Implementation of a Wirelesshart Simulator and Its Use in Studying Packet Loss Compensation in Networked Control

Total Page:16

File Type:pdf, Size:1020Kb

Implementation of a Wirelesshart Simulator and Its Use in Studying Packet Loss Compensation in Networked Control Implementation of a wirelessHART simulator and its use in studying packet loss compensation in networked control MAURO DE BIASI Masters' Degree Project Stockholm, Sweden February 2008 XR-EE-RT 2008:010 Acknowledgement First of all, I would like to thank my parents and my girlfriend that have been always beside me in all this years of studies and have been a great source of strength in these months away from home. I am deeply grateful to Alf Isaksson, my supervisor at ABB, that always followed me with patience and new motivations. He o®ered me his everyday support and permitted me to grow up and develop this project. I can not go on without express my gratefulness to my university supervisors Alberto Bemporad (University of Siena) and Mikael Johansson (KTH). I would like to say thank you to them who gave me the opportunity to join this project and shared with me their knowledge with technical suggestions and interesting ideas. They gave me their full support when I applyied for my thesis and provided helpful information. This work would not be as it is without the kind assistance and support of Tiberiu Seceleanu and Krister Landernas, who shared their valuable knowledge and inspired me in de¯ning my research topic. A special thanks is needed to all the persons involved in the SOCRADES project, who collaborated with me in this period. A huge thank you to the whole ABB Corporate Research that permitted me to live this amazing experience. I'm honored to have been part of this incredible group of people. I feel to mention also all the guys who did their thesis with me at ABB, who made me feel less far from home and were such good friends. Thanks to Eva Stenqvist, who gave me the possibility to concentrate only on my work, solving every kind of external problem. I am deeply indebted to Giuseppe and Marisa, who treated me like a son, helping me in all these years of studies. Last but not least I would like to thank Carlo that has been more than a colleague, but a real friend. Thank you All i No matter how long the winter, spring is sure to follow. ii Abstract This thesis is part of the SOCRADES project, a European research and advanced develop- ment project with the primary objective to develop a design, execution and management platform for next-generation industrial automation systems. In the speci¯c case of work it concerns the networked control systems. These are becoming more important in the industrial automation ¯eld thanks to the many advantages introduced by the networks. In fact, the use of a network to connect the devices permits to eliminate unnecessary wirings, reducing the complexity and the overall cost in designing and implementing the control systems. In the last years the fast spread of the wireless technologies has opened new scenarios for the communication in the automation ¯eld. The bene¯ts introduced by the use of wireless communication in the networked control system are many. First of all the simplicity and the convenience of the sensors placement. The price to be paid is a lower reliability due to the interference that can easily a®ect the medium (radio frequencies) with the consequent possible loss of communication. This work is focused on the study of the problem of losing packets (the information in a wireless network is formed by packets of bits) in a WirelessHART networked control system and on the possible solutions to avoid the problem. WirelessHART is a wireless protocol that provides a low cost, relatively low speed (e.g., compared to IEEE 802.11g) wireless connection. The aims of the thesis are multiple, ¯rst of all the implementation of a tool that permits to simulate a wirelessHART network. In fact, since it is a quite new protocol, the most used network simulators do not give the possibility to simulate WirelessHART networks. This simulator has been im- plemented modifying the original version of the TrueTime network simulator, adding this new protocol and some other functions to make the simulator as close as possible to the reality. Another objective of the thesis is to study the e®ects, and the possible solutions, of the loss of communication in a wirelessHART network. The last part of the thesis deals with a level control problem in a mineral flotation plant and with the possibility to use a wirelessHART network for that plant. iii Contents 1 Introduction 1 1.1 Outline of the thesis . 2 1.1.1 Chapter 2 : The WirelessHART protocol . 2 1.1.2 Chapter 3 : Introduction to TrueTime . 2 1.1.3 Chapter 4 : New functions in the wireless network block . 2 1.1.4 Chapter 5 : Study of Packet Loss . 3 1.1.5 Conclusions and future work . 3 2 Network theory 4 2.1 The Open System Interconnection model (OSI) . 4 2.1.1 The OSI basic structure . 4 2.2 The Medium Access Control (MAC) protocol . 7 2.2.1 ALOHA . 7 2.2.2 Carrier Sense Multiple Access Protocols (CSMA) . 8 2.2.3 Time Division Multiple Access (TDMA) . 9 2.2.4 Token Bus . 9 2.2.5 Token Ring . 10 2.3 The IEEE 802 standards . 11 2.3.1 Bluetooth/IEEE 802.15.1 . 11 2.3.2 IEEE 802.11 . 12 2.3.3 IEEE 802.15.4 . 13 2.3.4 ZigBee . 15 2.3.5 WirelessHART . 15 3 WirelessHART 18 3.1 Introduction . 18 i CONTENTS 3.2 A brief view of WirelessHART . 18 3.3 MAC Protocol Description . 20 3.3.1 Data-Link packets(DLPDUs) . 21 3.3.2 Time Division Multiple Access (TDMA) . 21 3.3.3 Shared Slot . 23 3.3.4 Communication Tables . 24 3.4 Implementation . 25 3.4.1 MAC Protocol . 25 3.4.2 Devices Tables . 26 3.4.3 Synchronization of the devices tasks . 27 4 Introduction to TrueTime 29 4.1 Description of the tool . 29 4.1.1 The TrueTime Kernel . 30 4.1.2 The TrueTime Network . 31 4.1.3 The TrueTime Wireless Network . 33 4.1.4 The TrueTime Standalone Network Blocks . 35 4.1.5 The TrueTime Battery . 36 4.2 Wireless Network Block behaviour . 36 4.2.1 802.11b/g ( WLAN) . 37 4.2.2 802.15.4 (ZigBee) . 38 4.2.3 Calculation of Error Probabilities . 39 5 New functions in the wireless network block 42 5.1 Introduction . 42 5.2 Nodes in the 3D space . 42 5.3 External noise port . 43 5.4 Noise and time correlation . 44 5.5 Packets lost signal . 46 5.6 Fixed packet loss functionality . 47 5.7 Wireless Network Mask modi¯cation . 48 5.8 Moving the MAC into each device . 49 5.8.1 The WirelessHART MAC sub-layer in each device . 50 ii CONTENTS 6 Study of Packet Loss 51 6.1 Introduction . 51 6.1.1 Main causes of packet loss . 52 6.1.2 The problem of packet loss in the networked controlled systems . 54 6.2 Comparison of di®erent protocols with respect to packet loss . 55 6.2.1 The compared protocols . 56 6.2.2 Simulation Setup . 57 6.2.3 Network parameter settings . 59 6.2.4 Simulation results . 60 6.3 A brief description of the AC800M . 63 6.4 Di®erent approaches to the problem of packet loss . 64 6.4.1 Possible methods . 65 6.4.2 An improved PID . 69 6.4.3 Results . 71 6.4.4 Multi-Hop . 75 6.5 Boliden Plant: a case study . 77 6.5.1 Description of the flotation process . 77 6.5.2 The pulp level control problem . 78 6.5.3 Boliden Plant: simulation . 81 7 Conclusions and Future Work 85 7.1 Conclusions . 85 7.2 Future work . 86 A How to install the tool 88 A.1 Software Requirements . 88 A.2 Installation . 88 A.3 Compilation . 89 B How to use the Simulator 90 B.1 Introduction . 90 B.2 Writing Code Functions . 90 B.2.1 Writing a Matlab Code Function . 91 B.2.2 Writing a C++ Code Function . 92 iii CONTENTS B.2.3 Calling Simulink Block Diagrams . 92 B.3 Initialization . 94 B.3.1 Writing a Matlab Initialization Script . 94 B.3.2 Writing a C++ Initialization Script . 95 B.4 Compilation . 96 C Examples 98 C.1 Introduction . 98 C.2 Control of a loop with three nodes . 99 C.3 5 nodes with multi-hop . 102 C.4 5 nodes with a shared slot . 104 D TrueTime Command Reference 107 E Lambda Tuning rule 110 E.1 Stable ¯rst order system . 110 E.2 Integrative process . 112 F Linearization 114 Bibliography 115 iv List of Figures 2.1 The Open System Interconnection (OSI) model . 5 2.2 The amount of data in the Open System Interconnection (OSI) model . 6.
Recommended publications
  • Cracking Channel Hopping Sequences and Graph Routes in Industrial TSCH Networks
    1 Cracking Channel Hopping Sequences and Graph Routes in Industrial TSCH Networks ∗ XIA CHENG, JUNYANG SHI, and MO SHA , State University of New York at Binghamton, USA Industrial networks typically connect hundreds or thousands of sensors and actuators in industrial facilities, such as manufacturing plants, steel mills, and oil refineries. Although the typical industrial Internet of Things (IoT) applications operate at low data rates, they pose unique challenges because of their critical demands for reliable and real-time communication in harsh industrial environments. IEEE 802.15.4-based wireless sensor-actuator networks (WSANs) technology is appealing for use to construct industrial networks because it does not require wired infrastructure and can be manufactured inexpensively. Battery-powered wireless modules easily and inexpensively retrofit existing sensors and actuators in industrial facilities without running cables for communication and power. To address the stringent real-time and reliability requirements, WSANs made a set of unique design choices such as employing the Time-Synchronized Channel Hopping (TSCH) technology. These designs distinguish WSANs from traditional wireless sensor networks (WSNs) that require only best effort services. The function-based channel hopping used in TSCH simplifies the network operations at the cost of security. Our study shows that an attacker can reverse engineer the channel hopping sequences and graph routes by silently observing the transmission activities and put the network in danger of selective jamming attacks. The cracked knowledge on the channel hopping sequences and graph routes is an important prerequisite for launching selective jamming attacks to TSCH networks. To our knowledge, this paper represents the first systematic study that investigates the security vulnerability of TSCH channel hopping and graph routing under realistic settings.
    [Show full text]
  • Industrial Iot Monitoring: Technologies and Architecture Proposal
    sensors Article Industrial IoT Monitoring: Technologies and Architecture Proposal Duarte Raposo 1,* , André Rodrigues 1,2 , Soraya Sinche 1,3 , Jorge Sá Silva 1 and Fernando Boavida 1 1 Centre of Informatics and Systems of the University of Coimbra, Coimbra 3030-290, Portugal; [email protected] (A.R.); [email protected] (S.S.); [email protected] (J.S.S.); [email protected] (F.B.) 2 Polytechnic Institute of Coimbra, ISCAC, Coimbra 3040-316, Portugal 3 DETRI, Escuela Politécnica Nacional, Quito 170517, Ecuador * Correspondence: [email protected]; Tel.: +351-239-790-000 Received: 12 September 2018; Accepted: 16 October 2018; Published: 21 October 2018 Abstract: Dependability and standardization are essential to the adoption of Wireless Sensor Networks (WSN) in industrial applications. Standards such as ZigBee, WirelessHART, ISA100.11a and WIA-PA are, nowadays, at the basis of the main process-automation technologies. However, despite the success of these standards, management of WSNs is still an open topic, which clearly is an obstacle to dependability. Existing diagnostic tools are mostly application- or problem-specific, and do not support standard-based multi-network monitoring. This paper proposes a WSN monitoring architecture for process-automation technologies that addresses the mentioned limitations. Specifically, the architecture has low impact on sensor node resources, uses network metrics already available in industrial standards, and takes advantage of widely used management standards to share the monitoring information. The proposed architecture was validated through prototyping, and the obtained performance results are presented and discussed in the final part of the paper. In addition to proposing a monitoring architecture, the paper provides an in-depth insight into metrics, techniques, management protocols, and standards applicable to industrial WSNs.
    [Show full text]
  • Smartmesh IP Network and Iot System
    St. Cloud State University theRepository at St. Cloud State Department of Electrical and Computer Culminating Projects in Electrical Engineering Engineering 5-2021 SmartMesh IP Network and IoT System Marc Aurel Kamsu Tennou Follow this and additional works at: https://repository.stcloudstate.edu/ece_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Kamsu Tennou, Marc Aurel, "SmartMesh IP Network and IoT System" (2021). Culminating Projects in Electrical Engineering. 7. https://repository.stcloudstate.edu/ece_etds/7 This Thesis is brought to you for free and open access by the Department of Electrical and Computer Engineering at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Electrical Engineering by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. SmartMesh IP Network and IoT System by Marc Kamsu A Thesis Submitted to the Graduate Faculty of Saint Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering May 2021 Thesis Committee: Yi Zheng, Chairperson Aiping Yao Timothy Vogt 2 Abstract In recent years, a great deal of research conducted in a variety of scientific areas, including physics, microelectronics, and material sc ience, by scientific experts from different domains of expertise has resulted in the invention of Micro-Electro-Mechanical Systems (MEMS). As MEMS became very popular and widely used, the need for combining the capabilities of sensing, actuation, processing, and communication also grew, and led to further research which would result in the design and implementation of devices which could reflect all those four capabilities.
    [Show full text]
  • Synchronous Data Acquisition with Wireless Sensor Networks the Scientifc Series Advances in Automation Engineering Is Edited by Prof
    Advances in Automaton Engineering Band 4 Editor: Clemens Gühmann Jürgen Helmut Funck Synchronous data acquisiton with wireless sensor networks Universitätsverlag der TU Berlin Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks The scientifc series Advances in Automation Engineering is edited by Prof. Dr.-Ing. Clemens Gühmann. Advances in Automation Engineering | 4 Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks Universitätsverlag der TU Berlin Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografe; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. Universitätsverlag der TU Berlin, 2018 http://verlag.tu-berlin.de Fasanenstr. 88, 10623 Berlin Tel.: +49 (0)30 314 76131 / Fax: -76133 E-Mail: [email protected] Zugl.: Berlin, Techn. Univ., Diss., 2017 Gutachter: Prof. Dr.-Ing. Clemens Gühmann Gutachter: Prof. Dr.-Ing. Gerd Scholl Gutachter: Prof. Dr.-Ing. Reinhold Orglmeister Die Arbeit wurde am 12. Oktober 2017 an der Fakultät IV unter Vorsitz von Prof. Dr.-Ing. Olaf Hellwich erfolgreich verteidigt. This work is protected by copyright. Cover image: vickysandoval22 | https://www.fickr.com/photos/115327016@ N06/12603289253/ | CC BY 2.0 https://creativecommons.org/licenses/by/2.0/ Print: docupoint GmbH Layout/Typesetting: Jürgen Helmut Funck ISBN 978-3-7983-2980-5 (print) ISBN 978-3-7983-2981-2 (online) ISSN 2509-8950 (print) ISSN 2509-8969 (online) Published online on the institutional Repository of the Technische Universität Berlin: DOI 10.14279/depositonce-6716 http://dx.doi.org/10.14279/depositonce-6716 Credits This thesis is the result of my time as research assistant at the Chair of Electronic Measurement and Diagnostic Technology at the Technische Universitat¨ Berlin.
    [Show full text]
  • Smart Dust and Sensory Swarms Kris Pister Prof
    Smart Dust and Sensory Swarms Kris Pister Prof. EECS, UC Berkeley Founder & Chief Technologist Dust Networks, a Linear company The Swarm at The Edge of the Cloud TRILLIONS OF CONNECTED DEVICES InfrastructuralTHE CLOUD core THE SWARM [J. Rabaey, ASPDAC’08] 2 Micro Robots, 1995 Goal: Make silicon chips that walk. (Richard Yeh) 3 Smart Dust, 1997 4 Smart Dust, 2001 5 Building Energy System (ucb, 2001) . 50 temperature sensors on 4th floor . 5 electrical power monitors . 1 relay controlling a Trane rooSop chiller 6 Sensor Networks Take Off! $8.1B market for Wireless Sensor Networks in 2007 Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets) 7 Celebrity Endorsement 8 Sensor Networks Take Off! Industry Analysts Take Off! $8.1B market for Wireless Sensor Networks in 2007 Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets) 9 Barriers to AdopWon OnWorld, 2005 10 The Requirements . Deploy devices ANYWHERE . The data must be RELIABLE . No baery changes for ~ DECADE 11 Network Architecture Network & Security Management IEEE 802.15.4 Radio Time slotted and synchronized for low power and scalability Full mesh and channel hopping for wire-like reliability (>99.99% ) Every node can run on batteries (or energy harvester) for 10+ years Incorporated into WirelessHART (IEC62591), ISA100.11a, WIA-PA, and IEEE 802.15.4E standards 12 Wireless HART Architecture (from ABB) 13 Emerson offerings, 2007 (Dave Farr presentaon) 14 15 Emerson Process Managmenet, Extreme
    [Show full text]
  • Framework for Body Sensor Networks
    Framework for Body Sensor Networks Sameer Iyengar Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-154 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-154.html November 5, 2009 Copyright © 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Framework for Body Sensor Networks Sameer Iyengar Framework for Body Sensor Networks by Sameer Iyengar Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali- fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor Alberto Sangiovanni-Vincentelli Research Advisor Date ****** Professor Ruzena Bajcsy Second Reader Date Acknowledgements It is impossible to be successful as a graduate student without a wide support network. I am extremely grateful for mine. I must thank my advisor, Alberto Sangiovanni-Vincentelli, for giving me the the freedom and inspiration to explore my interests and ideas, possibly the most valuable thing a researcher could ask for. In addition, to my mentors, Professor Ruzena Bajcsy and Professor Roozbeh Jafari, thank you for helping me focus my research and pushing me to always take that extra step.
    [Show full text]
  • And Mission-Critical Applications in Industrial Wireless Sensor Networks
    Enabling Time- and Mission-Critical Applications in Industrial Wireless Sensor Networks Hossam Farag Department of Information Systems and Technology Mid Sweden University Licentiate Thesis No. 151 Sundsvall, Sweden 2019 Mittuniversitetet Informationssystem och -teknologi ISBN 978-91-88527-84-4 SE-851 70 Sundsvall ISNN 1652-8948 SWEDEN Akademisk avhandling som med tillstand˚ av Mittuniversitetet i Sundsvall framlagges¨ till offentlig granskning for¨ avllaggande¨ av teknologie licentiatexamen Onsdagen den 30 januari 2019 i M102, Mittuniversitetet, Holmgatan 10, Sundsvall. c Hossam Farag, 2019 Tryck: Tryckeriet Mittuniversitetet My Wife My Parents iv Abstract Nowadays, Wireless Sensor Networks (WSNs) ”have gained importance as a flexible, easier deployment/maintenance and cost-effective alternative to wired net- works, e.g., Fieldbus and Wired-HART, in a wide-range of applications. Initially, WSNs were mostly designed for military and environmental monitoring applications where energy efficiency is the main design goal. The nodes in the network were expected to have a long lifetime with minimum maintenance while providing best-effort data delivery which is acceptable in such scenarios. With re- cent advances in the industrial domain, WSNs have been subsequently extended to support industrial automation applications such as process automation and con- trol scenarios. However, these emerging applications are characterized by stringent requirements regarding reliability and real-time communications that impose chal- lenges in the design of Industrial Wireless Sensor Networks (IWSNs) to effectively support time- and mission-critical applications. Typically, time- and mission-critical applications support different traffic cate- gories ranging from relaxed requirements, such as monitoring traffic to firm require- ments, such as critical safety and emergency traffic.
    [Show full text]
  • Wireless Sensor Networks
    White Paper ® Internet of Things: Wireless Sensor Networks Executive summary Today, smart grid, smart homes, smart water Section 2 starts with the historical background of networks, intelligent transportation, are infrastruc- IoT and WSNs, then provides an example from the ture systems that connect our world more than we power industry which is now undergoing power ever thought possible. The common vision of such grid upgrading. WSN technologies are playing systems is usually associated with one single con- an important role in safety monitoring over power cept, the internet of things (IoT), where through the transmission and transformation equipment and use of sensors, the entire physical infrastructure is the deployment of billions of smart meters. closely coupled with information and communica- Section 3 assesses the technology and charac- tion technologies; where intelligent monitoring and teristics of WSNs and the worldwide application management can be achieved via the usage of net- needs for them, including data aggregation and worked embedded devices. In such a sophisticat- security. ed dynamic system, devices are interconnected to transmit useful measurement information and con- Section 4 addresses the challenges and future trol instructions via distributed sensor networks. trends of WSNs in a wide range of applications in various domains, including ultra large sensing A wireless sensor network (WSN) is a network device access, trust security and privacy, and formed by a large number of sensor nodes where service architectures to name a few. each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, Section 5 provides information on applications. etc. WSNs are regarded as a revolutionary The variety of possible applications of WSNs to the information gathering method to build the real world is practically unlimited.
    [Show full text]
  • Hubnet Position Paper Series Standards-Based Wireless Sensor
    HubNet Position Paper Series Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Title Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Authors PC Baker, VM Catterson and MD Judd Author Contact Version Control Version Date Comments 1.0 05/12/2014 Version for peer review 1.1 17/08/2015 Edited in response to peer review comments 2.0 11/09/2015 Final version for publication Status Final Date Issued 11/09/2015 Available from www.hubnet.org.uk HubNet Position Paper Wireless Sensor Networks Page 1 of 20 About HubNet HubNet is a consortium of researchers from eight universities (Imperial College and the universities of Bristol, Cardiff, Manchester, Nottingham, Southampton, Strathclyde and Warwick) tasked with coordinating research in energy networks in the UK. HubNet is funded by the Energy Programme of Research Councils UK under grant number EP/I013636/1. This hub will provide research leadership in the field through the publication of in-depth position papers written by leaders in the field and the organisation of workshops and other mechanisms for the exchange of ideas between researchers, industry and the public sector. HubNet also aims to spur the development of innovative solutions by sponsoring speculative research. The activities of the members of the hub will focus on seven areas that have been identified as key to the development of future energy networks: Design of smart grids, in particular the application of communication technologies to the operation of electricity networks and the harnessing of the demand-side for the control and optimisation of the power system.
    [Show full text]
  • How Zigbee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4Th, 2008
    How ZigBee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4th, 2008 Cyril Zarader Product Marketing Manager EMEA – Wireless Connectivity TM Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. Topics IEEE 802.15.4 : Made for Reliable Low Power Wireless Networking ZigBee : Made for Simple Deployment of Wireless M2M Communications ZigBee Compared to Other Industrial Wireless Protocols Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 1 Selection of Wireless Technologies Wireless Video Applications Faster Wireless Data UWB 802.11g Applications 802.15.3 802.11a IrDA Wi-Fi® 802.11b Cellular 2.5G/3G 802.15.1 Peak Data Rate Data Peak Bluetooth™ ZigBee™ Data 802.15.4 Transfer Slower Wireless Networking NFC/RFID Closer Range Farther Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 2 Wireless Networking Technologies ZigBeeTM Bluetooth® UWBTM Wi-FiTM LonWorks® Proprietary IEEE® IEEE® 802.11 IEEE® Standard IEEE® 802.15.4 802.15.3a a, b, g (n to EIA 709.1,2,3 Proprietary 802.15.1 (to be ratified) be ratified) UWBTM Forum LonMark® Industry Wi-FiTM ZigBeeTM Alliance Bluetooth® SIG & WiMediaTM
    [Show full text]
  • Smartmesh Wirelesshart User's Guide
    SmartMesh WirelessHART User's Guide SmartMesh WirelessHART User's Guide Page 1 of 135 Table of Contents 1 About This Guide _________________________________________________________________________________ 5 1.1 Related Documents __________________________________________________________________________ 5 1.2 Conventions Used ___________________________________________________________________________ 7 1.3 Revision History _____________________________________________________________________________ 8 2 SmartMesh Glossary ______________________________________________________________________________ 9 3 The SmartMesh WirelessHART Network ______________________________________________________________ 13 3.1 Introduction _______________________________________________________________________________ 13 3.1.1 Network Overview ____________________________________________________________________ 13 3.1.2 SmartMesh Network Features ___________________________________________________________ 15 3.2 Network Formation __________________________________________________________________________ 16 3.2.1 Mote Joining ________________________________________________________________________ 17 3.2.2 Discovery ___________________________________________________________________________ 17 3.3 Bandwidth and Latency ______________________________________________________________________ 18 3.3.1 Base Bandwidth ______________________________________________________________________ 18 3.3.2 Services ____________________________________________________________________________
    [Show full text]
  • Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli
    Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli To cite this version: Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli. Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control, coexistence, mesh networking, cyber-physical systems, WSN, M2M. IEEE Access, IEEE, 2018, 6, pp.67893-67926. 10.1109/ACCESS.2018.2879189. hal-02161803 HAL Id: hal-02161803 https://hal.archives-ouvertes.fr/hal-02161803 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received August 13, 2018, accepted October 11, 2018, date of publication November 9, 2018, date of current version December 3, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2879189 Low-Power Wireless for the Internet of Things: Standards and Applications ALI NIKOUKAR 1, SALEEM RAZA1, ANGELINA POOLE2, MESUT GÜNEŞ1, AND BEHNAM DEZFOULI 2 1Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany 2Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA Corresponding author: Ali Nikoukar ([email protected]) This work was supported by DAAD (Deutscher Akademischer Austauschdienst) and DAAD/HEC Scholarships.
    [Show full text]