Permophiles Issue #58 November 2013 EXECUTIVE NOTES Notes from the SPS Secretary Museum of Natural History and Science, Albuquerque, New Mexico, USA, May 20-22, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Permophiles Issue #58 November 2013 EXECUTIVE NOTES Notes from the SPS Secretary Museum of Natural History and Science, Albuquerque, New Mexico, USA, May 20-22, 2013 Table of Contents Notes from the SPS Secretary 1 Lucia Angiolini Notes from the SPS Chair 2 Shuzhong Shen Subcommission on Permian Stratigraphy Annual Report 2013 3 Shuzhong Shen, SPS Chairman Officers and Voting Members since August, 2012 5 The Reality of GSSPs 6 Stanley C. Finney GSSPs (Global Stratotype Section and Point) and Correlation 8 Stanley C. Finney We Need a New GSSP for the Base of the Permian 8 Spencer G. Lucas The GSSP at the Aidaralash section is solid and has no alternative 13 Vladimir I. Davydov The Aidaralash GSSP—Reply to Davydov 15 Spencer G. Lucas Proposal for the Global Stratotype Section and Point (GSSP) for the base-Sakmarian Stage (Lower Permian) 16 Valery V. Chernykh, Boris I. Chuvashov, Shuzhong Shen andCharles M. Henderson Proposal for the Global Stratotype Section and Point (GSSP) for the base-Artinskian Stage (Lower Permian) 26 Boris I. Chuvashov, Valery V. Chernykh, Shuzhong Shen and Charles M. Henderson Report of the Chinese, Iranian, Italian working group: The Permian-Triassic boundary sections of Julfa and Zal revisited 34 Lucia Angiolini, Shuzhong Shen, Maryamnaz Bahrammanesh, Syrus Abbasi, Mina Birjandi, Gaia Crippa, Dongxun Yuan and Claudio Garbelli Age assignment of section 4 of Teichert et al. (1973) at Ali Bashi Mountains (Julfa, NW Iran) 36 Abbas Ghaderi, Ali Reza Ashouri, Heinz W. Kozur and Dieter Korn Report of field excursions 2012/2013 of the “Sino-German Cooperation Group on the Late Palaeozoic Palaeobiology, Stratigraphy and Geochemistry” between Europe and China 40 Jun Wang, Shuzhong Shen, Joerg W. Schneider and Hans Kerp ANNOUNCEMENTS 42 SUBMISSION GUIDELINES FOR ISSUE 59 44 Photo 1: The Permian-Triassic succession of the Ali Bashi Mountains, Julfa, NW Iran. Locality 4 of Teichert et al. 1 (1973) is on the left; Locality 1 on the right. Photo 2: The evolutionary lineage of the Asselian-Sakmarian species of the genus Mesogondolella. Photo 3: Two specimens of Sw. aff. whitei from the GSSP level at 1.8 m above base of Bed 4. Photo 4: A Chinese-German-Italian joint team visited the Permian-Triassic boundary section at Bulla, Bolzano under the guidance of the Chair of the Pander Society, Maria Cristina Perri and Enzo Farabegoli of the University of 2 4 Bologna. Photo 5: A GSSP marker (middle of the photo) was placed on the Roadian-base GSSP section at Stratotype Canyon in the Guadalupe National Park. From left to right, Charles Henderson, Lance Lambert, Jonena Hearst, and 3 5 Shuzhong Shen. Photo 6: Caaschwitz quarry: The actual best outcrop of the potential Permian/Triassic Boundary in 6 the terrestrial facies of the Bunter of Europe. The outcrop is situated in the southeastern part of the Permian Zechstein basin or the Germanic Triassic basin respectively. Permophiles Issue #58 November 2013 EXECUTIVE NOTES Notes from the SPS Secretary Museum of Natural History and Science, Albuquerque, New Mexico, USA, May 20-22, 2013. The SCS chair Barry Richards Lucia Angiolini and Shuzhong Shen chaired the meeting. Both chairs reported the progresses of the subcommissions and agreed to organize a joint Introduction and thanks working group on the global correlation of the Carboniferous and This issue was planned by Shuzhong and I in the beautiful land- Permian transition between marine and non-marine sequences. scape of the Ali Bashi Mountains, near Julfa, NW Iran, during Joerg W. Schneider will lead this working group and he is pub- a successful Chinese-Iranian-Italian fieldtrip focused on detailed lishing a note in this issue to call your participation to the brachiopod and conodont sampling in the Permian-Triassic working group. The Carboniferous/Permian boundary GSSP at boundary beds in September 2013 (see report in this issue). The the Aidaradash and its problems of correlation was also inten- issue, which is the second of the new executive committee of sively discussed during the business meeting (see reports in this Subcommission on Permian Stratigraphy, was then finalized and issue by Spencer Lucas and Vladimir Davydov). The following edited by Shuzhong in Nanjing and myself in Milano through colleagues attended the bussiness meeting: Alexander Biakov, email communication. Jim Barrick, Ausonio Ronchi, Barry Richards, Vladimir Davydov, I would like to draw again your attention to the new SPS web- Alexaner Ivanov, Shuzhong Shen, Spencer Lucas, Wenkun Qie, page that Shuzhong Shen has provided at http://www.stratigraphy. Dongxun, Yuan, Karl Krainer, Steve Rosscoe, Phil Fedreick, org/permian/, where you can find information aboutPermophiles , Yuping Qi, Lance Lambert. what’s going on in the Permian Subcommission, an updated ver- Two forthcoming SPS meetings are scheduled. One will take sion of the list with addresses of the SPS corresponding members place during the XVIII International Congress on Carboniferous and an updated Permian timescale. Please check carefully if your and Permian to be held in the Kazan Federal University, Kazan, details are reported correctly in the list of SPS corresponding Russia, August 7-15, 2015. members and write to me and the chair if anything is not correct. A business meeting will be organized during an international In this foreword, I would like to thank very much Maryam field meeting on continental Carboniferous and Permian in the Bahrammanesh, Syrus Abbasi, Mina Birjandi and the two driv- second half of July 2014 in Freiberg, Germany. Both this meet- ers Mr. Takhtchin (GSI of Tehran) and Mr. Eshghi (GSI of Tabriz) ings will serve as the kick off for the cooperation of colleagues for the excellent organization of the field trip in the famous Ali interested in Carboniferous and Permian marine - non-marine Bashi sections (Iran) that we led a few weeks ago (September correlation. 25-October 5, 2013). As the secretary, I would like to thank the protagonists of the Permophiles 58 heated debate on the Kungurian base GSSP candidates from the Besides the report of the Kungurian GSSP ballot, this issue Mechetlino section in southern Ural and Rockland section in contains the following reports: Pequop Mountains, Nevada. This discussion was very fruitful to Stanley Finney’s paper, here reported from “Finney, S.C., 2013, move Kungurian studies forward and culminated with the contri- The reality of GSSPs: Ciências da Terra (UNL), 18: 9-12”, is very bution of Stanley Finney, Chair of the International Commission important to stimulate the ongoing discussion among the SPS on Stratigraphy, who clarified the voting procedures and with the members. It outlines the problem that, unfortunately, the GSSP for final and wise decision of the SPS chair Shuzhong Shen to post- a specific boundary is too often presented only as the single strati- pone the vote until further data on both sections are provided. graphic signal at which the boundary is placed in the stratotype We received several contributions from our Permian colleagues section. In reality it only has significance for chronostratigraphic recently, that make this issue rich and interesting. Contributions correlation when it has high potential for correlation across a and comments from Permian workers (and not only from them) are range of paleogeographic and paleoenvironmental settings. very important to move Permian studies forward and to improve We have also included Stanley Finney’s abstract for the Annual correlation and the resolution of the Permian Timescale. In the Meeting of Geological Society of America, October 2013, because same way, these contributions will be important to keep going it says that if an already approved GSSP is shown to be inadequate for future issues of Permophiles. So I want to warmly thanks for reliable, high-resolution correlation it should be reconsidered. Stanley Finney, Vladimir Davydov, Charles Henderson, Spencer Spencer Lucas comments on the primary criterion used Lucas, Valery Chernykh and co-authors, Boris Chuvashov and to correlate the base of the Permian, the FO of the conodont co-authors, Abbas Ghaderi and co-authors and the Chinese- Streptognathodus isolatus, showing that it is now problematic. Iranian-Italian working group and the Sino-German Group for The evolution and taxonomy of S. isolatus are not agreed on, and their contributions to this issue. S. isolatus is a very rare taxon, of little use to global correlation. The GSSP section at Aidaralash Creek is also far from ideal and Previous and forthcoming SPS Meetings leads him to conclude that we should reconsider the position of the Two SPS meetings have been recently held. A joint business base of the Permian and its current GSSP. meeting with the Carboniferous Subcommission was held in Valdimir Davydov answers to Spencer Lucas underlying Albuquerque, during the International meeting on Carboniferous that, at Aidaralash Creek, the C-P boundary position is charac- and Permian Transition, which was hosted by the New Mexico terized by bioevents of the three major fossil groups - fusulinids, Permophiles Issue #58 November 2013 conodonts and ammonoids - and also by palynomorphs. Besides, NE Nevada, USA and at the Mechetlino Quarry section in Russia. it has paleomagnetic proxies with high potential for global cor- relations. He provides other cases of multi-variant interpretation Received Ballots: 13 of phylogeny concerning primary criteria for GSSP and he shows Yes to Rockland: 6 that the distribution of S. isolatus is quite wide. Yes to Mechetlino: 7 Valery Chernykh and co-authors provide a GSSP Proposal for base-Sakmarian stage to be defined by the FAD ofMesogondolella Abstained: 2 uralensis in Bed 25 at the Usolka section; the boundary can be Not voted: 2 correlated by an extrapolated geochronologic age, strontium iso- tope values, a negative shift in δ13Ccarb value, and by fusulines. On April 8th, 2013, the SPS Chair decided to suspend the vote Boris Chuvashov and co-authors provide a GSSP Proposal for on the Kungurian GSSP on the basis that all discussions must be base-Artinksian to be established on conodonts, fusulinaceans completed before ballots are distributed and a vote is taken.
Recommended publications
  • Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California
    Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California By Paul Stone, Calvin H. Stevens, Paul Belasky, Isabel P. Montañez, Lauren G. Martin, Bruce R. Wardlaw, Charles A. Sandberg, Elmira Wan, Holly A. Olson, and Susan S. Priest Pamphlet to accompany Scientific Investigations Map 3298 2014 U.S. Department of the Interior U.S. Geological Survey Cover View of Marble Canyon area, California, showing dark rocks of Mississippian Indian Springs Formation and Pennsylvanian Bird Spring Formation overlying light rocks of Mississippian Santa Rosa Hills Limestone in middle distance. View is southeast toward Emigrant Wash and Tucki Mountain in distance. U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Stone, P., Stevens, C.H., Belasky, P., Montanez, I.P., Martin, L.G., Wardlaw, B.R., Sandberg, C.A., Wan, E., Olson, H.A., and Priest, S.S., 2014, Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California: U.S. Geological Survey Scientific Investigations Map 3298, scale 1:24,000, 59 p., http://dx.doi.org/10.3133/sim3298.
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • BIASES in INTERPRETATION of the FOSSIL RECORD of CONODONTS by MARK A
    [Special Papers in Palaeontology, 73, 2005, pp. 7–25] BETWEEN DEATH AND DATA: BIASES IN INTERPRETATION OF THE FOSSIL RECORD OF CONODONTS by MARK A. PURNELL* and PHILIP C. J. DONOGHUE *Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; e-mail: [email protected] Abstract: The fossil record of conodonts may be among and standing generic diversity. Analysis of epoch ⁄ stage-level the best of any group of organisms, but it is biased nonethe- data for the Ordovician–Devonian interval suggests that less. Pre- and syndepositional biases, including predation there is generally no correspondence between research effort and scavenging of carcasses, current activity, reworking and and generic diversity, and more research is required to bioturbation, cause loss, redistribution and breakage of ele- determine whether this indicates that sampling of the cono- ments. These biases may be exacerbated by the way in which dont record has reached a level of maturity where few genera rocks are collected and treated in the laboratory to extract remain to be discovered. One area of long-standing interest elements. As is the case for all fossils, intervals for which in potential biases and the conodont record concerns the there is no rock record cause inevitable gaps in the strati- pattern of recovery of different components of the skeleton graphic distribution of conodonts, and unpreserved environ- through time. We have found no evidence that the increas- ments lead to further impoverishment of the recorded ing abundance of P elements relative to S and M elements spatial and temporal distributions of taxa.
    [Show full text]
  • Alabama and Georgia: Its Lithostratigraphy, Biostratigraphy, and Bearing on the Ag,E @F T the Claibornian Stage
    The Eocene TaJJahatta Formation of Alabama and Georgia: Its Lithostratigraphy, Biostratigraphy, and Bearing on the Ag,e @f t The Claibornian Stage U.S. GEOLOGICAL SURVEY BULLETIN 1615 The Eocene Tallahatta Formation of Alabama and Georgia: Its Lithostratigraphy, Biostratigraphy, and Bearing on the Age of The Claibornian Stage By laurel M. Bybell and Thomas G. Gibson U.S. GEOlOGICAl SURVEY BUllETIN 1615 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE 1985 For sale by the Distribution Branch, Text Products Section U.S. Geological Survey 604 South Pickett St. Alexandria, VA 22304 Library of Congress Cataloging in Publication Data Bybell, Laurel M. The Eocene Tallahatta Formation of Alabama and Georgia. <U.S. Geological Survey bulletin; 1615) Bibliography: p. Supt. of Docs. no.: I 19.3:1615 1. Geology, Stratigraphic--Eocene. 2. Geology--Alabama. 3. Geology-­ Georgia. I. Gibson, Thomas G. II. Title. III. Series. QE75.B9 no. 1615 557.3 s [551.7'84] 84-600098 [QE692.2] CONTENTS Abstract 1 Introduction 1 Purpose and scope 1 Acknowledgments 2 Lithostratigraphy 2 Biostratigraphy 7 Paleoenvironmental analysis 15 The Tallahatta and the age of the Claibornian Stage 17 Conclusions 18 References cited 18 PLATES [Plates follow references cited] 1. Discoaster, Tribrachiatus, Helicosphaera, Rhabdosphaera, Transversopontis, Cyclococcolithus, and Reticulofenestra 2. Reticulofenestra, Blackites, Chiasmolithus, Lophodolithus, Transversopontis, Ellipsolithus, Discoaster, Campylosphaera, and Zygrhablithus FIGURES 1. Map showing localities in Alabama and western Georgia discussed in text 2 2. Correlation chart showing age placements for the Tallahatta and other formations of late Paleocene to middle Eocene age in Alabama and Georgia 3 3.
    [Show full text]
  • Southeastern Part of the Texas Coastal Plain
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR WATER-SUPPLY PAPER 335 GEOLOGY AND UNDERGROUND WATERS OF THE SOUTHEASTERN PART OF THE TEXAS COASTAL PLAIN BY ALEXANDER DEUSSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page. Introduction.............................................................. 13 Physiography.............................................................. 14 General character..................................................... 14 Topographic features.................................................. 16 Relief............................................................ 16 Coast prairie.................................................. 16 Kisatchie Wold............................................... 16 Nacogdoches Wold............................................ 16 Corsicana Cuesta and White Rock Escarpment................... 18 Bottom lands................................................. 18 Mounds and pimple plains...................................... 19 Drainage.......................................................... 19 Timber............................................................... 21 General geologic features................................................... 21 Relation of geology to the occurrence of underground water............... 21 Principles of stratigraphy.............................................. 22 Erosion and sedimentation.......................................... 22 The geologic column.............................................. 22 Subdivision
    [Show full text]
  • A Database of Triassic Conodonts from a Comprehensive Revision of Literature
    SPANISH JOURNAL OF PALAEONTOLOGY A database of Triassic conodonts from a comprehensive revision of literature Pablo PLASENCIA1,2*, Ana MÁRQUEZ-ALIAGA2 & Jingeng SHA1 1 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology (CAS), Nanjing, 39 East Beijing Road, Nanjing, 210008, People’s Republic of China; [email protected]; [email protected] 2 Departamento de Geología, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; [email protected] * Corresponding author Plasencia, P., Márquez-Aliaga, A. & Sha, J. 2013. A data base of Triassic conodonts from a comprehensive revision of literature. [Una base de datos de conodontos triásicos a partir de una completa revisión de la literatura]. Spanish Journal of Palaeontology, 28 (2), 215-226. Manuscript received 08 September 2012 © Sociedad Española de Paleontología ISSN 2255-0550 Manuscript accepted 19 December 2012 ABSTRACT RESUMEN The revision of a comprehensive amount of bibliography La revisión de una amplia cantidad de bibliografía ha hecho has made possible the development of a database containing posible el desarrollo de una base de datos en la que fi guran los the stratigraphic ranges of the conodont species from the rangos estratigráfi cos de las especies de conodontos presentes uppermost Permian and the Triassic, with a total of 336 species desde el Pérmico superior y el Triásico, con un total de 336 in 52 genera. This database is aimed at biostratigraphy and especies y 52 géneros. Esta base de datos está dirigida a la studies related to biological, evolutional and palaeodiversity bioestratigrafía y a estudios relacionados con las dinámicas dynamics.
    [Show full text]
  • Colorado Headwaters Laramide Basin Stratigraphic Chart
    Colorado Headwaters Laramide Hydrogeologic Geologic Period Phase Stratigraphic Unit Unit Modern- Alluvium associated with present Quaternary Alluvial Aquifers Glaciation rivers Grouse Mountain Basalt Volcanics Neogene Extension Troublesome- Troublesome- North Park Formations North Park Aquifer Rabit Ears Volcanics Volcanics Transition White River White River Formation Aquifer Paleogene Coalmont Formation Coalmont Aquifer Laramide Middle Park Middle Park Formation Aquifer Windy Gap Volcanic Volcanics Formation Middle ParkMiddle Member Pierre confining Pierre Shale unit Cretaceous Interior Regional Cretaceous Seaway shale- Seaway dominated formations form multiple hydrogeologic units, most are confining units Colorado Piedmont Region Jurassic Multiple sedimentary units deposited Mesozoic in the stable continent interior may be Sandstones Triassic present that may form aquifers Permian Ancestral Rocky No strata Pennsylvanian Mountains Mississippian Devonian Paleozoic Silurian No strata Carbonates Ordovician Cambrian Crystalline rocks of igneous and Crystalline Precambrian Precambrian metamorphic origin in mountainous bedrock region Table 11b-02-08-01. Colorado Headwaters Laramide Basin stratigraphic chart. Colorado Headwaters Laramide Unit Thickness Hydrogeologic Geologic Period Phase Stratigraphic Unit Physical Characteristics Hydrologic Characteristics (ft) Unit Modern- Quaternary Alluvium associated with present rivers Alluvial Aquifers Glaciation Grouse Mountain Basalt Basalt flow caprock Volcanics Neogene Extension Troublesome- Unconfined
    [Show full text]
  • Удк 005.745:551.7:56 Cтратиграфия И
    УДК 005.745:551.7:56 О. Л. КОССОВАЯ, Т. Ю. ТОЛМАЧЕВА (ВСЕГЕИ) CТРАТИГРАФИЯ И ПАЛЕОНТОЛОГИЯ В НАУЧНОЙ ПРОГРАММЕ 34-й СЕССИИ МЕЖДУНАРОДНОГО ГЕОЛОГИЧЕСКОГО КОНГРЕССА (2012 г., Брисбен, Австралия) Рассматриваются сообщения, связанные с созданием Международной хроностратиграфической шкалы, выбором точек глобальных стратотипов границ (GSSP), обоснованием региональных зо- нальных последовательностей, комплексированием биостратиграфических и хемостратиграфических методов и др. Как показало сравнение с итогами предыдущей 33-й сессии Международного геологи- ческого конгресса (МГК), главным отличием современных палеонтолого-стратиграфических иссле- дований является их направленность на реконструкцию климатических особенностей геологического прошлого, оценку влияния палеоклиматов на биоту и характер осадконакопления. Обобщены доклады на секциях и заседаниях комиссий по системам, в которых авторы принимали непосредственное участие, а также дан аналитический обзор тезисов докладов 34-й сессии МГК. Ключевые слова: стратиграфия, палеонтология, 34-я сессия МГК. The main tendencies in modern stratigraphy and paleontology were discussed in the specialized sessions and meetings of the Stratigraphic Subcommissions, as well as in presentations of related sciences. Present review includes presentations connected with the creation of the International Stratigraphic Scale, proposition of the Global Stratigraphic Sections and Points (GSSP), compiling of the regional zonal successions, integration of methods of biostratigraphy and chemostratigraphy and many others. In comparison with previous 33th IGC, 2008, the modern paleontological and stratigraphic studies are different in intensification of investigations targeting the reconstruction of climatic features of the past, influence of paleoclimates to biota and sedimentation. The review is based both on synthesis of sessions and Subcommission meetings presentations where the authors took part and analytic review of the Abstract volume of 34th IGC. Key words: stratigraphy, paleontology, 34th IGC.
    [Show full text]
  • Geologic Map of the Fraser 7.5-Minute Quadrangle, Grand County, Colorado
    Geologic Map of the Fraser 7.5-minute Quadrangle, Grand County, Colorado Pamphlet to accompany Scientific Investigations Map 3130 U.S. Department of the Interior U.S. Geological Survey COVER: View to the southeast, from high gravel-capped hill near the town of Winter Park, looking toward snow- clad peaks along the Continental Divide east of Berthoud Pass. High peak on the far left is James Peak, 13,294 ft, (4,052 m). In foreground, the dense forest is composed of conifers and aspen, and is growing in soils formed in surficial deposits and weathered bedrock. Photograph by R.R. Shroba, September 26, 2006. Geologic Map of the Fraser 7.5-minute Quadrangle, Grand County, Colorado By Ralph R. Shroba, Bruce Bryant, Karl S. Kellogg, Paul K. Theobald, and Theodore R. Brandt Pamphlet to accompany Scientific Investigations Map 3130 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://www.store usgs.. gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Possible Oil and Gas Fields in the Cretaceous Beds of Alabama
    424 OIL AND GAS FIELDS IN THE CRETACEOUS BEDS OF ALABAMA Possible Oil and Gas Fields in the Cretaceous Beds of Alabama BY DORSEY HAGER, * TULf\A, OKI,A. (New York Meeting, February, 1918) Downloaded from http://onepetro.org/TRANS/article-pdf/59/01/424/2176944/spe-918424-g.pdf by guest on 01 October 2021 THE possibility of oil and gas production in Alabama has been little considered as yet. Gas and some oil have been found in northwestern Alabama, near Birmingham, in the Pennsylvanian beds, but the oil and gas possibilities in the Cretaceous beds are not generally appreciated. The recent activity of oil companies in that State has attracted much attention, and in this paper the main structural and the general strati­ graphic features are described. :Four favorable areas are outlined. These contain folds of major interest. 'there are other favorable areas which have not been mapped,l Commercial pools discovered in this area would have the advantage of being near tidewater. Mobile, Ala., on the Gulf of Mexico, would be the logical site for refineries and shipping facilities. A pipe line could readily be laid to that city from the Hatchitigbee and the Jackson areas. The logical outlet for the Geneva and the Gordon areas would be Panama City, ma., on the Gulf of Mexico. TOPOGRAPHY The whole of the area under consideration lies in the Gulf coastal· plain and slopes gently to the southwest and west. The elevations vary from 200 to 400 ft. (60 to 121 m.) above sea level. The streams have . sunk their channels into this gently sloping plain, the main drainage flowing south or southwest into tho Gulf of Mexico.
    [Show full text]
  • A New Elasmobranch Assemblage from the Early Eocene (Ypresian) Fishburne Formation of Berkeley County, South Carolina, USA
    Canadian Journal of Earth Sciences A new elasmobranch assemblage from the early Eocene (Ypresian) Fishburne Formation of Berkeley County, South Carolina, USA Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0061.R1 Manuscript Type: Article Date Submitted by the Author: 30-Aug-2015 Complete List of Authors: Case, Gerard R.; P.O. Box 664, Cook, ToddDraft D.; University of Alberta Wilson, Mark V. H.; University of Alberta, Biological Sciences Keyword: Elasmobranch, Eocene, Ypresian, Palaeobiogeography, Palaeoecology https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 64 Canadian Journal of Earth Sciences A new elasmobranch assemblage from the early Eocene (Ypresian) Fishburne Formation of Berkeley County, South Carolina, USA Gerard R. Case, Todd D. Cook, and Mark V. H. Wilson Gerard R. Case. 1 P.O. Box 664, Little River, SC 29566, USA, [email protected] Todd D. Cook. School of Science, Penn State Erie, The Behrend College, 4205 College Drive, Erie, PA, 16563, USA [email protected] Mark V. H. Wilson. Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada; [email protected]. 1Corresponding author. https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 64 A new elasmobranch assemblage from the early Eocene (Ypresian) Fishburne Formation of Berkeley County, South Carolina, USA Gerard R. Case, Todd D. Cook, and Mark V. H. Wilson Abstract A rich elasmobranch assemblageDraft was recovered from the early Eocene (Ypresian) Fishburne Formation in a limestone quarry at Jamestown, Berkeley County, South Carolina, USA. Reported herein are 22 species belonging to eight orders, at least 15 families, and 21 genera.
    [Show full text]
  • J GEOLOGY of URANIUM DEPOSITS in the C NORTHERN PART of the ROCKY MOUNTAIN ~ PROVINCE of COLORADO I by Roger C
    :NER \EC-RD 11111111111 1 4 AEC-RD-14 CJ. I UNITED STATES ATOMIC ENERGY COMMISSION GRAND JUNCTION OFFICE PRODUCTION EVALUATION DIVISION RESOURCE APPRAISAl BRANCH t J GEOLOGY OF URANIUM DEPOSITS IN THE C NORTHERN PART OF THE ROCKY MOUNTAIN ~ PROVINCE OF COLORADO I by Roger C. Malan ~ Issue Date May 1983 Grand Junction Area Office Grand Junction. Colorado Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. c~n&::;?'j_ >,fc..~ L'~ \t,.\ AEC-RD-14 UNITED STATES ATOMIC ENERGY COHMISSIOI'I GRAND JUNCTION OFFICE PRODUCTION EVALUATION DIVISION RESOURCE APPRAISAL BRANCH GEOLOGY OF URANIUH DEPOSITS IN THE NORTHEfui PART OF THE ROCKY HOUNTAIN PROVINCE OF COLORADO BY Roger C. '!alan DATE DUE October 1965 nd Junction, Colorado DEMCO, INC. 38·2931 Geology of Uranium Deposits in the Northern Part of the Rocky Mountain Province of Colorado TABLE OF CONTENTS Page SUMMARY. • • • • 9 INTRODUCTION • • 9 URANIUM INDUSTRY 14 HISTORY. • • 14 PRODUCTION AND RESERVES.
    [Show full text]