multaneously. The unpredictability of the arrival of such a type of traffic introduces difficulties with regard to making a suitable scheduling that guarantees data deliv- ery within deadline bounds. Existing industrial standards and related research work have thus far not presented a satisfactory solution to the issue. Therefore, providing deterministic and timely delivery for critical traffic and its prioritization over regular traffic is a vital research topic. Motivated by the aforementioned challenges, this work aims to enable real-time communication for time- and mission-critical applications in IWSNs. In this con- text, improved Medium Access Control (MAC) protocols are proposed to enable a priority-based channel access that provides a timely delivery for acyclic critical traffic. The proposed framework starts with a stochastic modelling of the network delay performance under a priority-oriented transmission scheme, followed by two MAC approaches. The first approach proposes a random Clear Channel Assess- v vi ment (CCA) mechanism to improve the transmission efficiency of acyclic control traffic that is generated occasionally as a result of observations of an established tendency, such as closed-loop supervisory traffic. A Discrete-Time Markov Chain (DTMC) model is provided to evaluate the performance of the proposed protocol analytically in terms of the expected delay and throughput. Numerical results show that the proposed random CCA mechanism improves the shared slots approach in WirelessHART in terms of delay and throughput along with better transmission re- liability. The second approach introduces a slot-stealing MAC protocol based on a dynamic deadline-aware scheduling to provide deterministic channel access in emergency and event-based situations, where multiple sensor nodes are triggered si- multaneously to transmit time-critical data to the controller. The proposed protocol is evaluated mathematically to provide the worst-case delay bound for the time-critical traffic and the numerical results show that the proposed approach out- performs TDMA-based WSNs in terms of delay and channel utilization. Acknowledgements Praise be to Allah I would like to take this opportunity to express my heartfelt appreciation to the following persons who have contribute directly or indirectly to the completion of this work. Firstly, my sincere gratitude to my supervisor, Prof. Mikael Gidlund, for his constant support and guidance in my research work. I would like to thank him for his continuous support, insightful suggestions, encouraging feedback, and the freedom in choosing research directions. Thanks to my co-supervisor Dr. Patrik Osterberg¨ for his support, useful com- ments and constructive criticisms that have helped to improve this work. Also, I would like to thank him for his administrative support in other department-related issues. Thanks to Dr. Aamir Mahmood for his excellent cooperation and discussions during my research work. Thanks to Simone Grimaldi, Teklay Gebremichael, Raul` Rondon,` Mehrzad Lavassani and all other colleagues at the Department of Informa- tion Systems and Technology, Mid Sweden University for their kindness and friend- liness. Last but not least, special thanks to my dear wife, Samira, for her endless love, support and for standing behind me in all what I do. Thanks to all my family and friends for supporting me spiritually throughout my life. vii viii Contents Abstract v Acknowledgements vii List of Papers xi Terminology xv 1 Introduction 1 1.1 Overview . .1 1.2 Problem Statement . .2 1.3 Overall Aim and Research Topic . .4 1.4 Methodology . .4 1.5 Contributions . .6 1.6 Thesis Outline . .6 2 Background and Related Work 7 2.1 Overview of IWSNs . .7 2.2 Overview of the Industrial Standards for PA Applications . .8 2.2.1 WirelessHART . .8 2.2.2 ISA100.11a . .9 2.2.3 WIA-PA . .9 2.2.4 Zigbee . 10 2.2.5 IEEE 802.15.4e . 10 2.3 MAC Protocols in IWSNs . 10 2.3.1 General Taxonomy of Wireless MAC Protocols . 11 ix x CONTENTS 2.3.2 MAC Protocols in IWSNs Standards . 12 2.3.3 Related Work . 15 3 Priority-Based Real-Time Communication in IWSNs 19 3.1 Overview . 19 3.2 Modelling Priority-Oriented Packet Transmissions . 19 3.3 Improving the Transmission Efficiency of Acyclic Traffic in IWSNs . 21 3.4 Deterministic Real-Time Communication of Multiple Critical Flows . 22 4 Summary of Publications 27 5 Conclusions and Future Work 33 5.1 Concluding Remarks . 33 5.2 Ethical and Societal Considerations . 34 5.3 Future Work . 35 Bibliography 37 Paper I 43 Paper II 59 Paper III 75 Biography 99 List of Papers This thesis is mainly based on the following papers, herein referred by their Roman numerals: Paper I Priority-Oriented Packet Transmissions in Internet of Things: Modeling and Delay Analysis Lakshmikanth Guntupalli, Hossam Farag, Aamir Mahmood, and Mikael Gidlund In Proceedings of IEEE International Conference on Communications (ICC 2018), Kansas City, USA, May 2018. Paper II PR-CCA MAC: A Prioritized Random CCA MAC Protocol for Mission- Critical IoT Applications Hossam Farag, Aamir Mahmood, Mikael Gidlund, and Patrik Osterberg¨ In Proceedings of IEEE International Conference on Communications (ICC 2018), Kansas City, USA, May 2018. Paper III A Delay-Bounded MAC Protocol for Mission- and Time-Critical Applications in Industrial Wireless Sensor Networks Hossam Farag, Mikael Gidlund, and Patrik Osterberg¨ In IEEE Sensors Journal, Vol. 18, No. 6, pp. 2607-2616, March 2018. xi xii List of Figures 1.1 Example of future industrial automation networks [25]. .2 1.2 Traffic categories in PA applications and their corresponding latency requirements. .3 1.3 Research work flow. .5 2.1 Protocol stack comparison of industrial standards for PA applications.9 2.2 Wireless MAC protocols taxonomy. 11 2.3 The superframe structure of Zigbee, WIA-PA, WirelessHART and ISA100.11a [9]. ....................................... 13 2.4 TSCH superframe. 14 2.5 DSME multi-superframe structure. 14 3.1 Performance comparisons. 21 3.2 Slot timing structure of the proposed PR-CCA protocol. 21 3.3 Performance comparisons. 22 3.4 SS-MAC channel access scenario. 23 3.5 Worst-case delay comparison versus different number of nodes. 25 3.6 Utilization comparisons. 25 xiii xiv Terminology Abbreviations and Acronyms CAN Controller Area Network CAP Contention Access Period CCA Clear Channel Assessment CDMA Code Division Multiple Access CFP Contention Free Period CSMA/CA Carrier Sense Multiple Access with Collision Avoidance CTS Clear-To-Send DSME Deterministic and Synchronous Multi-channel Extension DTMC Discrete-Time Markov Chain FA Factory Automation FDMA Frequency Division Multiple Access GTS Guaranteed Time Slot HART Highway Addressable Remote Transducer HCF HART Communication Foundation ISA International Society of Automation IWSN Industrial Wireless Sensor Network LLDN Low-Latency Deterministic Network MAC Medium Access Control MEMS Micro Electro-Mechanical Systems PA Process Automation RTS Request-To-Send TDMA Time Division Multiple Access TSCH Time Slotted Channel Hopping TSMP Time Synchronized Mesh Protocol WIA-PA Wireless networks for Industrial Automation-Process Automa- tion WSN Wireless Sensor Network xv xvi Chapter 1 Introduction 1.1 Overview With recent advances
Recommended publications
  • Smartmesh IP Network and Iot System
    St. Cloud State University theRepository at St. Cloud State Department of Electrical and Computer Culminating Projects in Electrical Engineering Engineering 5-2021 SmartMesh IP Network and IoT System Marc Aurel Kamsu Tennou Follow this and additional works at: https://repository.stcloudstate.edu/ece_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Kamsu Tennou, Marc Aurel, "SmartMesh IP Network and IoT System" (2021). Culminating Projects in Electrical Engineering. 7. https://repository.stcloudstate.edu/ece_etds/7 This Thesis is brought to you for free and open access by the Department of Electrical and Computer Engineering at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Electrical Engineering by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. SmartMesh IP Network and IoT System by Marc Kamsu A Thesis Submitted to the Graduate Faculty of Saint Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering May 2021 Thesis Committee: Yi Zheng, Chairperson Aiping Yao Timothy Vogt 2 Abstract In recent years, a great deal of research conducted in a variety of scientific areas, including physics, microelectronics, and material sc ience, by scientific experts from different domains of expertise has resulted in the invention of Micro-Electro-Mechanical Systems (MEMS). As MEMS became very popular and widely used, the need for combining the capabilities of sensing, actuation, processing, and communication also grew, and led to further research which would result in the design and implementation of devices which could reflect all those four capabilities.
    [Show full text]
  • Synchronous Data Acquisition with Wireless Sensor Networks the Scientifc Series Advances in Automation Engineering Is Edited by Prof
    Advances in Automaton Engineering Band 4 Editor: Clemens Gühmann Jürgen Helmut Funck Synchronous data acquisiton with wireless sensor networks Universitätsverlag der TU Berlin Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks The scientifc series Advances in Automation Engineering is edited by Prof. Dr.-Ing. Clemens Gühmann. Advances in Automation Engineering | 4 Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks Universitätsverlag der TU Berlin Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografe; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. Universitätsverlag der TU Berlin, 2018 http://verlag.tu-berlin.de Fasanenstr. 88, 10623 Berlin Tel.: +49 (0)30 314 76131 / Fax: -76133 E-Mail: [email protected] Zugl.: Berlin, Techn. Univ., Diss., 2017 Gutachter: Prof. Dr.-Ing. Clemens Gühmann Gutachter: Prof. Dr.-Ing. Gerd Scholl Gutachter: Prof. Dr.-Ing. Reinhold Orglmeister Die Arbeit wurde am 12. Oktober 2017 an der Fakultät IV unter Vorsitz von Prof. Dr.-Ing. Olaf Hellwich erfolgreich verteidigt. This work is protected by copyright. Cover image: vickysandoval22 | https://www.fickr.com/photos/115327016@ N06/12603289253/ | CC BY 2.0 https://creativecommons.org/licenses/by/2.0/ Print: docupoint GmbH Layout/Typesetting: Jürgen Helmut Funck ISBN 978-3-7983-2980-5 (print) ISBN 978-3-7983-2981-2 (online) ISSN 2509-8950 (print) ISSN 2509-8969 (online) Published online on the institutional Repository of the Technische Universität Berlin: DOI 10.14279/depositonce-6716 http://dx.doi.org/10.14279/depositonce-6716 Credits This thesis is the result of my time as research assistant at the Chair of Electronic Measurement and Diagnostic Technology at the Technische Universitat¨ Berlin.
    [Show full text]
  • Framework for Body Sensor Networks
    Framework for Body Sensor Networks Sameer Iyengar Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-154 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-154.html November 5, 2009 Copyright © 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Framework for Body Sensor Networks Sameer Iyengar Framework for Body Sensor Networks by Sameer Iyengar Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali- fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor Alberto Sangiovanni-Vincentelli Research Advisor Date ****** Professor Ruzena Bajcsy Second Reader Date Acknowledgements It is impossible to be successful as a graduate student without a wide support network. I am extremely grateful for mine. I must thank my advisor, Alberto Sangiovanni-Vincentelli, for giving me the the freedom and inspiration to explore my interests and ideas, possibly the most valuable thing a researcher could ask for. In addition, to my mentors, Professor Ruzena Bajcsy and Professor Roozbeh Jafari, thank you for helping me focus my research and pushing me to always take that extra step.
    [Show full text]
  • Wireless Sensor Networks
    White Paper ® Internet of Things: Wireless Sensor Networks Executive summary Today, smart grid, smart homes, smart water Section 2 starts with the historical background of networks, intelligent transportation, are infrastruc- IoT and WSNs, then provides an example from the ture systems that connect our world more than we power industry which is now undergoing power ever thought possible. The common vision of such grid upgrading. WSN technologies are playing systems is usually associated with one single con- an important role in safety monitoring over power cept, the internet of things (IoT), where through the transmission and transformation equipment and use of sensors, the entire physical infrastructure is the deployment of billions of smart meters. closely coupled with information and communica- Section 3 assesses the technology and charac- tion technologies; where intelligent monitoring and teristics of WSNs and the worldwide application management can be achieved via the usage of net- needs for them, including data aggregation and worked embedded devices. In such a sophisticat- security. ed dynamic system, devices are interconnected to transmit useful measurement information and con- Section 4 addresses the challenges and future trol instructions via distributed sensor networks. trends of WSNs in a wide range of applications in various domains, including ultra large sensing A wireless sensor network (WSN) is a network device access, trust security and privacy, and formed by a large number of sensor nodes where service architectures to name a few. each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, Section 5 provides information on applications. etc. WSNs are regarded as a revolutionary The variety of possible applications of WSNs to the information gathering method to build the real world is practically unlimited.
    [Show full text]
  • Hubnet Position Paper Series Standards-Based Wireless Sensor
    HubNet Position Paper Series Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Title Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Authors PC Baker, VM Catterson and MD Judd Author Contact Version Control Version Date Comments 1.0 05/12/2014 Version for peer review 1.1 17/08/2015 Edited in response to peer review comments 2.0 11/09/2015 Final version for publication Status Final Date Issued 11/09/2015 Available from www.hubnet.org.uk HubNet Position Paper Wireless Sensor Networks Page 1 of 20 About HubNet HubNet is a consortium of researchers from eight universities (Imperial College and the universities of Bristol, Cardiff, Manchester, Nottingham, Southampton, Strathclyde and Warwick) tasked with coordinating research in energy networks in the UK. HubNet is funded by the Energy Programme of Research Councils UK under grant number EP/I013636/1. This hub will provide research leadership in the field through the publication of in-depth position papers written by leaders in the field and the organisation of workshops and other mechanisms for the exchange of ideas between researchers, industry and the public sector. HubNet also aims to spur the development of innovative solutions by sponsoring speculative research. The activities of the members of the hub will focus on seven areas that have been identified as key to the development of future energy networks: Design of smart grids, in particular the application of communication technologies to the operation of electricity networks and the harnessing of the demand-side for the control and optimisation of the power system.
    [Show full text]
  • How Zigbee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4Th, 2008
    How ZigBee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4th, 2008 Cyril Zarader Product Marketing Manager EMEA – Wireless Connectivity TM Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. Topics IEEE 802.15.4 : Made for Reliable Low Power Wireless Networking ZigBee : Made for Simple Deployment of Wireless M2M Communications ZigBee Compared to Other Industrial Wireless Protocols Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 1 Selection of Wireless Technologies Wireless Video Applications Faster Wireless Data UWB 802.11g Applications 802.15.3 802.11a IrDA Wi-Fi® 802.11b Cellular 2.5G/3G 802.15.1 Peak Data Rate Data Peak Bluetooth™ ZigBee™ Data 802.15.4 Transfer Slower Wireless Networking NFC/RFID Closer Range Farther Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 2 Wireless Networking Technologies ZigBeeTM Bluetooth® UWBTM Wi-FiTM LonWorks® Proprietary IEEE® IEEE® 802.11 IEEE® Standard IEEE® 802.15.4 802.15.3a a, b, g (n to EIA 709.1,2,3 Proprietary 802.15.1 (to be ratified) be ratified) UWBTM Forum LonMark® Industry Wi-FiTM ZigBeeTM Alliance Bluetooth® SIG & WiMediaTM
    [Show full text]
  • Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli
    Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli To cite this version: Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli. Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control, coexistence, mesh networking, cyber-physical systems, WSN, M2M. IEEE Access, IEEE, 2018, 6, pp.67893-67926. 10.1109/ACCESS.2018.2879189. hal-02161803 HAL Id: hal-02161803 https://hal.archives-ouvertes.fr/hal-02161803 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received August 13, 2018, accepted October 11, 2018, date of publication November 9, 2018, date of current version December 3, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2879189 Low-Power Wireless for the Internet of Things: Standards and Applications ALI NIKOUKAR 1, SALEEM RAZA1, ANGELINA POOLE2, MESUT GÜNEŞ1, AND BEHNAM DEZFOULI 2 1Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany 2Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA Corresponding author: Ali Nikoukar ([email protected]) This work was supported by DAAD (Deutscher Akademischer Austauschdienst) and DAAD/HEC Scholarships.
    [Show full text]
  • Modeling, Analysis, and Design of Wireless Sensor Network Protocols
    Modeling, Analysis, and Design of Wireless Sensor Network Protocols PANGUN PARK Doctoral Thesis Stockholm, Sweden 2011 KTH School of Electrical Engineering TRITA-EE 2011:001 Automatic Control Lab ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7415-836-6 SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan fram- lägges till offentlig granskning för avläggande av teknologie doktorsexamen i telekom- munikation tisdagen den 4 Mars 2011 klockan 10.15 i sal F3 Kungliga Tekniska högskolan, Lindstedtsvägen 26, Stockholm. © Pangun Park, January 2011. All rights reserved. Tryck: Universitetsservice US AB Abstract Wireless sensor networks (WSNs) have a tremendous potential to improve the effi- ciency of many systems, for instance, in building automation and process control. Unfortunately, the current technology does not offer guaranteed energy efficiency and reliability for closed-loop stability. The main contribution of this thesis is to provide a modeling, analysis, and design framework for WSN protocols used in con- trol applications. The protocols are designed to minimize the energy consumption of the network, while meeting reliability and delay requirements from the application layer. The design relies on the analytical modeling of the protocol behavior. First, modeling of the slotted random access scheme of the IEEE 802.15.4 medium access control (MAC) is investigated. For this protocol, which is com- monly employed in WSN applications, a Markov chain model is used to derive the analytical expressions of reliability, delay, and energy consumption. By using this model, an adaptive IEEE 802.15.4 MAC protocol is proposed. The protocol design is based on a constrained optimization problem where the objective function is the energy consumption of the network, subject to constraints on reliability and packet delay.
    [Show full text]
  • Implementation of Collection Tree Protocol Over Wirelesshart Data-Link
    , Implementation of Collection Tree Protocol over WirelessHART Data-Link Author: Kiran Kumar Koneri EXAM WORK 2010 SUBJECT: Electrical Engineering with specialisation in Embedded Systems Postadress: Besöksadress: Telefon: Box 1026 Gjuterigatan 5 036-10 10 00 551 11 Jönköping Implementation of Collection Tree Protocol over WirelessHART Data-Link Author: Kiran Kumar Koneri This thesis work is performed at Jönköping University within the subject area of Electrical Engineering. This work is part of the Master’s Degree program with the specialization in Embedded Systems. The author takes responsibility for opinions, conclusions and findings presented. Supervisor and Examiner: Professor Youzhi Xu Scope: 30 credits (D-Level) Date: Archive Number: Postadress: Besöksadress: Telefon: Box 1026 Gjuterigatan 5 036-10 10 00 551 11 Jönköping Abstract Abstract Wireless Sensor Networks (WSNs) are ad-hoc wireless networks for small form-factor embedded nodes with limited memory, processing and energy resources. Certain applications, like industrial automation and real-time process monitoring requires time synchronized reliable network protocol. Current work for WSNs provides either time synchronized with low reliability (WirelessHART) or reliable network without time synchronization (Collection Tree Protocol). The Collection Tree Protocol (CTP) provides the reliability from 94.7% to 99.9% for CSMA-CA based MAC layer. This paper addresses channel hopping, a class of frequency diverse communication protocol in which subsequent packets are sent over different frequency channels. Channel hopping combats external interference and persistent multipath fading, two of the main causes of failure along a communication link. Channel hopping technique leads to a high reliable and efficient protocol which is specified by HART Communication Foundation and named as WirelessHART.
    [Show full text]
  • The Once and Future Internet of Everything…
    The Once and Future Internet of EveryThing… David E. Culler University of California, Berkeley NRC Symposium on Continuing Innovation in Information Technology March 5, 2015 National Academy of Sciences In 1999, we said “… … in 15 years we will have connected all the people on the planet and we will have the technology to connect all the things.” Computers People Everything 1T $100 100B Cost to $1 10B Connect 1¢ 1B Things 10M Connected 1990 2000 2010 2020 3/5/15 NRC 2 The Internet in 1999 3/5/15 NRC 3 2007 -The Internet of Every Body 3/5/15 NRC 4 2013: Many Things BLE LoWPAN WiFi 3/5/15 NRC 5 A Device / $ Centric Perspective WIFI zeevoBT BLE LoWPAN Intel Intel MOTE2 WINS Intel Intel/UCB iMOTE Intel BTNode sensoria rene’ dot cf-mica trio v6 PL P /I R F SmartDust Mica Epic AN T Rene N T G O O I I P A A P . P T T J G G Telos X WeC E E PRIMARY SPI W GPIO XBOW XBOW I XBOW EXT. ANT 2xIRQ FLASH XBOW mica mica2 4xPWM RADIO PARALLEL IO + cc-dot XBOW Lo SYNC CAPTURE 6xADC rene2 VREF +/- XTAL micaZ MCU POWER CFG digital sun USART + FLOW CTL USB + + F F U U L L O S O S I I 2 2 A A W W Bosch C C R R rain-mica C C T T T T cc-mica L L Dust Inc Storm DARPA blue cc-TI 98 99 00 01 02 03 .4 04 05 06 07 09 11 13 15 5 BLE 1 .
    [Show full text]
  • Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications Raymond S
    Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications Raymond S. Wagner, Ph.D. NASA Johnson Space Center 2101 NASA Parkway, Mail Code EV814/ESCG Houston, TX 77058 281-244-2428 [email protected] Abstract—Wireless sensor networks (WSNs) have the by re-locating a sensor from one panel to another, this is capacity to revolutionize data gathering in both easily accomplished. Similarly, additional sensors can be spaceflight and terrestrial applications. WSNs provide a easily added to the existing suite, providing a more huge advantage over traditional, wired instrumentation detailed measurement set without requiring more wires to since they do not require wiring trunks to connect sensors be strung behind bulkheads and through walls of pressure to a central hub. This allows for easy sensor installation shells. Finally, wireless sensors can be re-used between in hard to reach locations, easy expansion of the number vehicles once their initial missions have been ended. A of sensors or sensing modalities, and reduction in both WSN node can be relocated from a spent vehicle, such as system cost and weight. While this technology offers a lunar larder, to one currently in service, such as a lunar unprecedented flexibility and adaptability, implementing rover or habitat. The node can even be outfitted with a it in practice is not without its difficulties. Recent new set of sensors in the process, retaining the common advances in standards-based WSN protocols for industrial radio and networking hardware; to give a new functional control applications have come a long way to solving tilt built mostly from recycled parts.
    [Show full text]
  • Sensifi: a Wireless Sensing System for Ultra-High-Rate Applications
    Sensifi: A Wireless Sensing System for Ultra-High-Rate Applications Chia-Chi Li, Vikram K. Ramanna, Daniel Webber, Cole Hunter, Tyler Hack, and Behnam Dezfouli∗ Internet of Things Research Lab, Santa Clara University, USA fcli1, vramanna, dwebber, chunter, thack, [email protected] Abstract—Wireless Sensor Networks (WSNs) are being used in various applications such as structural health monitoring and industrial control. Since energy efficiency is one of the major design factors, the existing WSNs primarily rely on low-power, low-rate wireless technologies such as 802.15.4 and Bluetooth. In this paper, by proposing Sensifi, we strive to tackle the challenges of developing ultra-high-rate WSNs based on the 802.11 (WiFi) standard. As an illustrative structural health monitoring application, we consider spacecraft vibration test and identify system design requirements and challenges. Our main contributions are as follows. First, we propose packet encoding methods to reduce the overhead of assigning accurate timestamps to samples. Second, we propose energy efficiency methods to enhance the system’s lifetime. Third, to enhance sampling rate and mitigate sampling rate instability, we reduce the overhead of processing outgoing packets through the network stack. Fourth, we study and reduce the delay of processing time synchronization packets through the network stack. Fifth, we propose a low-power node design particularly targeting vibration monitoring. Sixth, we use our node design to empirically evaluate energy efficiency, sampling rate, and data rate. We leave large-scale evaluations as future work. Index Terms—Sensing, 802.11, WiFi, Low-Power, RTOS, Packet Processing, Vibration Test. F 1 INTRODUCTION a large number of wired accelerometers (more than 200), The reductions in the cost and energy consumption of simultaneously sampled by expensive, high-performance microprocessors, wireless transceivers and sensors have Data Acquisition (DAQ) modules [11].
    [Show full text]