RECQ1 Helicase in Genomic Stability and Cancer

Total Page:16

File Type:pdf, Size:1020Kb

RECQ1 Helicase in Genomic Stability and Cancer G C A T T A C G G C A T genes Review RECQ1 Helicase in Genomic Stability and Cancer Subrata Debnath 1 and Sudha Sharma 1,2,* 1 Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA; [email protected] 2 National Human Genome Center, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA * Correspondence: [email protected]; Tel.: +1-202-806-3833; Fax: +1-202-806-5784 Received: 11 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: RECQ1 (also known as RECQL or RECQL1) belongs to the RecQ family of DNA helicases, members of which are linked with rare genetic diseases of cancer predisposition in humans. RECQ1 is implicated in several cellular processes, including DNA repair, cell cycle and growth, telomere maintenance, and transcription. Earlier studies have demonstrated a unique requirement of RECQ1 in ensuring chromosomal stability and suggested its potential involvement in tumorigenesis. Recent reports have suggested that RECQ1 is a potential breast cancer susceptibility gene, and missense mutations in this gene contribute to familial breast cancer development. Here, we provide a framework for understanding how the genetic or functional loss of RECQ1 might contribute to genomic instability and cancer. Keywords: helicase; replication; DNA repair; G4; transcription; genomic stability; breast cancer; cancer 1. Introduction Mutations in DNA repair genes elicit genome instability, leading to cellular transformation and the development of cancer [1]. This class of genes may also include RecQ helicases, represented by five distinct homologs in humans, because of their caretaker function in genome maintenance [2]. Indeed, loss of function mutations in genes encoding RecQ helicases BLM, WRN, and RECQL4 are causatively linked with rare genetic syndromes and cancer predisposition [3,4]. Despite being the first discovered RecQ homolog in humans and essential for chromosomal stability, the biological significance of RECQ1 (also known as RECQL or RECQL1) in human health and disease has remained underappreciated. Recent discoveries suggest that rare, recurrent germline mutations in RECQ1 significantly increase the risk of breast cancer [5,6]. Here, we summarize the findings on the RECQ1 helicase to gain a better understanding of its functions in genomic stability maintenance that could be critical in tumorigenesis. 2. Structure and Biochemical Properties of RECQ1 The human RECQ1 gene, located on chromosome 12p12, encodes a 649 amino acid protein of 73 kDa [7,8]. RECQ1 protein is expressed ubiquitously and represents the most abundant RecQ homolog present in humans [9]. It contains four domains: N-terminus (amino acid residues 1–62), a highly conserved core helicase domain (amino acid residues 63–418), the RecQ-specific C-terminal (RQC) domain (amino acid residues 419–592), and C-terminus (amino acid residues 593–694) [3] (Figure1). The Helicase and RNaseD C-terminal (HRDC) domain, which is present in several RecQ proteins like bacterial RecQ and human WRN and BLM, is absent in RECQ1 [10]. Biochemically, RECQ1 catalyzes ATP-dependent unwinding of DNA, with a 30-50 polarity, and can unwind a variety of DNA structures other than B-form DNA duplexes, such as forked duplexes, D-loops, and Holiday Junction (HJ) structures [11]. In addition to helicase activity, RECQ1 also promotes annealing of complementary Genes 2020, 11, 622; doi:10.3390/genes11060622 www.mdpi.com/journal/genes Genes 2020, 11, x FOR PEER REVIEW 2 of 13 structures other than B-form DNA duplexes, such as forked duplexes, D-loops, and Holiday Junction Genes 2020, 11, 622 2 of 12 (HJ) structures [11]. In addition to helicase activity, RECQ1 also promotes annealing of complementary single-strand DNA in an ATP-independent manner [11,12]. These seemingly single-strandopposite dual DNA activities in an are ATP-independent guided by ATP mannerbinding [and11,12 the]. These oligomeric seemingly states opposite of human dual RECQ1 activities [13]. areRECQ1 guided protein by ATP forms binding two and quaternary the oligomeric structures: states ofthe human higher-order RECQ1 [oligomers13]. RECQ1 consistent protein forms with twohexamers quaternary and pentamers structures: are the associated higher-order with oligomers single-strand consistent DNA annealing, with hexamers whereas and lower-order pentamers areoligomers, associated consistent with single-strand with dimers DNA and monomers, annealing, are whereas associated lower-order with duplex oligomers, DNA unwinding consistent with [13]. dimersThe observation and monomers, that the are truncated associated RECQ1 with duplex (amino DNA acid unwinding residues [49–616)13]. The lacks observation a single-strand that the truncatedannealing RECQ1 property (amino indicates acid that residues the oligomerizatio 49–616) lacksn a single-strandsignals for RECQ1 annealing are in property the N-terminal indicates region that the[14–16]. oligomerization signals for RECQ1 are in the N-terminal region [14–16]. Figure 1. Human RECQ1 protein. (A) Crystal structure of RECQ1 (49–616) in the presence of MgCl2, Figure 1. Human RECQ1 protein. (A) Crystal structure of RECQ1 (49–616) in the presence of MgCl2, ATPγS, and DNA (PDB: 2V1X). A1 (amino acids 63–281; cyan color), A2 (amino acids 282–418; ATPγS, and DNA (PDB: 2V1X). A1 (amino acids 63–281; cyan color), A2 (amino acids 282–418; green green color), ZBD (amino acids 418–480; yellow color), and WH (amino acids 481–592; pink color). color), ZBD (amino acids 418–480; yellow color), and WH (amino acids 481–592; pink color). The The conserved cysteine residues C453, C471, C475, and C478, shown by magenta color, are coordinated conserved cysteine residues C453, C471, C475, and C478, shown by magenta color, are coordinated with Zinc ion (dim gray). The Y564 in β hairpin is shown by red color. The crystal structure contains with Zinc ion (dim gray). The Y564 in β hairpin is shown by red color. The crystal structure contains Mg-ADP, but the DNA is missing. (B) Schematic of the RECQ1 domain structure. Breast cancer risk Mg-ADP, but the DNA is missing. (B) Schematic of the RECQ1 domain structure. Breast cancer risk associated variants and the RECQ1 domains known to interact with various proteins are indicated. associated variants and the RECQ1 domains known to interact with various proteins are indicated. Protein interaction between RECQ1 and PARP-1 is mediated primarily through the helicase domain and Protein interaction between RECQ1 and PARP-1 is mediated primarily through the helicase domain C-terminus, FEN-1 interacts with the RQC domain and C-terminus, and the interaction with Ku70/80 is and C-terminus, FEN-1 interacts with the RQC domain and C-terminus, and the interaction with mediated via the RECQ1 C-terminus, with some contribution from the helicase domain. NLS—nuclear Ku70/80 is mediated via the RECQ1 C-terminus, with some contribution from the helicase domain. localization sequence. NLS—nuclear localization sequence. The crystal structure of RECQ1 (amino acid residues 49–616) [14], in the presence of MgCl2, ATPγTheS, and crystal DNA structure (PBD ID: of 2V1X), RECQ1 exhibits (amino four acid structurally residues 49–616) defined [14], domains. in the The presence helicase of domain MgCl2, ofATP RECQ1γS, and consists DNA of(PBD two ID: Rec-A 2V1X), like exhibits domains, four A1 st (aminoructurally acid defined residues domains. 63–281) The and helicase A2 (amino domain acid residuesof RECQ1 282–418), consists containingof two Rec-A the like highly domains, conserved A1 (amino signature acid residues helicase 63–281) motifs of and SF-2 A2 superfamily (amino acid andresidues the nucleotide-binding 282–418), containing pocket. the highly The RQCconserved domain signature of RECQ1 helicase is defined motifs by of two SF-2 separately superfamily folded and domains,the nucleotide-binding namely, Zn-binding pocket. domain The RQC (ZBD; domain amino of acid RECQ1 residues is defined 419–480) by and two Winged separately helix folded (WH) domaindomains, (amino namely, acid Zn-binding residues 481–592). domain The(ZBD; ZBD amino consists acid of residues highly conserved419–480) and 4 cysteine Winged zinc-binding helix (WH) motifdomain and (amino two anti-parallelacid residuesα 481–592).-helices (HH) The ZBD [14] consists (Figure1 ofA). highly Alteration conserved of these 4 cysteine cysteine zinc-binding residues changesmotif and the two overall anti-parallel conformation α-helices of RECQ1 (HH) [14] protein (Figure and impairs1A). Alte itsration helicase of these and ATPasecysteine activities, residues whereaschanges thethe strand-annealingoverall conformation activity of RECQ1 is minimally protein a ffandected impairs [15,16 ].its The helicase WH domainand ATPase of RECQ1 activities, has awhereasβ-hairpin the loop strand-annealing and a tyrosine activi residuety is minimally (Y564) at the affected tip of [15,16]. the hairpin, The WH which domain is important of RECQ1 for has the a DNAβ-hairpin unwinding loop and and a tyrosine ATPase residue activity, (Y564) indicating at the thetip of importance the hairpin, of which this region is important and the for residue the DNA in theunwinding enzyme’s and helicase ATPase function activity, [14 ].indicating However, the these impo mutantsrtance retainof this the region strand and annealing the residue activity in the of RECQ1 [15]. Genes 2020, 11, 622 3 of 12 3. Demonstrated Roles of RECQ1 in DNA Repair RECQ1-deficiency in mice [17] and human cells [18] causes constitutive chromosomal instability, sister chromatid exchanges, increased DNA double-strand breaks (DSBs), and accumulation of unresolved recombination intermediates, suggesting a role in DNA damage response and repair. RECQ1-deficient cells accumulate DNA damage and display increased sensitivity to DNA damaging agents that induce stalled and collapsed replication forks, oxidative damage, and DSBs [18–22]. The data so far suggest that RECQ1 employs its multiple catalytic actions and interactions with specific protein partners in ensuring genome stability [9]. The first identified interaction of RECQ1 was with the nuclear import protein importin-α homologs Qip1 and Rch1 [23].
Recommended publications
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
    Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre
    [Show full text]
  • AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
    AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation.
    [Show full text]
  • DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress
    Published OnlineFirst March 10, 2009; DOI: 10.1158/0008-5472.CAN-08-3382 Research Article DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress Van Leung-Pineda,1 Jiwon Huh,1 and Helen Piwnica-Worms1,2,3 Departments of 1Cell Biology and Physiology and 2Internal Medicine and 3Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri Abstract protein FANCE (8, 10–12). Chk1 carries out its functions both in the The Chk1 protein kinase preserves genome integrity in normal nucleus and at the centrosome (13). Drugs that block Chk1 kinase proliferating cells and in cells experiencing replicative and activity or enhance its proteolysis by interfering with binding to genotoxic stress. Chk1 is currently being targeted in antican- heat shock protein 90 (HSP90) are currently being tested as cer regimens. Here, we identify damaged DNA-binding protein anticancer agents (14–17). 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of Chk1 is regulated by reversible phosphorylation and by an E3 ligase complex that includes the cullin proteins Cul4A ubiquitin-mediated proteolysis. Under periods of replicative stress, and Cul4B. We report that Cul4A/DDB1 negatively regulates the ATRIP/ATR module binds to single-stranded DNA and, Chk1 stability in vivo. Chk1 associates with Cul4A/DDB1 together with Rad17 and the 9-1-1 complex, activates Chk1 in a Claspin-dependent manner (18–22). ATR directly phosphorylates during an unperturbed cell division cycle and both Chk1 317 345 phosphorylation and replication stress enhanced these inter- Chk1 on two COOH-terminal residues: Ser (S317) and Ser actions.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis
    Hindawi BioMed Research International Volume 2018, Article ID 9651320, 10 pages https://doi.org/10.1155/2018/9651320 Research Article The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis Jingwei Liu, Hao Li, Liping Sun, Xue Feng, Zhenning Wang , Yuan Yuan , and Chengzhong Xing Tumor Etiology and Screening Department, Cancer Institute and General Surgery, Te First Hospital of China Medical University and Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China Correspondence should be addressed to Yuan Yuan; [email protected] and Chengzhong Xing; [email protected] Received 19 October 2017; Revised 12 December 2017; Accepted 14 December 2017; Published 15 January 2018 Academic Editor: Paul W. Doetsch Copyright © 2018 Jingwei Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Nucleotide excision repair (NER) plays a critical role in maintaining genome integrity. Tis study aimed to investigate theexpressionofNERgenesandtheirassociationswithcolorectalcancer(CRC)development.Method. Expressions of NER genes in CRC and normal tissues were analysed by ONCOMINE. Te Cancer Genome Atlas (TCGA) data were downloaded to explore relationship of NER expression with clinicopathological parameters and survival of CRC. Results. ERCC1, ERCC2, ERCC5, and DDB2 were upregulated while ERCC4 was downregulated in CRC. For colon cancer, high ERCC3 expression was related to better T stage; ERCC5 expression indicated deeper T stage and distant metastasis; DDB2 expression suggested earlier TNM stage. For rectal cancer, ERCC2 expression correlated with favourable T stage; XPA expression predicted worse TNM stage.
    [Show full text]
  • Recq Helicase Translocates Along Single-Stranded DNA with a Moderate Processivity and Tight Mechanochemical Coupling
    RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling Kata Sarlós, Máté Gyimesi, and Mihály Kovács1 Department of Biochemistry, Eötvös Loránd University - Hungarian Academy of Sciences, “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, H-1117, Budapest, Hungary Edited* by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved May 8, 2012 (received for review September 2, 2011) Maintenance of genome integrity is the major biological role of characterized by diffusion along the DNA strand in alternating RecQ-family helicases via their participation in homologous re- weak and strong binding states, was used to describe the trans- combination (HR)-mediated DNA repair processes. RecQ helicases location of hepatitis C virus NS3 helicase (19). Because of the exert their functions by using the free energy of ATP hydrolysis low coupling between the enzymatic (ATPase) and mechanical for mechanical movement along DNA tracks (translocation). In (translocation) cycles, ratchet mechanisms usually lead to the addition to the importance of translocation per se in recombina- consumption of more than one ATP molecule per nucleotide tion processes, knowledge of its mechanism is necessary for the traveled. In contrast to the above enzymes, although the biological understanding of more complex translocation-based activities, in- functions of E. coli RecQ are well described (20–23), mechanistic cluding nucleoprotein displacement, strand separation (unwind- knowledge of the underlying molecular processes is scarce. ing), and branch migration. Here, we report the key properties of DNA activates the ATPase activity of RecQ, and the ATP the ssDNA translocation mechanism of Escherichia coli RecQ heli- hydrolysis cycle is coupled to DNA unwinding (22, 24).
    [Show full text]
  • Evolutionary History of Ku Proteins: Evidence of Horizontal Gene Transfer from Archaea to Eukarya
    Evolutionary history of Ku proteins: evidence of horizontal gene transfer from archaea to eukarya Ashmita Mainali Kathmandu University Sadikshya Rijal Kathmandu University Hitesh Kumar Bhattarai ( [email protected] ) Kathmandu University https://orcid.org/0000-0002-7147-1411 Research article Keywords: Double Stranded Breaks, Non-homologous End Joining, Maximum Likelihood Phylogenetic tree, domains, Ku protein, origin, evolution Posted Date: October 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-58075/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background The DNA end joining protein, Ku, is essential in Non-Homologous End Joining in prokaryotes and eukaryotes. It was rst discovered in eukaryotes and later by PSI blast, was discovered in prokaryotes. While Ku in eukaryotes is often a multi domain protein functioning in DNA repair of physiological and pathological DNA double stranded breaks, Ku in prokaryotes is a single domain protein functioning in pathological DNA repair in spores or late stationary phase. In this paper we have attempted to systematically search for Ku protein in different phyla of bacteria and archaea as well as in different kingdoms of eukarya. Result From our search of 116 sequenced bacterial genomes, only 25 genomes yielded at least one Ku sequence. From a comprehensive search of all NCBI archaeal genomes, we received a positive hit in 7 specic archaea that possessed Ku. In eukarya, we found Ku protein in 27 out of 59 species. Since the entire genome of all eukaryotic species is not fully sequenced this number could go up.
    [Show full text]
  • (UV-DDB) Dimerization and Its Roles in Chromatinized DNA Repair
    Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair Joanne I. Yeha,b,1, Arthur S. Levinec,d, Shoucheng Dua, Unmesh Chintea, Harshad Ghodkee, Hong Wangd,e, Haibin Shia, Ching L. Hsiehc,d, James F. Conwaya, Bennett Van Houtend,e, and Vesna Rapić-Otrinc,d aDepartments of Structural Biology, bBioengineering, cMicrobiology and Molecular Genetics, ePharmacology and Chemical Biology, and dUniversity of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260 AUTHOR SUMMARY Exposure to UV radiation (DDB1-CUL4A DDB2) with can damage DNA that if chromatin modification and left unrepaired can cause the subsequent steps in the mutations leading to skin repair pathway. aging and skin cancer. In Here we report the crystal humans, the nucleotide structure of the full-length excision repair (NER) * human DDB2 bound to proteins function to damaged DNA in a complex recognize and repair with human DDB1 (Fig. P1). UV-damaged DNA. Defects While a large portion of the in DNA repair caused by N-terminal region of the mutations of these repair zebrafish DDB2 in the proteins have been linked earlier structure could not to several genetic diseases, be modeled, we have characterized by cancer resolved the 3D structure of predisposition (xeroderma the N-terminal domain of pigmentosum, XP) or DDB2. Our structure reveals premature aging (Cockayne secondary interactions syndrome), illustrating the between the N-terminal Fig. P1. Composite model of a dimeric DDB1-CUL4ADDB2 ubiquitin functional significance of DDB2 domain of DDB2 and a ligase-nucleosome complex. A model of a dimeric DDB1-CUL4A in a neighboring repair proteins to genomic complex with a nucleosome core particle, generated according to the relative integrity.
    [Show full text]
  • A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the Dntpase SAMHD1
    A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the dNTPase SAMHD1 Miriam Yagüe-Capilla1, Sean G. Rudd1 1 Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet Corresponding Author Abstract Sean G. Rudd [email protected] Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a pivotal regulator of intracellular deoxynucleoside triphosphate (dNTP) pools, as this Citation enzyme can hydrolyze dNTPs into their corresponding nucleosides and inorganic Yagüe-Capilla, M., Rudd, S.G. A triphosphates. Due to its critical role in nucleotide metabolism, its association to High-Throughput Enzyme-Coupled Activity Assay to Probe Small several pathologies, and its role in therapy resistance, intense research is currently Molecule Interaction with the dNTPase being carried out for a better understanding of both the regulation and cellular SAMHD1. J. Vis. Exp. (170), e62503, doi:10.3791/62503 (2021). function of this enzyme. For this reason, development of simple and inexpensive high- throughput amenable methods to probe small molecule interaction with SAMHD1, Date Published such as allosteric regulators, substrates, or inhibitors, is vital. To this purpose, April 16, 2021 the enzyme-coupled malachite green assay is a simple and robust colorimetric assay that can be deployed in a 384-microwell plate format allowing the indirect DOI measurement of SAMHD1 activity. As SAMHD1 releases the triphosphate group from 10.3791/62503 nucleotide substrates, we can couple a pyrophosphatase activity to this reaction, URL thereby producing inorganic phosphate, which can be quantified by the malachite jove.com/video/62503 green reagent through the formation of a phosphomolybdate malachite green complex.
    [Show full text]
  • Biochemical Characterization of the Werner – Like Exonuclease From
    Biochemical characterization of the Werner – like exonuclease from Arabidopsis thaliana Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) genehmigte DISSERTATION von Diplom-Biochemikerin Helena Plchova aus Prag, Tschechische Republik Dekan: Prof. Dr. Manfred Metzler 1. Gutachter: Prof. Dr. Holger Puchta 2. Gutachter: Prof. Dr. Andrea Hartwig Tag der mündlichen Prüfung: 04.12.03 Acknowledgements This work was carried out during the period from September 1999 to June 2003 at the Institut for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany. I would like to express my sincere gratitude to my supervisor, Prof. Dr. H. Puchta, for giving me the opportunity to work in his research group “DNA-Recombination”, for his expertise, understanding, stimulating discussions and valuable suggestions during the practical work and writing of the manuscript. I appreciate his vast knowledge and skill in many areas and his assistance during the course of the work. I would like to thank also Dr. Manfred Focke for reading the manuscript and helpful discussions. My sincere gratitude is to all the collaborators of the Institute for Plant Genetics and Crop Plant Research (IPK) in Gatersleben, especially from the “DNA-Recombination” group for the stimulating environment and very friendly atmosphere during this work. Finally, I also thank all my friends that supported me in my Ph.D. study and were always around at any time. Table of contents Page 1. Introduction 1 1.1. Werner syndrome (WS) 1 1.2. Product of Werner syndrome gene 2 1.2.1. RecQ DNA helicases 3 1.2.2 Mutations in Werner syndrome gene 6 1.3.
    [Show full text]