Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications Raymond S

Total Page:16

File Type:pdf, Size:1020Kb

Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications Raymond S Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications Raymond S. Wagner, Ph.D. NASA Johnson Space Center 2101 NASA Parkway, Mail Code EV814/ESCG Houston, TX 77058 281-244-2428 [email protected] Abstract—Wireless sensor networks (WSNs) have the by re-locating a sensor from one panel to another, this is capacity to revolutionize data gathering in both easily accomplished. Similarly, additional sensors can be spaceflight and terrestrial applications. WSNs provide a easily added to the existing suite, providing a more huge advantage over traditional, wired instrumentation detailed measurement set without requiring more wires to since they do not require wiring trunks to connect sensors be strung behind bulkheads and through walls of pressure to a central hub. This allows for easy sensor installation shells. Finally, wireless sensors can be re-used between in hard to reach locations, easy expansion of the number vehicles once their initial missions have been ended. A of sensors or sensing modalities, and reduction in both WSN node can be relocated from a spent vehicle, such as system cost and weight. While this technology offers a lunar larder, to one currently in service, such as a lunar unprecedented flexibility and adaptability, implementing rover or habitat. The node can even be outfitted with a it in practice is not without its difficulties. Recent new set of sensors in the process, retaining the common advances in standards-based WSN protocols for industrial radio and networking hardware; to give a new functional control applications have come a long way to solving tilt built mostly from recycled parts. Re-purposing wired many of the challenges facing practical WSN systems would be much more difficult, deployments. In this paper, we will overview two of the requiring wiring to be stripped from one craft and re- more promising candidates — WirelessHART from the strung in another, necessitating substantial disassembly of HART Communication Foundation and ISA100.11a from spacecraft in both cases. the International Society of Automation — and present the architecture for a new standards-based sensor node for While this technology offers unprecedented flexibility and networking and applications research. adaptability, implementing it in practice is not without its difficulties, particularly y with respect to achieving TABLE OF CONTENTS reliability that is on par with wired sensor approaches. Any practical WSN deployment must contend with a 1. INTRODUCTION .................................................................1 number of difficulties in its radio frequency (RF) 2. CHALLENGES OF NVIRELESS SENSING .............................2 environment including multi-path reflections and 3. OVERVIEW OF WSN STANDARDS ....................................2 interference from other systems. Techniques must be 4. EXPERIMENTAL METHODOLOGY FOR COMPARING designed to overcome all these factors, while at the same STANDARDS ...........................................................................5 time operating at a low enough power draw to allow 5. CONCLUSIONS .................................... ..............................7 REFERENCES ........................................................................7 operational lifetimes on the order of years using small, BIOGRAPHY ..........................................................................7 onboard batteries. In recent years, a great deal of focus has been given to 1. INTRODUCTION solving these cornrnon problems for WSN applications in Wireless Sensor Networks (WSNs) offer a new paradigm industrial automation and control, where the modern for acquiring sensor data. Rather than gathering sensor factory, refinery, or offshore drilling platform presents an data through wired data buses, WSNs employ a wireless incredibly challenging RF environment. These efforts by backhaul to transmit sensor readings to central locations government, academic, and industrial partners have for aggregation and further processing. This provides a resulted in standards-based wireless sensor network (S13- number of potential benefits in spacecraft design, not the WSN)protocols capable of cornmunication reliability least of which is the potential to substantially reduce approaching that of wired solutions with a very low per- system weight by eliminating wiring harnesses and node power consumption and network lifetimes connectors. Un-tethering sensors from wires also opens approaching the decade mark. Given similarities in up a new range of possibilities. Sensing infrastructure operational requirements between mission-critical need no longer be fixed following spacecraft design and industrial processes and spaceflight applications — namely, manufacture: should situational awareness be enhanced the insistence that data transport be both extremely reliable as well as timely — we maintain that these SB- WSN protocols hold great promise in the aerospace arena different intermediate nodes. Finally, it must provide as well. simple, reliable mechanisms to expand and contract (scale) the network, allowing nodes to enter and leave as In this paper we will overview the two major standards to necessary and changing the routing structure accordingly. emerge from the industrial control field — WirelessHART Moreover, in addition to providing all these services, the from the HART Communication Foundation and WSN must be designed so that nodes make minimal use of ISA100.11a from the International Society of Automation their radios, both for data transfer and network (ISA). Both are rooted in the IEEE 802.15.4 standard and coordination, to pen-nit years-long operational lifetimes. provide a level of robustness and reliability that should nkzke them well suited to spacefli ght applications. We Designing such robustness at the outset is incredibly will provide a technical review of both protocols starting challenging, and it requires expertise at all layers of the with their inspiration as a means to extend the capabilities networking stack, from physical radio design to channel of ZigBee — the first commmercial 802.15.4-derived access schemes, routin g protocols, and distributed data- protocol — which has had limited uptake in the mission- processing algorithms. Fortunately, a critical mass of critical industrial control market. We will then discuss the effort across a variety of fields in wireless sensing has methodology of an in-house performance evaluation of emerged in the last few years, resulting in the these protocols in a controlled environment and present development of WSN standards that can be leveraged by prelinvnary results. spaceflight applications. We will now provide a brief overview of these standardized protocols. 2. CHALLENGES OF WIRELESS SENSING 3. OVERVIEW OF WSN STANDARDS Because sensor nodes are designed to operate without wire interconnects for data transfer, they will typically not Robust, reliable wireless sensor/actuator networks stand to have wired power connections. This means nodes must benefit a number of industries, and as a result much effort rely on local power sources such as power scavenging or has been expended in recent years to develop design onboard batteries for both data processing and standards for WSNs addressing many of the coon i nication. Sensor nodes must often be small and aforementioned problems. The core of these efforts is the have service lives on the order of years, so this IEEE 802.15.4 standard, which targets low-data rate necessitates very low power operation. With wireless applications requiring wireless interconnections between coimrnnication representing the largest portion of a measurement, analysis, and control devices — aggregations node's power utilization, the node must therefore restrict which can be classified as personal area networks (PANS). itself to very low-power transnussion with periodic This puts 802.15.4 in the same general family as the sleeping/waking of radio circuitry. Such low-power radio- Bluetooth standard (IEEE 802.15.1), though the low- frequency (RF) communication is extremely vulnerable to power and low-data rate nature of its intended a variety of distortion and interference mechanisms. applications differentiates it from the latter. An 802.15.4 Multi-path reflections can distort signals, limit data rates, PAN can be analyzed using a simplified version of the and cause signal fades that prevent nodes from having Open System Interconnection (OSI) protocol stack clear access to channels, especially in a closed consisting of the following layers (bottom to top): environment such as a spacecraft. Other RF signal physical (PHY), medium access control (MAC), sources, such as wireless internet, voice, and data systems networking (NET), and application (APP). 802.15.4 may contend with the sensor nodes for bandwidth. specifies only the PHY and MAC layers. The remaining Finally, RF noise from electrical systems and periodic layers are provided by subsequent protocols such as scattering from moving objects such as crew members can ZigBee, WirelessHART, ISA100.1 la. collectively contribute to a highly unpredictable, time- varying communication environment. The 802.15.4 PHY specification requires radios to operate in one of three frequency bands: 868-868.8 MHz (Europe, Conn i nication reliability is key when replacing wired one channel), 902-928 MHz (North America, 30 systems with wireless equivalents, so to cope with this channels), and 2400-2483.5 MHz (worldwide, 16 difficult RF environment, a WSN must
Recommended publications
  • Cracking Channel Hopping Sequences and Graph Routes in Industrial TSCH Networks
    1 Cracking Channel Hopping Sequences and Graph Routes in Industrial TSCH Networks ∗ XIA CHENG, JUNYANG SHI, and MO SHA , State University of New York at Binghamton, USA Industrial networks typically connect hundreds or thousands of sensors and actuators in industrial facilities, such as manufacturing plants, steel mills, and oil refineries. Although the typical industrial Internet of Things (IoT) applications operate at low data rates, they pose unique challenges because of their critical demands for reliable and real-time communication in harsh industrial environments. IEEE 802.15.4-based wireless sensor-actuator networks (WSANs) technology is appealing for use to construct industrial networks because it does not require wired infrastructure and can be manufactured inexpensively. Battery-powered wireless modules easily and inexpensively retrofit existing sensors and actuators in industrial facilities without running cables for communication and power. To address the stringent real-time and reliability requirements, WSANs made a set of unique design choices such as employing the Time-Synchronized Channel Hopping (TSCH) technology. These designs distinguish WSANs from traditional wireless sensor networks (WSNs) that require only best effort services. The function-based channel hopping used in TSCH simplifies the network operations at the cost of security. Our study shows that an attacker can reverse engineer the channel hopping sequences and graph routes by silently observing the transmission activities and put the network in danger of selective jamming attacks. The cracked knowledge on the channel hopping sequences and graph routes is an important prerequisite for launching selective jamming attacks to TSCH networks. To our knowledge, this paper represents the first systematic study that investigates the security vulnerability of TSCH channel hopping and graph routing under realistic settings.
    [Show full text]
  • Industrial Iot Monitoring: Technologies and Architecture Proposal
    sensors Article Industrial IoT Monitoring: Technologies and Architecture Proposal Duarte Raposo 1,* , André Rodrigues 1,2 , Soraya Sinche 1,3 , Jorge Sá Silva 1 and Fernando Boavida 1 1 Centre of Informatics and Systems of the University of Coimbra, Coimbra 3030-290, Portugal; [email protected] (A.R.); [email protected] (S.S.); [email protected] (J.S.S.); [email protected] (F.B.) 2 Polytechnic Institute of Coimbra, ISCAC, Coimbra 3040-316, Portugal 3 DETRI, Escuela Politécnica Nacional, Quito 170517, Ecuador * Correspondence: [email protected]; Tel.: +351-239-790-000 Received: 12 September 2018; Accepted: 16 October 2018; Published: 21 October 2018 Abstract: Dependability and standardization are essential to the adoption of Wireless Sensor Networks (WSN) in industrial applications. Standards such as ZigBee, WirelessHART, ISA100.11a and WIA-PA are, nowadays, at the basis of the main process-automation technologies. However, despite the success of these standards, management of WSNs is still an open topic, which clearly is an obstacle to dependability. Existing diagnostic tools are mostly application- or problem-specific, and do not support standard-based multi-network monitoring. This paper proposes a WSN monitoring architecture for process-automation technologies that addresses the mentioned limitations. Specifically, the architecture has low impact on sensor node resources, uses network metrics already available in industrial standards, and takes advantage of widely used management standards to share the monitoring information. The proposed architecture was validated through prototyping, and the obtained performance results are presented and discussed in the final part of the paper. In addition to proposing a monitoring architecture, the paper provides an in-depth insight into metrics, techniques, management protocols, and standards applicable to industrial WSNs.
    [Show full text]
  • Smartmesh IP Network and Iot System
    St. Cloud State University theRepository at St. Cloud State Department of Electrical and Computer Culminating Projects in Electrical Engineering Engineering 5-2021 SmartMesh IP Network and IoT System Marc Aurel Kamsu Tennou Follow this and additional works at: https://repository.stcloudstate.edu/ece_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Kamsu Tennou, Marc Aurel, "SmartMesh IP Network and IoT System" (2021). Culminating Projects in Electrical Engineering. 7. https://repository.stcloudstate.edu/ece_etds/7 This Thesis is brought to you for free and open access by the Department of Electrical and Computer Engineering at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Electrical Engineering by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. SmartMesh IP Network and IoT System by Marc Kamsu A Thesis Submitted to the Graduate Faculty of Saint Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering May 2021 Thesis Committee: Yi Zheng, Chairperson Aiping Yao Timothy Vogt 2 Abstract In recent years, a great deal of research conducted in a variety of scientific areas, including physics, microelectronics, and material sc ience, by scientific experts from different domains of expertise has resulted in the invention of Micro-Electro-Mechanical Systems (MEMS). As MEMS became very popular and widely used, the need for combining the capabilities of sensing, actuation, processing, and communication also grew, and led to further research which would result in the design and implementation of devices which could reflect all those four capabilities.
    [Show full text]
  • Synchronous Data Acquisition with Wireless Sensor Networks the Scientifc Series Advances in Automation Engineering Is Edited by Prof
    Advances in Automaton Engineering Band 4 Editor: Clemens Gühmann Jürgen Helmut Funck Synchronous data acquisiton with wireless sensor networks Universitätsverlag der TU Berlin Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks The scientifc series Advances in Automation Engineering is edited by Prof. Dr.-Ing. Clemens Gühmann. Advances in Automation Engineering | 4 Jürgen Helmut Funck Synchronous data acquisition with wireless sensor networks Universitätsverlag der TU Berlin Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografe; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. Universitätsverlag der TU Berlin, 2018 http://verlag.tu-berlin.de Fasanenstr. 88, 10623 Berlin Tel.: +49 (0)30 314 76131 / Fax: -76133 E-Mail: [email protected] Zugl.: Berlin, Techn. Univ., Diss., 2017 Gutachter: Prof. Dr.-Ing. Clemens Gühmann Gutachter: Prof. Dr.-Ing. Gerd Scholl Gutachter: Prof. Dr.-Ing. Reinhold Orglmeister Die Arbeit wurde am 12. Oktober 2017 an der Fakultät IV unter Vorsitz von Prof. Dr.-Ing. Olaf Hellwich erfolgreich verteidigt. This work is protected by copyright. Cover image: vickysandoval22 | https://www.fickr.com/photos/115327016@ N06/12603289253/ | CC BY 2.0 https://creativecommons.org/licenses/by/2.0/ Print: docupoint GmbH Layout/Typesetting: Jürgen Helmut Funck ISBN 978-3-7983-2980-5 (print) ISBN 978-3-7983-2981-2 (online) ISSN 2509-8950 (print) ISSN 2509-8969 (online) Published online on the institutional Repository of the Technische Universität Berlin: DOI 10.14279/depositonce-6716 http://dx.doi.org/10.14279/depositonce-6716 Credits This thesis is the result of my time as research assistant at the Chair of Electronic Measurement and Diagnostic Technology at the Technische Universitat¨ Berlin.
    [Show full text]
  • Smart Dust and Sensory Swarms Kris Pister Prof
    Smart Dust and Sensory Swarms Kris Pister Prof. EECS, UC Berkeley Founder & Chief Technologist Dust Networks, a Linear company The Swarm at The Edge of the Cloud TRILLIONS OF CONNECTED DEVICES InfrastructuralTHE CLOUD core THE SWARM [J. Rabaey, ASPDAC’08] 2 Micro Robots, 1995 Goal: Make silicon chips that walk. (Richard Yeh) 3 Smart Dust, 1997 4 Smart Dust, 2001 5 Building Energy System (ucb, 2001) . 50 temperature sensors on 4th floor . 5 electrical power monitors . 1 relay controlling a Trane rooSop chiller 6 Sensor Networks Take Off! $8.1B market for Wireless Sensor Networks in 2007 Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets) 7 Celebrity Endorsement 8 Sensor Networks Take Off! Industry Analysts Take Off! $8.1B market for Wireless Sensor Networks in 2007 Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets) 9 Barriers to AdopWon OnWorld, 2005 10 The Requirements . Deploy devices ANYWHERE . The data must be RELIABLE . No baery changes for ~ DECADE 11 Network Architecture Network & Security Management IEEE 802.15.4 Radio Time slotted and synchronized for low power and scalability Full mesh and channel hopping for wire-like reliability (>99.99% ) Every node can run on batteries (or energy harvester) for 10+ years Incorporated into WirelessHART (IEC62591), ISA100.11a, WIA-PA, and IEEE 802.15.4E standards 12 Wireless HART Architecture (from ABB) 13 Emerson offerings, 2007 (Dave Farr presentaon) 14 15 Emerson Process Managmenet, Extreme
    [Show full text]
  • Framework for Body Sensor Networks
    Framework for Body Sensor Networks Sameer Iyengar Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-154 http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-154.html November 5, 2009 Copyright © 2009, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Framework for Body Sensor Networks Sameer Iyengar Framework for Body Sensor Networks by Sameer Iyengar Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali- fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor Alberto Sangiovanni-Vincentelli Research Advisor Date ****** Professor Ruzena Bajcsy Second Reader Date Acknowledgements It is impossible to be successful as a graduate student without a wide support network. I am extremely grateful for mine. I must thank my advisor, Alberto Sangiovanni-Vincentelli, for giving me the the freedom and inspiration to explore my interests and ideas, possibly the most valuable thing a researcher could ask for. In addition, to my mentors, Professor Ruzena Bajcsy and Professor Roozbeh Jafari, thank you for helping me focus my research and pushing me to always take that extra step.
    [Show full text]
  • And Mission-Critical Applications in Industrial Wireless Sensor Networks
    Enabling Time- and Mission-Critical Applications in Industrial Wireless Sensor Networks Hossam Farag Department of Information Systems and Technology Mid Sweden University Licentiate Thesis No. 151 Sundsvall, Sweden 2019 Mittuniversitetet Informationssystem och -teknologi ISBN 978-91-88527-84-4 SE-851 70 Sundsvall ISNN 1652-8948 SWEDEN Akademisk avhandling som med tillstand˚ av Mittuniversitetet i Sundsvall framlagges¨ till offentlig granskning for¨ avllaggande¨ av teknologie licentiatexamen Onsdagen den 30 januari 2019 i M102, Mittuniversitetet, Holmgatan 10, Sundsvall. c Hossam Farag, 2019 Tryck: Tryckeriet Mittuniversitetet My Wife My Parents iv Abstract Nowadays, Wireless Sensor Networks (WSNs) ”have gained importance as a flexible, easier deployment/maintenance and cost-effective alternative to wired net- works, e.g., Fieldbus and Wired-HART, in a wide-range of applications. Initially, WSNs were mostly designed for military and environmental monitoring applications where energy efficiency is the main design goal. The nodes in the network were expected to have a long lifetime with minimum maintenance while providing best-effort data delivery which is acceptable in such scenarios. With re- cent advances in the industrial domain, WSNs have been subsequently extended to support industrial automation applications such as process automation and con- trol scenarios. However, these emerging applications are characterized by stringent requirements regarding reliability and real-time communications that impose chal- lenges in the design of Industrial Wireless Sensor Networks (IWSNs) to effectively support time- and mission-critical applications. Typically, time- and mission-critical applications support different traffic cate- gories ranging from relaxed requirements, such as monitoring traffic to firm require- ments, such as critical safety and emergency traffic.
    [Show full text]
  • Wireless Sensor Networks
    White Paper ® Internet of Things: Wireless Sensor Networks Executive summary Today, smart grid, smart homes, smart water Section 2 starts with the historical background of networks, intelligent transportation, are infrastruc- IoT and WSNs, then provides an example from the ture systems that connect our world more than we power industry which is now undergoing power ever thought possible. The common vision of such grid upgrading. WSN technologies are playing systems is usually associated with one single con- an important role in safety monitoring over power cept, the internet of things (IoT), where through the transmission and transformation equipment and use of sensors, the entire physical infrastructure is the deployment of billions of smart meters. closely coupled with information and communica- Section 3 assesses the technology and charac- tion technologies; where intelligent monitoring and teristics of WSNs and the worldwide application management can be achieved via the usage of net- needs for them, including data aggregation and worked embedded devices. In such a sophisticat- security. ed dynamic system, devices are interconnected to transmit useful measurement information and con- Section 4 addresses the challenges and future trol instructions via distributed sensor networks. trends of WSNs in a wide range of applications in various domains, including ultra large sensing A wireless sensor network (WSN) is a network device access, trust security and privacy, and formed by a large number of sensor nodes where service architectures to name a few. each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, Section 5 provides information on applications. etc. WSNs are regarded as a revolutionary The variety of possible applications of WSNs to the information gathering method to build the real world is practically unlimited.
    [Show full text]
  • Hubnet Position Paper Series Standards-Based Wireless Sensor
    HubNet Position Paper Series Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Title Standards-Based Wireless Sensor Networks for Power System Condition Monitoring Authors PC Baker, VM Catterson and MD Judd Author Contact Version Control Version Date Comments 1.0 05/12/2014 Version for peer review 1.1 17/08/2015 Edited in response to peer review comments 2.0 11/09/2015 Final version for publication Status Final Date Issued 11/09/2015 Available from www.hubnet.org.uk HubNet Position Paper Wireless Sensor Networks Page 1 of 20 About HubNet HubNet is a consortium of researchers from eight universities (Imperial College and the universities of Bristol, Cardiff, Manchester, Nottingham, Southampton, Strathclyde and Warwick) tasked with coordinating research in energy networks in the UK. HubNet is funded by the Energy Programme of Research Councils UK under grant number EP/I013636/1. This hub will provide research leadership in the field through the publication of in-depth position papers written by leaders in the field and the organisation of workshops and other mechanisms for the exchange of ideas between researchers, industry and the public sector. HubNet also aims to spur the development of innovative solutions by sponsoring speculative research. The activities of the members of the hub will focus on seven areas that have been identified as key to the development of future energy networks: Design of smart grids, in particular the application of communication technologies to the operation of electricity networks and the harnessing of the demand-side for the control and optimisation of the power system.
    [Show full text]
  • How Zigbee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4Th, 2008
    How ZigBee/802.15.4 Protocol Simplifies Wireless M2M Communications June 4th, 2008 Cyril Zarader Product Marketing Manager EMEA – Wireless Connectivity TM Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. Topics IEEE 802.15.4 : Made for Reliable Low Power Wireless Networking ZigBee : Made for Simple Deployment of Wireless M2M Communications ZigBee Compared to Other Industrial Wireless Protocols Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 1 Selection of Wireless Technologies Wireless Video Applications Faster Wireless Data UWB 802.11g Applications 802.15.3 802.11a IrDA Wi-Fi® 802.11b Cellular 2.5G/3G 802.15.1 Peak Data Rate Data Peak Bluetooth™ ZigBee™ Data 802.15.4 Transfer Slower Wireless Networking NFC/RFID Closer Range Farther Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are TM the property of their respective owners. © Freescale Semiconductor, Inc. 2007. 2 Wireless Networking Technologies ZigBeeTM Bluetooth® UWBTM Wi-FiTM LonWorks® Proprietary IEEE® IEEE® 802.11 IEEE® Standard IEEE® 802.15.4 802.15.3a a, b, g (n to EIA 709.1,2,3 Proprietary 802.15.1 (to be ratified) be ratified) UWBTM Forum LonMark® Industry Wi-FiTM ZigBeeTM Alliance Bluetooth® SIG & WiMediaTM
    [Show full text]
  • Smartmesh Wirelesshart User's Guide
    SmartMesh WirelessHART User's Guide SmartMesh WirelessHART User's Guide Page 1 of 135 Table of Contents 1 About This Guide _________________________________________________________________________________ 5 1.1 Related Documents __________________________________________________________________________ 5 1.2 Conventions Used ___________________________________________________________________________ 7 1.3 Revision History _____________________________________________________________________________ 8 2 SmartMesh Glossary ______________________________________________________________________________ 9 3 The SmartMesh WirelessHART Network ______________________________________________________________ 13 3.1 Introduction _______________________________________________________________________________ 13 3.1.1 Network Overview ____________________________________________________________________ 13 3.1.2 SmartMesh Network Features ___________________________________________________________ 15 3.2 Network Formation __________________________________________________________________________ 16 3.2.1 Mote Joining ________________________________________________________________________ 17 3.2.2 Discovery ___________________________________________________________________________ 17 3.3 Bandwidth and Latency ______________________________________________________________________ 18 3.3.1 Base Bandwidth ______________________________________________________________________ 18 3.3.2 Services ____________________________________________________________________________
    [Show full text]
  • Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli
    Low-Power Wireless for the Internet of Things: Standards and Applications Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli To cite this version: Ali Nikoukar, Saleem Raza, Angelina Poole, Mesut Günes, Behnam Dezfouli. Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control, coexistence, mesh networking, cyber-physical systems, WSN, M2M. IEEE Access, IEEE, 2018, 6, pp.67893-67926. 10.1109/ACCESS.2018.2879189. hal-02161803 HAL Id: hal-02161803 https://hal.archives-ouvertes.fr/hal-02161803 Submitted on 21 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received August 13, 2018, accepted October 11, 2018, date of publication November 9, 2018, date of current version December 3, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2879189 Low-Power Wireless for the Internet of Things: Standards and Applications ALI NIKOUKAR 1, SALEEM RAZA1, ANGELINA POOLE2, MESUT GÜNEŞ1, AND BEHNAM DEZFOULI 2 1Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany 2Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA Corresponding author: Ali Nikoukar ([email protected]) This work was supported by DAAD (Deutscher Akademischer Austauschdienst) and DAAD/HEC Scholarships.
    [Show full text]