Handbook of Material Flow Analysis for Environmental, Resource, and Waste Engineers Case Studies

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Material Flow Analysis for Environmental, Resource, and Waste Engineers Case Studies This article was downloaded by: 10.3.98.104 On: 27 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Handbook of Material Flow Analysis For Environmental, Resource, and Waste Engineers Paul H. Brunner, Helmut Rechberger Case Studies Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315313450-4 Paul H. Brunner, Helmut Rechberger Published online on: 06 Dec 2016 How to cite :- Paul H. Brunner, Helmut Rechberger. 06 Dec 2016, Case Studies from: Handbook of Material Flow Analysis, For Environmental, Resource, and Waste Engineers CRC Press Accessed on: 27 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315313450-4 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Case Studies Looking at the graphic result of a material flow analysis (MFA), it seems easy and straightforward to define the system, collect the data, calculate the results, and draw conclusions. In practice, one does not start with the result but quite often with a badly defined problem that is highly complex and that has to be simplified and well structured first. After the goals of an MFA have been clearly defined, the real art consists of skillfully designing a system of boundaries, processes, flows, and stocks that allows solving a given problem at the least cost. Like in any other art, a precondition for mastering the art is to exercise the basic tools as much as possible. The more experienced a user gets, the easier it becomes to set up an appropriate system in a cost-effective way. An expert skilled in MFA will be able to define a metabolic system in any new field quite efficiently, with only a few alterations of the initial draft. Beginners will often find out that they have to revise their systems several times in order to cope with facts such as incomplete information about the important processes, stocks, and flows within the system; inappropriate sys- tems boundaries; missing, bad, or incompatible data; etc. MFA is usually a multidisciplinary task. Materials flow through many branches of an economy, and they cross boundaries such as the interfaces anthroposphere–environment or water–air–soil. Hence, it is of prime impor- tance to look for guidance from experts who understand those disciplines that are important for a particular MFA: if regional eutrophication due to poor nutrient management is investigated by MFA, it is necessary to include the knowledge of partners from agriculture, nutrition, sewage treatment, water quality, and hydrology, either by forming a project team or by engag- ing the experts as consultants when needed. Sometimes, this cooperation leads to new research questions, because the disciplinary research may, so far, not have been directed toward linking their disciplinary knowledge with other fields (cf. Section 3.1.2). An MFA can be a time-consuming and costly task. This is especially true if an MFA is performed for the first time in a new field, such as a study of regional heavy metal flows (cf. Sections 3.1.1 and 3.4.1). It may well be that the basic data of the region, such as anthropogenic flows and stocks, hydrologi- cal data on precipitation, evaporation, and surface and groundwater flows and stocks, have not been assessed before. It should be realized that a mini- mum amount of information is needed; otherwise, an MFA cannot succeed. Thus, sufficient resources in manpower and funding are required. Downloaded By: 10.3.98.104 At: 07:17 27 Sep 2021; For: 9781315313450, chapter3, 10.1201/9781315313450-4 207 208 Handbook of Material Flow Analysis It is a distinctly different task to perform an MFA in a particular field for the first time, or to repeat the analysis either for additional materials (e.g., first heavy metals, then nutrients) or for further time periods. The latter two tasks require less effort because the system has been set up and basic data, particularly on the level of goods, have already been collected before. If the costs for an initial MFA seem to be high, it should always be taken into account that the fundamental data can be used for future MFA and similar consecutive studies, such as annual environmental reporting or materials accounting. The following 18 case studies demonstrate how MFA can be applied for • Early recognition of beneficial and/or harmful accumulation and depletion of substances in stocks • Optimization of single processes and of entire metabolic systems • Policy analysis and policy decisions regarding the three fields of environmental management, resource management, and waste management In addition, an example of regional materials management (lead) is given in order to show that MFA is especially well suited to address problems related to multiple fields, such as the three described before: the regional lead study by MFA was initially not addressed to any specific problem; it revealed conclusions important for all three fields. The case studies are intended to increase the reader’s experience. It is recommended also to read some of the original literature cited in these case studies. Nevertheless, for those who want to master the fine art of MFA (König, 2002), it will be indispensable to gain additional experience by performing on their own as many MFA stud- ies as possible. Remember that looking at a final graph of an MFA reveals by no means the difficulties even experts encounter when condensing the complex reality of the world into an easily understandable, comprehensive MFA system. 3.1 Environmental Management Most material flow analysis studies have been undertaken to solve problems related to environmental management. A recent overview of the potential of MFA in this field is given in MAcTEmPo (Brunner et al., 1998). In general, MFA is a tool well suited for • Early recognition of environmental loadings • Linking of emissions to sources and vice versa Downloaded By: 10.3.98.104 At: 07:17 27 Sep 2021; For: 9781315313450, chapter3, 10.1201/9781315313450-4 Case Studies 209 • Setting of priorities for management measures • Designing new processes, goods, and systems in view of environ- mental constraints As seen in Chapter 2, an MFA is usually the starting point of any life-cycle assessment (LCA) and environmental impact statement (EIS). It is also use- ful as a base for an environmental management and audit system (EMAS) at the company level (see Section 3.1.4). If a company’s financial accounting system is linked to a material input–output flow and stock analysis, it can be efficiently used to measure the company’s environmental performance. The following case studies demonstrate that MFA can be used to investigate • Single-substance issues (e.g., emissions of heavy metals or nutrients) • Multisubstance problems (e.g., EIS of a coal-fired power plant) They also show the wide scale of spatial application: a single power plant, a small region of 66 km2, and a large watershed such as the entire River Danube basin with 820,000 km2 can all be investigated using the same MFA approach. 3.1.1 Case Study 1: Regional Lead Pollution Heavy metals are important substances for both economic as well as envi- ronmental reasons. Because of their physical–chemical properties, they can withstand weathering (zinc coatings of steel), improve the properties of other materials (chromium in steel, cadmium as an additive in polyvinyl chloride [PVC]), or serve to improve the efficiency of energy systems (lead in gaso- line, mercury in batteries). Some heavy metals are not essential for the bio- sphere, but many are toxic for humans, animals, plants, and microorganisms. It is thus important to control the flows and stocks of heavy metals to avoid harmful flows and accumulations and to make the best use of heavy metals as resources. This case study is taken from RESUB, a comprehensive study on the flows and stocks of 12 elements in a Swiss region (Bunz Valley) of 66 km2 and 28,000 inhabitants (Brunner et al., 1990). The purpose was to develop a meth- odology to assess material flows and stocks within, into, and out of a region in a thorough and integrated way. In addition, the significance of the find- ings for the management of resources and the environment was to be inves- tigated. There was no given goal in view of environmental management. The case study portrayed in this chapter represents merely a small fraction of the entire RESUB project. Only the flows and stocks of lead relevant to envi- ronmental management are discussed. The implications of these flows and stocks for resource management are examined in Section 3.4.1. The detailed procedure described next confirms that an MFA is a multidisciplinary task that requires knowledge, information, and support from many fields. Downloaded By: 10.3.98.104 At: 07:17 27 Sep 2021; For: 9781315313450, chapter3, 10.1201/9781315313450-4 210 Handbook of Material Flow Analysis 3.1.1.1 Procedures In a first step, the region is defined according to Figure 3.1.
Recommended publications
  • Towards a Dynamic Assessment of Raw Materials Criticality: Linking Agent-Based Demand--With Material Flow Supply Modelling Approaches
    This is a repository copy of Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80022/ Version: Accepted Version Article: Knoeri, C, Wäger, PA, Stamp, A et al. (2 more authors) (2013) Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches. Science of the Total Environment, 461-46. 808 - 812. ISSN 0048-9697 https://doi.org/10.1016/j.scitotenv.2013.02.001 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Towards a dynamic assessment of raw materials criticality: Linking agent-based demand - with material flow supply modelling approaches Christof Knoeri1, Patrick A.
    [Show full text]
  • Examples in Material Flow Analysis
    China Steel Technical Report, No. 27, pp.1-5, (2014) Kuo-Chung Liu 1 Examples in Material Flow Analysis KUO-CHUNG LIU Office of Energy and Environmental Affairs China Steel Corporation The inputs and outputs of water, carbon and CaO are used as examples of Material Flow Analysis (MFA) at CSC. The intensities of water and CO2 as well as the output for steelmaking slag are discussed. Current CO2- Intensities are influenced by in-plant coke storage, sold energy products, purchased scrap, degree of cold rolling, purchased crude steel/roll and crude steel production etc. The adjusted CO2- Intensities for 2010 to 2013 at CSC are reported in discussion. This paper also highlights that steelmaking slag has become an output bottleneck at CSC and therefore needs better management. Keywords: MFA analysis, water, CaO, CO2, Steelmaking slag MFA of main materials such as water, carbon and CaO, 1. INTRODUCTION while the boundary is set at the Hsiao Kang Factories Material Flow Analysis (MFA) is a tool for of China Steel (CSC). analyzing the inputs and the outputs of a material in a 2. MAJOR MFA ANALYSES boundary. The materials can be divided into two cate- gories, namely the main materials or the pollutants, 2.1 Main streams whereas the boundary can be set as a nation, an area or The main streams of CSC in 2013 can be shown in a company depending on what is to be analyzed. In this Fig.1(1). report, some preliminary applications are studied on the Low-sulfer fuel oil Natural gas Purchased electricity Makeup water* 9.3 tons 76.9 km3 2283 MWh 45554 m3 Iron ore/Pellets Crude steel 13066 tons 8693.6 tons Coal 6801 tons Coal tar Flux 205.2 tons 2951 tons CSC Hsiao Kang Factories Light oil Purchased scrap steel 54.8 tons 72.2 tons Liquid sulfur Ferroalloy 11.3 tons 132.1 tons Iron oxide powder Refractory 82.6 tons 28.7 tons Process residues (wet basis) Effluent 5281 tons 14953 m3 Only for Processes.
    [Show full text]
  • Life Cycle Assessment
    Life cycle assessment http://lcinitiative.unep.fr/ http://lca.jrc.ec.europa.eu/lcainfohub/index.vm http://www.lbpgabi.uni-stuttgart.de/english/referenzen_e.html "Cradle-to-grave" redirects here. For other uses, see Cradle to the Grave (disambiguation). Recycling concepts Dematerialization Zero waste Waste hierarchy o Reduce o Reuse o Recycle Regiving Freeganism Dumpster diving Industrial ecology Simple living Barter Ecodesign Ethical consumerism Recyclable materials Plastic recycling Aluminium recycling Battery recycling Glass recycling Paper recycling Textile recycling Timber recycling Scrap e-waste Food waste This box: view • talk • edit A life cycle assessment (LCA, also known as life cycle analysis, ecobalance, and cradle-to- grave analysis) is the investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence. Contents [hide] 1 Goals and Purpose of LCA 2 Four main phases o 2.1 Goal and scope o 2.2 Life cycle inventory o 2.3 Life cycle impact assessment o 2.4 Interpretation o 2.5 LCA uses and tools 3 Variants o 3.1 Cradle-to-grave o 3.2 Cradle-to-gate o 3.3 Cradle-to-Cradle o 3.4 Gate-to-Gate o 3.5 Well-to-wheel o 3.6 Economic Input-Output Life Cycle Assessment 4 Life cycle energy analysis o 4.1 Energy production o 4.2 LCEA Criticism 5 Critiques 6 See also 7 References 8 Further reading 9 External links [edit] Goals and Purpose of LCA The goal of LCA is to compare the full range of environmental and social damages assignable to products and services, to be able to choose the least burdensome one.
    [Show full text]
  • Systems of Evidence in the Age of Complexity
    V12I2.PAUL.FINALLAYOUT1.0613.DOC (DO NOT DELETE) 6/19/14 12:56 PM Copyright © 2014 Ave Maria Law Review SYSTEMS OF EVIDENCE IN THE AGE OF COMPLEXITY George L. Paul † The global economy is transforming in unprecedented fashion. Persistent, exponentially advancing technologies1 now rival the invention of the printing press in their importance to society.2 Indeed, respected economists declare that what is happening is the biggest development in the history of economic activity.3 The result? Complex systems will soon define reality and a new civilization is emerging. And what is happening in the legal realm? Our system of evidence now fails to comprehend the emerging complexity that may soon overwhelm us. Accordingly, the rule of law is in jeopardy. † George L. Paul, a graduate of Yale Law School and Dartmouth College, is a trial lawyer of thirty-two years experience. He has written FOUNDATIONS OF DIGITAL EVIDENCE (2008), Information Inflation: Can the Legal System Adapt, and other books and articles about digital evidence issues. 1. See George L. Paul, Transformation, 9 ABA SCITECH LAWYER, Winter/Spring 2013, at 2, available at www.lrrlaw.com/files/uploads/documents/Transformation,%20by%20George%20Paul.pdf (quoting Daniel Burrus’ statements that exponential hard trends are transforming society in a way that is “bigger than the . printing press”). 2. It is widely acknowledged that the invention of the moveable type printing press by Johannes Gutenberg, circa 1450 C.E., was the technology that more than any other helped usher in modernity. Its acceleration of the transmission of information enabled such things as the Renaissance, the Protestant Reformation, and the Scientific Revolution.
    [Show full text]
  • Formulating a Simple Model Structure
    Formulating a simple model structure 401.661 Advanced Construction Technology Moonseo Park Professor, PhD 39동 433 Phone 880-5848, Fax 871-5518 E-mail: [email protected] Department of Architecture College of Engineering Seoul National University 401.661 Advanced Construction Technology 1 Equilibrium § Stock in equilibrium when unchanging *System in equilibrium when all its stocks are unchanging. § Dynamic Equilibrium e.g., # of US senate inflow = outflow § Static Equilibrium *Same contents. e.g., # of Bach cantatas inflow = outflow = 0 401.661 Advanced Construction Technology 2 Integration & Differentiation 401.661 Advanced Construction Technology 3 Calculus without Mathematics Quantity added during interval of length dt . = R (units/time) * dt (time) *R = the net flow during the interval Concrete Mixer Example § Area of each rectangle= Ridt Net Rate (units/time) § Adding all six rectangles = R1 0 dt Approximation of total water added S2 S1 Stock (units) § How to increase accuracy? t1 t2 401.661 Advanced Construction Technology 4 Fundamental Modes § Positive feedback causes exponential growth, while negative feedback causes goal-seeking behavior. Goal State of the System State of the System Time Time + State of the Goal System (Desired + Net State of System) Increase R State of the - System B Rate Discrepancy + + Corrective Action + §Sterman, J., “Business Dynamics”, Mcgraw-Hill, 2000 401.661 Advanced Construction Technology 5 First-Order Systems § A first-order system contains only one stock. § Linear systems are systems, in which the rate equations are linear combinations of the state variables. dS/dt = Net Inflow = a1S1 + a2S2 … + anSn + b1U1 + b2U2 … + bmUm Where the coefficients ai, bj are constants and any exogenous variable are denoted Uj.
    [Show full text]
  • Material Flows and Stocks in the Urban Building Sector: a Case Study from Vienna for the Years 1990–2015
    sustainability Article Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015 Jakob Lederer 1,2,*, Andreas Gassner 1, Florian Keringer 3, Ursula Mollay 3, Christoph Schremmer 3 and Johann Fellner 1 1 Christian Doppler Laboratory for Anthropogenic Resources, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria; [email protected] (A.G.); [email protected] (J.F.) 2 Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166-01, 1060 Vienna, Austria 3 Austrian Institute of Regional Studies (OIR GmbH), Franz-Josefs-Kai 27, 1010 Vienna, Austria; [email protected] (F.K.); [email protected] (U.M.); [email protected] (C.S.) * Correspondence: [email protected] Received: 2 December 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: Population growth in cities leads to high raw material consumption and greenhouse gas emissions. In temperate climates were heating of buildings is among the major contributors to greenhouse gases, thermal insulation of buildings became a standard in recent years. Both population growth and greenhouse gas mitigation may thus have some influence on the quantity and composition of building material stock in cities. By using the case study of Vienna, this influence is evaluated by calculating the stock of major building materials (concrete, bricks, mortar, and plaster, steel, wood, glass, mineral wool, and polystyrene) between the years 1990 and 2015. The results show a growth of the material stock from 274 kt in the year 1990 to 345 kt in the year 2015, resulting in a total increase of 26%.
    [Show full text]
  • Quantification of Anthropogenic Metabolism Using Spatially Differentiated Continuous MFA Across the Country
    Change Adaptation Socioecol. Syst. 2017; 3: 119–132 Research Article Georg Schiller, Karin Gruhler, Regine Ortlepp* Quantification of anthropogenic metabolism using spatially differentiated continuous MFA https://doi.org/10.1515/cass-2017-0011 across the country. In Germany, such disparities mean that received April 13, 2017; accepted January 16, 2018 there will be a shortfall in RA of 6.3 Gt by the year 2020, Abstract: Coefficient-based, bottom-up material flow while the technically available but unusable RA (due to a analysis is a suitable tool to quantify inflows, outflows regional mismatch of potential supply and demand) will and stock dynamics of materials used by societies, and total 3.2 Gt. Comprehensive recycling strategies have to thus can deliver strategic knowledge needed to develop combine high-quality recycling with other lower-grade circular economy policies. Anthropogenic stocks and flows applications for secondary raw materials. Particularly in are mostly of bulk nonmetallic mineral materials related the case of building materials, essential constraints are to the construction, operation and demolition of buildings not only technical but also local conditions of construction and infrastructures. Consequently, it is important to be and demolition. These interrelations should be identified able to quantify circulating construction materials to and integrated into a comprehensive system to manage help estimate the mass of secondary materials which can the social metabolism of materials in support of circular be recovered such as recycled aggregates (RA) for fresh economy policies. concrete in new buildings. Yet as such bulk materials are high volume but of low unit value, they are generally Keywords: continuous material flow analysis (C-MFA), produced and consumed within a region.
    [Show full text]
  • The Relationship Between Local Content, Internet Development and Access Prices
    THE RELATIONSHIP BETWEEN LOCAL CONTENT, INTERNET DEVELOPMENT AND ACCESS PRICES This research is the result of collaboration in 2011 between the Internet Society (ISOC), the Organisation for Economic Co-operation and Development (OECD) and the United Nations Educational, Scientific and Cultural Organization (UNESCO). The first findings of the research were presented at the sixth annual meeting of the Internet Governance Forum (IGF) that was held in Nairobi, Kenya on 27-30 September 2011. The views expressed in this presentation are those of the authors and do not necessarily reflect the opinions of ISOC, the OECD or UNESCO, or their respective membership. FOREWORD This report was prepared by a team from the OECD's Information Economy Unit of the Information, Communications and Consumer Policy Division within the Directorate for Science, Technology and Industry. The contributing authors were Chris Bruegge, Kayoko Ido, Taylor Reynolds, Cristina Serra- Vallejo, Piotr Stryszowski and Rudolf Van Der Berg. The case studies were drafted by Laura Recuero Virto of the OECD Development Centre with editing by Elizabeth Nash and Vanda Legrandgerard. The work benefitted from significant guidance and constructive comments from ISOC and UNESCO. The authors would particularly like to thank Dawit Bekele, Constance Bommelaer, Bill Graham and Michuki Mwangi from ISOC and Jānis Kārkliņš, Boyan Radoykov and Irmgarda Kasinskaite-Buddeberg from UNESCO for their work and guidance on the project. The report relies heavily on data for many of its conclusions and the authors would like to thank Alex Kozak, Betsy Masiello and Derek Slater from Google, Geoff Huston from APNIC, Telegeography (Primetrica, Inc) and Karine Perset from the OECD for data that was used in the report.
    [Show full text]
  • The Limits to Growth: the 30-Year Update
    Donella Meadows Jorgen Randers Dennis Meadows Chelsea Green (United States & Canada) Earthscan (United Kingdom and Commonwealth) Diamond, Inc (Japan) Kossoth Publishing Company (Hungary) Limits to Growth: The 30-Year Update By Donella Meadows, Jorgen Randers & Dennis Meadows Available in both cloth and paperback editions at bookstores everywhere or from the publisher by visiting www.chelseagreen.com, or by calling Chelsea Green. Hardcover • $35.00 • ISBN 1–931498–19–9 Paperback • $22.50 • ISBN 1–931498–58–X Charts • graphs • bibliography • index • 6 x 9 • 368 pages Chelsea Green Publishing Company, White River Junction, VT Tel. 1/800–639–4099. Website www.chelseagreen.com Funding for this Synopsis provided by Jay Harris from his Changing Horizons Fund at the Rockefeller Family Fund. Additional copies of this Synopsis may be purchased by contacting Diana Wright at the Sustainability Institute, 3 Linden Road, Hartland, Vermont, 05048. Tel. 802/436–1277. Website http://sustainer.org/limits/ The Sustainability Institute has created a learning environment on growth, limits and overshoot. Visit their website, above, to follow the emerging evidence that we, as a global society, have overshot physcially sustainable limits. World3–03 CD-ROM (2004) available by calling 800/639–4099. This disk is intended for serious students of the book, Limits to Growth: The 30-Year Update (2004). It permits users to reproduce and examine the details of the 10 scenarios published in the book. The CD can be run on most Macintosh and PC operating systems. With it you will be able to: • Reproduce the three graphs for each of the scenarios as they appear in the book.
    [Show full text]
  • REFERENCES Abufayed, AA, & Schroeder, ED
    REFERENCES Abufayed, A. A., & Schroeder, E. D. (1986) Performance of SBR/denitrification with a primary sludge carbon source. Journal WPCF 5 (58); 387 Adriaanse, A., Bringezu, S., Hamond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., Schütz, H. (1997). Resource Flows: The Material Base of Industrial Economies. World Resource Institute, Washington. Agamuthu P. & Fauziah,S.H. (2010) Impact of Landfill Gas on Climate Change, International Conference on Climate Change and Bioresource (ICCCB 2010) 9th- 12th February 2010, Department of Biotechnology, Bharathidasan University India. Agamuthu,P., Fauziah, S.H. and Khidzir, K.M. (2009) Evolution of solid waste management in Malaysia : Impacts and implications of the solid waste bill 2007. Journal of Material Cycles and Waste Management, 11(2): 96-103. Agamuthu,P., Fauziah, S.H. and Lingesveeramani, M (2004) Evolution of MSW in Malaysia- An overview. Paper presented in the World Congress ISWA 2004, 17-21 October 2004, Rome Italy. Agamuthu,P.,Fauziah,S.H. and Khidzir,K.M.,(2003) Municipal solid waste management; A comparative study on selected landfill in Selangor.In Proceedings of Environment 2003 Environmental Management and Sustainable Development for Better Future Growth.18th- 19th February 2003: pp434-437.Penang, Malaysia. Agamuthu, P. (2001) Solid Waste : Principle and Management. University of Malaya Press: 9-27 Albers, H. & Krückeberg, G, 1992) Combination of aerobic pre-treatment, carbon adsorption and coagulation. Landfilling of waste: leachate. Elsevier applied science. London and New York.305pp. Alhumoud, J.M.(2005)Municipal solid waste recycling in the Gulf Co-operation Council states. Resources,Conservation and Recycling 45(2):142-158. Alhumoud,J.M., Al-Ghusain, I.
    [Show full text]
  • The State of the Art of Material Flow Analysis Research Based on Construction and Demolition Waste Recycling and Disposal
    buildings Review The State of the Art of Material Flow Analysis Research Based on Construction and Demolition Waste Recycling and Disposal Dongming Guo * and Lizhen Huang Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2802 Gjovik, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-925-59-641 Received: 9 August 2019; Accepted: 18 September 2019; Published: 21 September 2019 Abstract: Construction and demolition waste (C&D waste) are widely recognized as the main form municipal solid waste, and its recycling and reuse are an important issue in sustainable city development. Material flow analysis (MFA) can quantify materials flows and stocks, and is a useful tool for the analysis of construction and demolition waste management. In recent years, material flow analysis has been continually researched in construction and demolition waste processing considering both single waste material and mixed wastes, and at regional, national, and global scales. Moreover, material flow analysis has had some new research extensions and new combined methods that provide dynamic, robust, and multifaceted assessments of construction and demolition waste. In this paper, we summarize and discuss the state of the art of material flow analysis research in the context of construction and demolition waste recycling and disposal. Furthermore, we also identify the current research gaps and future research directions that are expected to promote the development of MFA for construction and demolition waste processing in the field of sustainable city development. Keywords: Material flow analysis (MFA); construction and demolition waste (C&D waste); recycling and reuse; environmental impact 1. Introduction The construction and operation of buildings occupy almost 40% of the depletion of natural resources and 25% of global waste [1,2].
    [Show full text]
  • Sustainable Cycles and Management of Plastics a Brief Review of RCR Publications in 2019 and Early 2020
    Resources, Conservation & Recycling 159 (2020) 104822 Contents lists available at ScienceDirect Resources, Conservation & Recycling journal homepage: www.elsevier.com/locate/resconrec Editorial Sustainable cycles and management of plastics: A brief review of RCR publications in 2019 and T early 2020 ARTICLE INFO ABSTRACT Keywords: Plastics have been playing a vital role in the industrialized economy, resulting in the growing amount of plastic waste Plastics and the surging attentions to plastics sustainability challenge. This is well reflected in the growing amount of sub- Material flow analysis missions to and publications in Resources, Conservation, and Recycling on plastics, which made the editorial board Life cycle assessment decide to edit a Virtual Special Issue (VSI) on the “sustainable cycles and management of plastics” in 2018. The call for Circular economy the VSI has attracted many submissions and twelve were accepted for publication. Together with several other re- Recycling levant studies, we collected and summarized a total of 26 papers published in RCR mainly during 2019–2020 in this Waste management editorial. These papers mostly apply system approach and cover very wide topics such as material flows analysis and circular economy, life cycle assessment and eco-design, regional and global plastic emissions, and human consumption behavior. The whole collection of them offer a comprehensive view of the plastic waste challenges, as well as insights into achieving sustainability in plastic cycles and management. We believe these papers are helpful for government, industries, and individuals in exploring policy implications for building a more sustainable plastics system. 1. Introduction including 1) Material flow analysis (MFA) and plastic circularity, 2) Emissions and pollution, 3) Life cycle assessment (LCA) and eco-design, Plastics are widely used in industrial production throughout the and 4) Public attitude, human behavior, and policymaking.
    [Show full text]