The Blm Helicase Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

The Blm Helicase Literature Review UNIVERSITY OF CINCINNATI DATE: 3-22-03 I, Gregory T. Langland , hereby submit this as part of the requirements for the degree of: DOCTORATE OF PHILOSOPHY (Ph.D.) in: The Department of Molecular Genetics, Biochemistry and Microbiology of the College of Medicine It is entitled: INTERACTION BETWEEN THE BLM HELICASE AND THE DNA MISMATCH REPAIR PROTEIN, MLH1 Approved by: Joanna Groden Ph.D. Richard Wenstrup M.D. Jim Stringer Ph.D. Kathleen Dixon Ph.D. Peter Stambrook Ph.D. ii INTERACTION BETWEEN THE BLM HELICASE AND THE DNA MISMATCH REPAIR PROTEIN, MLH1 A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Department of Molecular Genetics, Biochemistry & Microbiology of the College of Medicine 2002 by Gregory T. Langland B.S., University of Cincinnati, 1992 Committee Chair: Joanna Groden, Ph.D. iii `Abstract Bloom’s syndrome (BS) is a rare autosomal recessive disorder that greatly predisposes affected individuals to cancer. Such individuals also are small in size, sensitive to the sun, have immune dysfunction and gross genomic instability. The cytogenetics of BS cells have been extensively studied and have shown increased levels of homologous recombination, quadriradial formations, telomeric associations and chromosome breakage. The gene responsible for BS has been positionally cloned and and encodes a RecQ helicase family member with strand displacement activity that is dependent on ATP and Mg2+. In order to have a greater understanding of BLM helicase function in the cell in regards to DNA replication, recombination and repair, we identified protein- partners of BLM. The C-terminus of BLM identified the DNA mismatch repair protein MLH1 from a yeast two-hybrid screen. In vitro and in vivo immunoprecipitations confirmed the interaction between these two proteins. Using an in vitro mismatch repair assay, BS cell extracts were tested for their ability to correct a single nucleotide mismatch. The BS cell extracts were able to remove the single nucleotide mismatch from the plasmid DNA, demonstrating that the BLM-MLH1 interaction is not necessary to correct a single nucleotide mismatch. To test the hypothesis that MLH1 may regulate the substrate specificity or helicase activity, two different experiments were performed. Gel-shifts were performed plus or minus the presence of MLH1 with different DNA substrates, however MLH1 had no effect on BLM’s ability to bind the different DNA iv substrates. Helicase assays then were performed which demonstrated that MLH1 or the mutL heterodimer modulates the enzymatic activity of BLM by stimulating BLM’s strand displacement activity on the double-overhang (DO) substrate. Finally, we performed experiments with the supF20 mutagenesis system and demonstrated that extracts from BS cells are unable to utilize micro- homology elements within the supF20 gene to restore supF function following the induction of a double strand break (DSB). Additional experiments with the pUC18 mutagenesis system demonstrate that although the efficiency and fidelity of DSB repair by BS extracts are comparable to those of normal extracts when ligatable ends are present, a significant 5-fold increase in mutation rate with BS extracts is observed when terminal phosphates are removed from the DNA substrate that needs repair. Mutant plasmids recovered following DSB repair by BS extracts contain smaller deletions within the lacZα gene not commonly recovered from normal extracts. Colorectal cancer cell lineHCT116 extracts lacking MLH1 were also examined although the efficiency and fidelity of end- joining was similar to control extracts. This suggests that the BLM-MLH1 interaction is not necessary for proper end-joining. In summary this work demonstrates that BS cells lacking the BLM helicase process DSBs differently than normal cells and strongly suggests a role for BLM in aligning micro-homology elements during recombinational events in DSB repair. Disruption of the BLM helicase may lead to replication fork collapses, improper processing of DSBs, genomic instability and ultimately cancer. v vi Acknowledgments Someone once told me anything worth having you will have to work hard and fight for. The completion of my doctoral degree has been no different. It’s more than classwork and benchwork. It has been a learning experience, but let’s just keep it at that. I would like to that everybody that supported me through this effort. Many thanks go to Rick for encouraging me to enter graduate school and gave me the support and encouragement needed to further my career in science. I would like to thank Joanna for having me as a student and all of my committee members for their support and their signature, especially Dr. Peter Stambrook, Dr. Sohaib Khan and my mother for the financial support. Chris H. for showing me that you can give a great thirty-minute seminar with virtually no data. Chris T. for teaching how to make money in graduate school via day-trading and/or fantasy football. Kathy, who will always be my favorite post-doc (Oh, sorry now Assistant Professor). Jenn who Chris T. and I will be fighting for when we have our own labs. Will and Amod will always be remembered as DS-1 and DS-2, they made it fun to be at work. Greg B. for being there and conducting triage after a committee meeting or seminar. I definitely have to thank Al for purifying that nasty protein that I never could. I guess that ten years of protein purification definitely means you have skills. Both Tims were entertaining but I preferred the second one. Chelsea, thanks for the movies and the lunches. James for being there through thick and thin. Lisa, Heather, Mike B.,Dirk, Kevin and Mike for entertaining my wife while I was in graduate school. And last but definitely not least I have to thank Rachel for all the love and support. Now for the questions I hear every day: When are you are graduating ?? Where are you going ?? Is Rachel moving with you ?? To Be Continued…… vii Acknowledgements vii Abstract iv Table of Contents 1 Abbreviations 3 List of Figures 5 List of Tables 7 Chapter 1 – Literature Review 8 Cancer and Genomic Instability 8 Bloom’s syndrome 11 Patient phenotype 15 Positional cloning of BLM 17 Functional motifs of the BLM helicase 19 BLM and PML bodies 23 BLM homologs and orthologs 24 The BLM protein exists as an oligomeric form 26 BLM and WRN knockout mice 27 DNA replication 29 Sensitivity of BS to DNA damaging agents 31 The BASC complex 35 Protein-partners of the BLM helicase 36 Chapter 2 – Thesis Rationale 39 Examining the role of the BLM helicase in mismatch repair and double-strand break repair. Chapter 3 – Material and Methods 40 Cell Culture 40 Reagents and Enzymes 40 Nuclear extract preparation 41 Expression construct generation and characterization 42 Yeast-two hybrid screening 42 Isolation and renaturation of BLM-C 43 IVTT immunoprecipitations 44 Mixed lysate immunoprecipitations 45 In vivo immunoprecipitations 46 Mismatch repair assay 46 supF20 double-strand break repair assay 47 pUC18 double-strand break repair assay 48 Expression and purification of yBLM 49 Preparation of helicase substrates 51 1 Helicase assays 54 Gel-shift assays 55 Chapter 4 – The BLM helicase interacts with MLH1 56 BLM identifies MLH1 in a yeast two-hybrid screen 56 IVTT BLM-C and full-length MLH1 interact 56 Far western assays confirm the interaction between 59 MLH1 and BLM-C BLM and MLH1 interact in vivo 63 DNA mismatch repair activities of BS and control cell 64 extracts are equivalent. Chapter 5– Stimulation of BLM helicase activity by mismatch repair proteins Mismatch repair in E. coli 66 BLM purification and characterization 69 Gel-shift experiments 73 Helicase assays 75 Chapter 6 – The BLM helicase is necessary for normal 82 double-strand break repair Double-strand break repair in mammalian cells 82 In vitro end-joining assay using the supF20 vector 83 In vitro end-joining assay using the pUC18 vector 83 Sequence analysis of pUC18 mutants 90 Examination of the efficiency and fidelity of 94 End-joining from HCT116 cell extracts. Chapter 7- Conclusions and Future Directions 97 Chapter 8- References 113 2 Abbreviations aa- amino acid AT- ataxia telangiectasia BLM- Bloom’s syndrome gene BLM- Bloom’s syndrome protein bp- base pair BS- Bloom’s syndrome DNA-PK- DNA protein kinase DO- double overhang substrate DSB- double-strand break ENU- N-ethyl-nitrosurea HU- hydroxyurea IDL- insertion/deletion loop IP- immunoprecipitation IVTT- in vitro transcription/translation MLH- mutL homologue MMC- mitomycin C NE- nuclear extract NLS- nuclear localization signal nt.- nucleotide PML- promyelocytic leukemia PMS- postmeiotic segregation increased RPA- replication protein A SCE- sister-chromatid exchange SCP- somatic crossover point SDS-PAGE- sodium dodecyl sulfate- polyacrylamide gel electrophoresis UDS- unscheduled DNA synthesis WRN- Werner’s syndrome gene 3 WRN- Werner’s syndrome protein WS- Werner’s syndrome 4 List of Figures Page No. Figure 1. DNA repair genes act as caretakers of the genome. 10 Figure 2. Individual affected by Bloom’s syndrome. 12 Figure 3. BS cells are characterized by high levels of genomic 14 instability. Figure 4. Functional motifs of the BLM helicase. 21 Figure 5. BLM identifies MLH1 in a yeast two-hybrid screen 57 Figure 6. Immunoprecipitations of in vitro transcribed and 58 translated (IVTT) protein products demonstrate the interaction between the C-terminus of BLM and MLH1. Figure 7. Mixed lysate immunoprecipitation demonstrates the 61 interaction between full-length BLM and MLH1 or RPA. Figure 8. Far western assays demonstrate the interaction 62 between the BLM-C terminus and MLH1. Figure 9. BLM and MLH1 interact in vivo. 63 Figure10. DNA mismatch repair activities of BS and 65 HeLa cell extracts are equivalent.
Recommended publications
  • Variant Requirements for DNA Repair Proteins in Cancer Cell Lines That Use
    Variant requirements for DNA repair proteins in cancer cell lines that use alternative lengthening of telomere mechanisms of elongation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alaina Rae Martinez Biomedical Sciences Graduate Program The Ohio State University 2016 Dissertation Committee: Dr. Jeffrey D. Parvin, Advisor Dr. Joanna Groden Dr. Amanda E. Toland Dr. Kay F. Huebner Copyright by Alaina Rae Martinez 2016 Abstract The human genome relies on DNA repair proteins and the telomere to maintain genome stability. Genome instability is recognized as a hallmark of cancer, as is limitless replicative capacity. Cancer cells require telomere maintenance to enable this uncontrolled growth. Most often telomerase is activated, although a subset of human cancers depend on recombination-based mechanisms known as Alternative Lengthening of Telomeres (ALT). ALT depends invariably on recombination and its associated DNA repair proteins to extend telomeres. This study tested the hypothesis that the requirement for those requisite recombination proteins include other types of DNA repair proteins. These functions were tested in ALT cell lines using C-circle abundance as a marker of ALT. The requirement for homologous recombination proteins and other DNA repair proteins varied between ALT cell lines compared. Several proteins essential for homologous recombination were dispensable for C-circle production in some ALT cell lines, while proteins grouped into excision DNA repair processes were required for C- circle production. The MSH2 mismatch repair protein was required for telomere recombination by intertelomeric exchange. In sum, our study suggests that ALT proceeds by multiple mechanisms that differ between human cancer cell lines and that some of these depend on DNA repair proteins not associated with homologous recombination pathways.
    [Show full text]
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • 17 January 2001
    Running Title: DNA Recombination and Repair in the Archaea DNA Recombination and Repair in the Archaea Erica M. Seitz, Cynthia A. Haseltine, and Stephen C. Kowalczykowski* Sections of Microbiology and of Molecular and Cellular Biology Center for Genetics and Development University of California, Davis Davis, CA 95616-8665 * Corresponding author: Section of Microbiology One Shields Avenue Hutchison Hall University of California, Davis Davis, CA 95616-8665 Phone: (530)752-5938 Fax: (530)752-5939 email: [email protected] 1 Abstract The ability to repair DNA damage is crucial to all organisms. Much of what we learned about these processes was gained from studies carried out in Bacteria, especially in Escherichia coli, or Eucarya, particularly in the yeast Saccharomyces cerevisiae. The repair of DNA damage occurs by at least four different pathways: direct reversal of DNA damage, excision of damaged nucleotides (nucleotide excision repair or NER) or bases (base excision repair or BER), excision of misincorporated nucleotides (mismatch repair or MMR), and recombinational repair. Proteins involved in these processes have recently been identified in the third domain of life, the Archaea. Here we present a summary of DNA repair proteins in both the Bacteria and Eucarya, and discuss similarities and differences between these two domains and what is currently known in the Archaea. 2 I. Introduction DNA is subjected daily to considerable environmental and endogenous damage, which challenges both the integrity of the essential information that it contains and its ability to be transferred to future generations. All cells, however, are prepared to handle damage to the genome through an extensive DNA repair system, thus underscoring the importance of this process in cell survival.
    [Show full text]
  • The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency
    Published OnlineFirst March 9, 2010; DOI: 10.1158/1541-7786.MCR-09-0534 Molecular DNA Damage and Cellular Stress Responses Cancer Research The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency Kenza Lahkim Bennani-Belhaj1,2, Sébastien Rouzeau1,2, Géraldine Buhagiar-Labarchède1,2, Pauline Chabosseau1,2, Rosine Onclercq-Delic1,2, Emilie Bayart1, Fabrice Cordelières3,4, Jérôme Couturier5,6, and Mounira Amor-Guéret1,2 Abstract Little is known about the functional interaction between the Bloom's syndrome protein (BLM) and the re- combinase RAD51 within cells. Using RNA interference technology, we provide the first demonstration that RAD51 acts upstream from BLM to prevent anaphase bridge formation. RAD51 downregulation was associated with an increase in the frequency of BLM-positive anaphase bridges, but not of BLM-associated ultrafine bridges. Time-lapse live microscopy analysis of anaphase bridge cells revealed that BLM promoted cell survival in the absence of Rad51. Our results directly implicate BLM in limiting the lethality associated with RAD51 deficiency through the processing of anaphase bridges resulting from the RAD51 defect. These findings provide insight into the molecular basis of some cancers possibly associated with variants of the RAD51 gene family. Mol Cancer Res; 8(3); 385–94. ©2010 AACR. Introduction cently, SUMOylation of BLM has been shown to regulate its association with RAD51 and its function in HR-medi- Bloom's syndrome displays one of the strongest known ated repair of damaged replication forks (13). In several correlations between chromosomal instability and a high models, it has been proposed that BLM restarts replication risk of cancer at an early age.
    [Show full text]
  • A Dissertation Entitled the Role of Base Excision Repair And
    A Dissertation Entitled The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links. by Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science Dr. Stephan M. Patrick, Committee Chair Dr. Kandace Williams, Committee Member Dr. William Maltese, Committee Member Dr. Manohar Ratnam, Committee Member Dr. David Giovannucci, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2014 Copyright 2014, Akshada Sawant This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links By Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science The University of Toledo August 2014 Cisplatin is a well-known anticancer agent that forms a part of many combination chemotherapeutic treatments used against a variety of human cancers. Despite successful treatment, the development of resistance is the major limitation of the cisplatin based therapy. Base excision repair modulates cisplatin cytotoxicity. Moreover, mismatch repair deficiency gives rise to cisplatin resistance and leads to poor prognosis of the disease. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Our studies showed that these mismatches lead to the activation and the recruitment of mismatch repair proteins.
    [Show full text]
  • The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia Coli
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 1-1-2012 The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia coli Kelley Nicole Newton Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Cell Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Newton, Kelley Nicole, "The Role of Nucleotide Excision Repair in Restoring Replication Following UV- Induced Damage in Escherichia coli" (2012). Dissertations and Theses. Paper 767. https://doi.org/10.15760/etd.767 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Role of Nucleotide Excision Repair in Restoring Replication Following UV-Induced Damage in Escherichia coli by Kelley Nicole Newton A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Michael Bartlett Jeffrey Singer Portland State University 2012 ABSTRACT Following low levels of UV exposure, Escherichia coli cells deficient in nucleotide excision repair recover and synthesize DNA at near wild type levels, an observation that formed the basis of the post replication recombination repair model. In this study, we characterized the DNA synthesis that occurs following UV-irradiation in the absence of nucleotide excision repair and show that although this synthesis resumes at near wild type levels, it is coincident with a high degree of cell death.
    [Show full text]
  • Scaffolding Protein SPIDR/KIAA0146 Connects the Bloom Syndrome Helicase with Homologous Recombination Repair
    Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair Li Wan1, Jinhua Han1, Ting Liu1, Shunli Dong, Feng Xie, Hongxia Chen, and Jun Huang2 Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China Edited by James E. Cleaver, University of California, San Francisco, CA, and approved February 26, 2013 (received for review December 1, 2012) The Bloom syndrome gene product, BLM, is a member of the highly of the SDSA pathway (6, 7). The ability of BLM to yield non- conserved RecQ family. An emerging concept is the BLM helicase crossover products is thought to play a critical role in the avoidance collaborates with the homologous recombination (HR) machinery to of chromosomal rearrangements during the homolog-directed re- help avoid undesirable HR events and to achieve a high degree of pair of chromosomal lesions. As a result, cells defective for BLM fidelity during the HR reaction. However, exactly how such coordina- exhibit elevated rates of sister chromatid exchange (SCE) (19–21). tion occurs in vivo is poorly understood. Here, we identified a protein Upon the occurrence of DNA damage, BLM is able to form termed SPIDR (scaffolding protein involved in DNA repair) as the link discrete foci, where it colocalizes with other DNA repair proteins between BLM and the HR machinery. SPIDR independently interacts (22, 23). However, mechanistically how BLM is recruited to sites with BLM and RAD51 and promotes the formation of a BLM/RAD51- of DNA damage and how it collaborates with other proteins to containing complex of biological importance. Consistent with its role mediate recombination repair remain largely unexplored.
    [Show full text]
  • Epigenetic Regulation of DNA Repair Genes and Implications for Tumor Therapy ⁎ ⁎ Markus Christmann , Bernd Kaina
    Mutation Research-Reviews in Mutation Research xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Mutation Research-Reviews in Mutation Research journal homepage: www.elsevier.com/locate/mutrev Review Epigenetic regulation of DNA repair genes and implications for tumor therapy ⁎ ⁎ Markus Christmann , Bernd Kaina Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany ARTICLE INFO ABSTRACT Keywords: DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and DNA repair cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment Genotoxic stress with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly Epigenetic silencing governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to tumor formation mutations in their coding or promoter region, changes in the expression of transcription factors activating or Cancer therapy repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation MGMT Promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. GADD45 We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyl- TET transferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of p53 components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)- methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy.
    [Show full text]
  • The Diagnostic Value of DNA Repair Gene in Breast Cancer Recurrence and Metastasis
    The Diagnostic Value of DNA Repair Gene in Breast Cancer Recurrence and Metastasis Yongxin Yang Southwest Medical University Xiabin Li Southwest Medical University Liyue Hao Southwest Medical University Deyong Jiang Centers for Disease Control and Prevention Bin Wu Southwest Medical University Tao He Southwest Medical University Yan Tang ( [email protected] ) Research Keywords: PARP1, XRCC4, ERCC1, Breast cancer Posted Date: June 25th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-36932/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: DNA repair genes play a vital role in the treatment of many cancers, and DNA repair genes can be used in breast cancer recurrence and metastasis research. We found that the expression of DNA repair genes in breast cancer patients after recurrence and metastasis is abnormal, however, the clinical predictive signicance of DNA repair genes is still elusive. Methods: The nested case-control method was used in patients with breast cancer recurrence and metastasis after surgery (n=109) and patients without recurrence and metastasis after surgery (n=109). The proteins and mRNA of DNA repair genes were detected by immunohistochemistry and Real-time PCR respectively. Results: PARP1(OR=1.485, 95%CI:1.279~1.725, P<0.05), XRCC4(OR= 1.419, 95%CI:1.217~ 1.656, P<0.05) and ERCC1 (OR=1.181, 95%CI: 1.032~1.353, P<0.05) were risk factors for postoperative recurrence and metastasis of breast cancer. Therefore, we used the ROC
    [Show full text]
  • WRN Promoter Methylation Possibly Connects Mucinous Differentiation, Microsatellite Instability and Cpg Island Methylator Phenotype in Colorectal Cancer
    Modern Pathology (2008) 21, 150–158 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer Takako Kawasaki1,2, Mutsuko Ohnishi2, Yuko Suemoto2, Gregory J Kirkner3, Zhiqian Liu2, Hiroyuki Yamamoto4, Massimo Loda1,2, Charles S Fuchs2,3 and Shuji Ogino1,2 1Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 2Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, USA; 3Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA and 4First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan Werner syndrome is a premature aging syndrome characterized by early onset of cancer and abnormal cellular metabolism of glycosaminoglycan. The WRN helicase plays an important role in the maintenance of telomere function. WRN promoter methylation and gene silencing are common in colorectal cancer with the CpG island methylator phenotype (CIMP), which is associated with microsatellite instability (MSI) and mucinous tumors. However, no study has examined the relationship between mucinous differentiation, WRN methylation, CIMP and MSI in colorectal cancer. Utilizing 903 population-based colorectal cancers and real-time PCR (MethyLight), we quantified DNA methylation in WRN and eight other promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) known to be specific for CIMP. Supporting WRN as a good CIMP marker, WRN methylation was correlated well with CIMP-high diagnosis (Z6/8 methylated promoters), demonstrating 89% sensitivity and 81% specificity. WRN methylation was associated with the presence of any mucinous component and Z50% mucinous component (Po0.0001).
    [Show full text]
  • Acetylation of BLM Protein Regulates Its Function in Response to DNA Damage Cite This: RSC Adv.,2017,7,55301 Yankun Wang and Jianyuan Luo *
    RSC Advances View Article Online PAPER View Journal | View Issue Acetylation of BLM protein regulates its function in response to DNA damage Cite this: RSC Adv.,2017,7,55301 Yankun Wang and Jianyuan Luo * Bloom syndrome is an autosomal recessive disease with phenotypes of cancer predisposition and premature aging caused by mutations of the blm gene. BLM belongs to the RecQ DNA helicase family and functions in maintaining genomic stability. In this study, we found that several lysine residues of BLM were acetylated in cells. The dynamic acetylation levels of BLM were regulated by CBP/p300 and SIRT1. Received 15th June 2017 We further identified that five lysines, K476, K863, K1010, K1329, and K1411, are the major acetylation Accepted 29th November 2017 sites. Treating cells with different DNA damage agents found that acetylation of BLM was different in DOI: 10.1039/c7ra06666j response to etoposide and hydroxyurea, suggesting that BLM acetylation may have multiple functions in rsc.li/rsc-advances DNA repair. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction recombination and makes DNA back to integrated condition.14 On the other hand, BLM interacts with 53BP1 and completes Bloom syndrome protein (BLM), coded by the blm gene, is the repair in the NHEJ pathway.11 It has been found that BLM is a 1417 amino acid protein. Mutations or deletions of the blm sensitive to multiple stress factors, including hydroxyurea (HU), gene lead to Bloom Syndrome (BS).1 It is an inherited etoposide and ionizing radiation (IR) which all
    [Show full text]
  • Predisposition to Hematologic Malignancies in Patients With
    LETTERS TO THE EDITOR carcinomas but no internal cancer by the age of 29 years Predisposition to hematologic malignancies in and 9 years, respectively. patients with xeroderma pigmentosum Case XP540BE . This patient had a highly unusual pres - entation of MPAL. She was diagnosed with XP at the age Germline predisposition is a contributing etiology of of 18 months with numerous lentigines on sun-exposed hematologic malignancies, especially in children and skin, when her family emigrated from Morocco to the young adults. Germline predisposition in myeloid neo - USA. The homozygous North African XPC founder muta - plasms was added to the World Health Organization tion was present. 10 She had her first skin cancer at the age 1 2016 classification, and current management recommen - of 8 years, and subsequently developed more than 40 cuta - dations emphasize the importance of screening appropri - neous basal and squamous cell carcinomas, one melanoma 2 ate patients. Rare syndromes of DNA repair defects can in situ , and one ocular surface squamous neoplasm. She 3 lead to myeloid and/or lymphoid neoplasms. Here, we was diagnosed with a multinodular goiter at the age of 9 describe our experience with hematologic neoplasms in years eight months, with several complex nodules leading the defective DNA repair syndrome, xeroderma pigmen - to removal of her thyroid gland. Histopathology showed tosum (XP), including myelodysplastic syndrome (MDS), multinodular adenomatous/papillary hyperplasia. At the secondary acute myeloid leukemia (AML), high-grade age of 19 years, she presented with night sweats, fatigue, lymphoma, and an extremely unusual presentation of and lymphadenopathy. Laboratory studies revealed pancy - mixed phenotype acute leukemia (MPAL) with B, T and topenia with hemoglobin 6.8 g/dL, platelet count myeloid blasts.
    [Show full text]