Structure-Function Analysis of the DNA Damage Repair Complex STR in Saccharomyces Cerevisiae Jessica Ashley Kennedy University of South Florida, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Structure-Function Analysis of the DNA Damage Repair Complex STR in Saccharomyces Cerevisiae Jessica Ashley Kennedy University of South Florida, Kennedy5@Mail.Usf.Edu University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2015 Structure-Function Analysis of the DNA Damage Repair Complex STR in Saccharomyces cerevisiae Jessica Ashley Kennedy University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Biology Commons Scholar Commons Citation Kennedy, Jessica Ashley, "Structure-Function Analysis of the DNA Damage Repair Complex STR in Saccharomyces cerevisiae" (2015). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/5713 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Structure-Function Analysis of the DNA Damage Repair Complex STR in Saccharomyces cerevisiae by Jessica A. Kennedy A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology Department of Cell Biology, Microbiology, and Molecular Biology College of Arts and Sciences University of South Florida Co-Major Professor: Kristina Schmidt, Ph.D. Co-Major Professor: Gary Daughdrill, Ph.D. Stanley Stevens, Ph.D. Patrick Bradshaw, Ph.D. Date of Approval: June 29, 2015 Keywords: RecQ Helicases, Intrinsic Disorder, Unstructured Proteins Copyright © 2015, Jessica A. Kennedy DEDICATION I would like to dedicate this dissertation to all those that played a hand in educating me to this point. It is only because of their dedication to education that I am the student I am today. I owe the faculty of Sanders Memorial Elementary, Pine View Middle, Land O’ Lakes High, and University of South Florida for the tools and drive to reach this point. Thank you for challenging me and keeping me hungry. I would also like to dedicate this to my parents, Frederick and Nancy Kennedy, and particularly to my sisters Erin Kennedy and Mary Ghazarian, who are the perfect partners in academic crime. Thank you for listening to my complaints on the most rough days of the bench. Having someone who knows the struggle to succeed matters (even if they don’t really know what I do. C-3PO is not a gene). Lastly, I dedicate at least a small part of this to Amy Morrison and Charles Slowik, who kept me fed throughout the writing process. Your stress-eating sessions of delicious food make the whole process just a little easier. You are the truest friends. TABLE OF CONTENTS List of Tables ................................................................................................................... v List of Figures ................................................................................................................. vi List of Acronyms .............................................................................................................. ix Abstract .......................................................................................................................... xii Chapter One: Introduction ............................................................................................... 1 Founding Member of the RecQ Family of Helicases ............................................ 1 RecQ Helicase Structure and Function ................................................................ 2 RecQ Helicase in S. cerevisiae, Sgs1 .................................................................. 5 Characterization of the Δsgs1 Phenotype .................................................. 6 Role of Sgs1 in DNA Repair ...................................................................... 7 N-Terminal and Putative Sgs1 Protein/Protein Interactions ..................... 11 The RTR Complex: RecQ Interaction with Top3 and Rmi1 ...................... 14 Role and Interaction of Topoisomerase III (Top3) in RTR Complex ............................................................................... 14 Role and Interaction of Rmi1 in the RTR Complex .................. 15 RTR Complex Member in Humans: Rmi2 ................................ 17 RecQ Orthologs in Humans ................................................................................ 18 RecQL1 .................................................................................................... 18 RecQL5 .................................................................................................... 19 RecQL4 .................................................................................................... 21 WRN ........................................................................................................ 24 BLM ......................................................................................................... 30 Intrinsically Disordered Proteins/Regions (IDP/Rs) ............................................ 37 Characteristics of IDPs ............................................................................ 38 Prevalence of IDPs .................................................................................. 40 Thermodynamic Characteristics of IDPs .................................................. 40 Functional Advantage of IDPs ................................................................. 41 Evolutionary Advantage of IDPs .............................................................. 44 Examples of Intrinsic Disorder ................................................................. 45 Disorder in S. cerevisiae .......................................................................... 47 Disorder in RecQ Helicases ..................................................................... 47 References ......................................................................................................... 50 i Chapter Two: Materials and Methods............................................................................ 69 Site-Directed Mutagenesis ................................................................................. 69 Plasmid Isolation from Bacteria .......................................................................... 73 Gross Chromosomal Rearrangement (GCR) Assay ........................................... 73 Trichloroacetic Acid (TCA) Extraction ................................................................. 74 SDS-PAGE and Western Blot Analysis .............................................................. 74 Hydroxyurea Sensitivity Assay ........................................................................... 75 Yeast Mating for Diploids .................................................................................... 75 Lithium Acetate (LiAc) Transformation ............................................................... 76 Media Types ...................................................................................................... 77 References ......................................................................................................... 78 Chapter Three: A Transient α-Helical Molecular Recognition Element in the Disordered N-terminus of the Sgs1 Helicase is Critical for Chromosome Stability and Binding of Top3/Rmi1 ............................................................................ 79 Abstract .............................................................................................................. 79 Introduction ......................................................................................................... 80 Materials and Methods ....................................................................................... 83 Expression and Purification of Peptides for NMR Spectroscopy .............. 83 NMR Analysis .......................................................................................... 84 Hydroxyurea Hypersensitivity Assay ........................................................ 86 Top3 and Rmi1 Binding Assay ................................................................. 86 Gross-Chromosomal Rearrangement Assay ........................................... 88 Preparation of Yeast Whole-Cell Extracts by Trichloroacetic Acid Extraction ........................................................................................... 88 Results ............................................................................................................... 89 The First 125 Residues of the Structurally Disordered N-terminus of Sgs1 Contain Two Transient α-helices ............................................ 89 Functional Mapping of α-helices by Proline Mutagenesis ........................ 92 Disruption of Transient α-helices Impairs Complex Formation Between Sgs1, Top3 and Rmi1 ........................................................... 95 Integrity of Transient α-helices is Critical for Maintaining Chromosomal Stability ......................................................................... 96 Discussion .......................................................................................................... 97 References ....................................................................................................... 102 Figures and Tables ........................................................................................... 107 Chapter Four: The Role of Protein Disorder in Chromatin Processes of S.cerevisiae .............................................................................................................. 120 Introduction ......................................................................................................
Recommended publications
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
    AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation.
    [Show full text]
  • 17 January 2001
    Running Title: DNA Recombination and Repair in the Archaea DNA Recombination and Repair in the Archaea Erica M. Seitz, Cynthia A. Haseltine, and Stephen C. Kowalczykowski* Sections of Microbiology and of Molecular and Cellular Biology Center for Genetics and Development University of California, Davis Davis, CA 95616-8665 * Corresponding author: Section of Microbiology One Shields Avenue Hutchison Hall University of California, Davis Davis, CA 95616-8665 Phone: (530)752-5938 Fax: (530)752-5939 email: [email protected] 1 Abstract The ability to repair DNA damage is crucial to all organisms. Much of what we learned about these processes was gained from studies carried out in Bacteria, especially in Escherichia coli, or Eucarya, particularly in the yeast Saccharomyces cerevisiae. The repair of DNA damage occurs by at least four different pathways: direct reversal of DNA damage, excision of damaged nucleotides (nucleotide excision repair or NER) or bases (base excision repair or BER), excision of misincorporated nucleotides (mismatch repair or MMR), and recombinational repair. Proteins involved in these processes have recently been identified in the third domain of life, the Archaea. Here we present a summary of DNA repair proteins in both the Bacteria and Eucarya, and discuss similarities and differences between these two domains and what is currently known in the Archaea. 2 I. Introduction DNA is subjected daily to considerable environmental and endogenous damage, which challenges both the integrity of the essential information that it contains and its ability to be transferred to future generations. All cells, however, are prepared to handle damage to the genome through an extensive DNA repair system, thus underscoring the importance of this process in cell survival.
    [Show full text]
  • The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia Coli
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 1-1-2012 The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia coli Kelley Nicole Newton Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Cell Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Newton, Kelley Nicole, "The Role of Nucleotide Excision Repair in Restoring Replication Following UV- Induced Damage in Escherichia coli" (2012). Dissertations and Theses. Paper 767. https://doi.org/10.15760/etd.767 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia coli by Kelley Nicole Newton A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Michael Bartlett Jeffrey Singer Portland State University 2012 ABSTRACT Following low levels of UV exposure, Escherichia coli cells deficient in nucleotide excision repair recover and synthesize DNA at near wild type levels, an observation that formed the basis of the post replication recombination repair model. In this study, we characterized the DNA synthesis that occurs following UV-irradiation in the absence of nucleotide excision repair and show that although this synthesis resumes at near wild type levels, it is coincident with a high degree of cell death.
    [Show full text]
  • Recq Helicase Translocates Along Single-Stranded DNA with a Moderate Processivity and Tight Mechanochemical Coupling
    RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling Kata Sarlós, Máté Gyimesi, and Mihály Kovács1 Department of Biochemistry, Eötvös Loránd University - Hungarian Academy of Sciences, “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, H-1117, Budapest, Hungary Edited* by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved May 8, 2012 (received for review September 2, 2011) Maintenance of genome integrity is the major biological role of characterized by diffusion along the DNA strand in alternating RecQ-family helicases via their participation in homologous re- weak and strong binding states, was used to describe the trans- combination (HR)-mediated DNA repair processes. RecQ helicases location of hepatitis C virus NS3 helicase (19). Because of the exert their functions by using the free energy of ATP hydrolysis low coupling between the enzymatic (ATPase) and mechanical for mechanical movement along DNA tracks (translocation). In (translocation) cycles, ratchet mechanisms usually lead to the addition to the importance of translocation per se in recombina- consumption of more than one ATP molecule per nucleotide tion processes, knowledge of its mechanism is necessary for the traveled. In contrast to the above enzymes, although the biological understanding of more complex translocation-based activities, in- functions of E. coli RecQ are well described (20–23), mechanistic cluding nucleoprotein displacement, strand separation (unwind- knowledge of the underlying molecular processes is scarce. ing), and branch migration. Here, we report the key properties of DNA activates the ATPase activity of RecQ, and the ATP the ssDNA translocation mechanism of Escherichia coli RecQ heli- hydrolysis cycle is coupled to DNA unwinding (22, 24).
    [Show full text]
  • A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the Dntpase SAMHD1
    A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the dNTPase SAMHD1 Miriam Yagüe-Capilla1, Sean G. Rudd1 1 Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet Corresponding Author Abstract Sean G. Rudd [email protected] Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a pivotal regulator of intracellular deoxynucleoside triphosphate (dNTP) pools, as this Citation enzyme can hydrolyze dNTPs into their corresponding nucleosides and inorganic Yagüe-Capilla, M., Rudd, S.G. A triphosphates. Due to its critical role in nucleotide metabolism, its association to High-Throughput Enzyme-Coupled Activity Assay to Probe Small several pathologies, and its role in therapy resistance, intense research is currently Molecule Interaction with the dNTPase being carried out for a better understanding of both the regulation and cellular SAMHD1. J. Vis. Exp. (170), e62503, doi:10.3791/62503 (2021). function of this enzyme. For this reason, development of simple and inexpensive high- throughput amenable methods to probe small molecule interaction with SAMHD1, Date Published such as allosteric regulators, substrates, or inhibitors, is vital. To this purpose, April 16, 2021 the enzyme-coupled malachite green assay is a simple and robust colorimetric assay that can be deployed in a 384-microwell plate format allowing the indirect DOI measurement of SAMHD1 activity. As SAMHD1 releases the triphosphate group from 10.3791/62503 nucleotide substrates, we can couple a pyrophosphatase activity to this reaction, URL thereby producing inorganic phosphate, which can be quantified by the malachite jove.com/video/62503 green reagent through the formation of a phosphomolybdate malachite green complex.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Structure of the Dengue Virus Helicase/Nucleoside Triphosphatase Catalytic Domain
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain Xu, Ting 2007 Xu, T. (2007). Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/6575 https://doi.org/10.32657/10356/6575 Nanyang Technological University Downloaded on 07 Oct 2021 10:12:33 SGT ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library STRUCTURE OF THE DENGUE VIRUS HELICASE/NUCLEOSIDE TRIPHOSPHATASE CATALYTIC DOMAIN Xu Ting SCHOOL OF BIOLOGICAL SCIENCES NANYANG TECHNOLOGICAL UNIVERSITY 2007 ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library Acknowledgements ACKNOWLEDGEMENTS First and foremost, I am deeply grateful to my supervisor, Dr. Julien Lescar, for giving me this great opportunity to learn crystallography; encouragement and support he has given me throughout my research and the preparation of this thesis. Next, I wish to express my sincere gratitude to Dr. Subhash G.Vasudevan, head of dengue unit of Novartis Institute of Tropical Diseases (NITD), for his initiation of the project of crystal structure determination of dengue NS3 helicase domain. I would also like to thank Daying Wen, Alex Chao, (NITD) for their sincere help in this research and special thanks to Dr. Aruna Sampath (NITD) for sharing the biochemical data which made our publication more powerful. I owe my sincere thanks to Dr. Max Nanao (European Synchrotron Radiation Facility) for his great help in data collection and valuable suggestions in structure determination.
    [Show full text]
  • Barbour-Thesis.Pdf (2.004Mb)
    Synthetically Lethal Interactions Classify Novel Genes in Postreplication Repair in Saccharomyces cerevisiae A thesis submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Microbiology and Immunology University of Saskatchewan Leslie Barbour, B.Sc. © Copyright Leslie Barbour, February 2005. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or make other use of material in this thesis in whole or in part should be addressed to: Head of the Department of Microbiology and Immunology Health Sciences Building, 107 Wiggins Road University of Saskatchewan Saskatoon, SK Canada S7N 5E5 i Acknowledgments First I would like to thank my supervisor, Dr.
    [Show full text]
  • Aspects Moléculaires Des Hélicases De La Famille De Recq Hua Ren
    Aspects moléculaires des hélicases de la famille de RecQ Hua Ren To cite this version: Hua Ren. Aspects moléculaires des hélicases de la famille de RecQ. Sciences du Vivant [q-bio]. École normale supérieure de Cachan - ENS Cachan, 2009. Français. tel-00448084 HAL Id: tel-00448084 https://tel.archives-ouvertes.fr/tel-00448084 Submitted on 18 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Présentée par Madame Hua REN pour obtenir le grade de DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Domaine : SCIENCES DE LA VIE ET DE LA SANTE Sujet de la thèse: Aspects moléculaires des hélicases de la famille de RecQ Thèse présentée et soutenue à ECNU Chine le 28 / 09/ 2009 devant le jury composé de : M. Marc BOUDVILLAIN Président/Rapporteur M. Jie-min WENG Rapporteur M. Duan MA Examinateur Mme Min QIAN Co-Directrice de thèse M. Xu-guang XI Co-Directeur de thèse Nom du Laboratoire: LBPA ENS CACHAN/CNRS/UMR 8113 61, avenue du Président Wilson, 94235 CACHAN CEDEX (France) ACKNOWLEDGEMENT This thesis would not have been done possibly without the support of many people.
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]