Hyper Telomere Recombination Accelerates Replicative Senescence and May Promote Premature Aging

Total Page:16

File Type:pdf, Size:1020Kb

Hyper Telomere Recombination Accelerates Replicative Senescence and May Promote Premature Aging Hyper telomere recombination accelerates replicative senescence and may promote premature aging R. Tanner Hagelstroma,b, Krastan B. Blagoevc,d, Laura J. Niedernhofere, Edwin H. Goodwinf, and Susan M. Baileya,1 aDepartment of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618; bPharmaceutical Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004; cNational Science Foundation, Arlington, VA 22230; dDepartment of Physics Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, United Kingdom; eDepartment of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine and Cancer Institute, Pittsburgh, PA 15261; and fKromaTiD Inc., Fort Collins, CO 80524 Edited* by José N. Onuchic, University of California San Diego, La Jolla, CA, and approved August 3, 2010 (received for review May 7, 2010) Werner syndrome and Bloom syndrome result from defects in the cell-cycle arrest known as senescence (12). Most human tissues lack RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and sufficient telomerase activity to maintain telomere length through- display premature aging phenotypes. Similarly, XFE progeroid out life, limiting cell division potential. The majority of cancers syndrome results from defects in the ERCC1-XPF DNA repair endo- circumvent this tumor-suppressor mechanism by reactivating telo- nuclease. To gain insight into the origin of cellular senescence and merase (13), thus removing telomere shortening as a barrier to human aging, we analyzed the dependence of sister chromatid continuous proliferation. In some situations, a recombination- exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telo- based mechanism known as “alternative lengthening of telomeres” meric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, (ALT) maintains telomere length in the absence of telomerase (14). BLM, or ERCC1-XPF. Consistent with our other studies, we found evi- Chromosome orientation (CO)-FISH (15) is a strand-specific dence of elevated T-SCE in telomerase-negative but not telomerase- modification of standard FISH capable of providing information positive backgrounds. In telomerase-negative WRN-deficient cells, not obtainable by any other means, including detection of sister T-SCE—but not G-SCE—frequencies were significantly increased com- chromatid exchange (SCE) recombination between telomeres, pared with controls. In contrast, SCE frequencies were significantly events termed T-SCE (16). T-SCE are emerging as important elevated in BLM-deficient cells irrespective of genome location. In features of certain telomerase-negative backgrounds, such as ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed ALT (17) and early embryogenesis before activation of telomer- from controls. A theoretical model was developed that allowed an ase (18). In the context of combined Werner (WRN) helicase and in silico investigation into the cellular consequences of increased telomerase deficiency in the mouse, both central features of hu- T-SCE frequency. The model predicts that in cells with increased man Werner syndrome (WS) pathogenesis, elevated T-SCE was T-SCE, the onset of replicative senescence is dramatically accelerated observed, with higher rates associated with greater immortaliza- “ even though the average rate of telomere loss has not changed. Pre- tion potential (19). Conditional deletion of the protection of ” mature cellular senescence may act as a powerful tumor-suppressor telomeres (Pot)1a single-stranded telomere-binding protein has mechanism in telomerase-deficient cells with mutations that cause been shown to elicit a DNA damage response at mouse telo- T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular se- meres, as well as aberrant homologous recombination manifested nescencemaybeafactorcontributing to accelerated aging in Werner as increased T-SCE (20). Human POT1 stimulates the RecQ and Bloom syndromes, but not XFE progeroid syndrome. helicases WRN and Bloom (BLM) to unwind telomeric DNA (21). Furthermore, in the absence of WRN, leading- and lagging- T-SCE | WRN | BLM | ERCC1-XPF | Monte Carlo strand DNA synthesis are uncoupled at replication forks, and POT1 is required for efficient replication of C-rich telomere strands (22). Such studies imply a relationship between T-SCE nderstanding the molecular processes that drive cellular rate and proliferative potential. However, the complexity of the Ureplicative senescence is critical to understanding human process—which entails a large number of telomeres, an ongoing longevity. Much attention has focused on telomere length as exchange process throughout colony growth, exponentially in- a determinant of replicative capacity (1). Telomeres are nucleo- creasing cell number, and independent assortment of chromatids fi protein structures composed of species-speci c tandemly re- into daughter cells during cell division—precludes a simple ana- peated, G-rich DNA sequences that cap and protect chromosome lytical approach to understanding this relationship. We therefore ends from nucleolytic attack and degradation (2). Telomeres also turned to theoretical methods in the search for a causal connec- conceal linear chromosome ends from inappropriate attempts at tion between T-SCE and cell proliferation. double-strand break (DSB) repair that might otherwise join Homologous recombination provides the most plausible chromosomes end-to-end. The preservation of natural chromo- mechanism by which telomeric DNA could be exchanged between some ends and the rejoining of broken DNA ends, both of which sister telomeres, and in the case of T-SCE, homology can be found are essential for preserving genomic integrity, rely on a common at many points on the sister chromatid. Thus, T-SCE need not subset of proteins (3), and both decline with advancing age (4, 5). exchange equal quantities of DNA. In an unequal T-SCE, one The G-rich nature of telomeric DNA renders it susceptible to sister telomere becomes longer at the expense of the other. Ini- G-quadruplex formation, oxidative damage, and alkylation by elec- tially, we suggested that in telomerase-deficient backgrounds trophiles (6). Telomeres are also unique in their chromatin com- unequal T-SCE might confer a proliferative growth advantage to position, being bound by the shelterin complex and associated pro- a subset of cells that stochastically acquired longer telomeres, en- teins, their T-loop structure, and their nucleosomal organization (7, 8). Telomeres protect genetic information by providing a buffer against the end-replication problem, but their terminal position at Author contributions: R.T.H., L.J.N., E.H.G., and S.M.B. designed research; R.T.H., K.B.B., L.J.N., the ends of linear DNA poses a special challenge to their own re- and S.M.B. performed research; R.T.H., K.B.B., L.J.N., E.H.G., and S.M.B. analyzed data; and plication (9). Telomerase is a ribonucleoprotein complex consisting R.T.H., K.B.B., L.J.N., E.H.G., and S.M.B. wrote the paper. minimally of RNA template and catalytic reverse transcriptase The authors declare no conflict of interest. subunits responsible for de novo synthesis of telomeric repeats (10). *This Direct Submission article had a prearranged editor. In the absence of telomerase, telomeres shorten with each cell di- 1To whom correspondence should be addressed. E-mail: [email protected]. vision (11). Critically short telomeres fail to form proper protective This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. end structures, which are sensed as DSBs and trigger a permanent 1073/pnas.1006338107/-/DCSupplemental. 15768–15773 | PNAS | September 7, 2010 | vol. 107 | no. 36 www.pnas.org/cgi/doi/10.1073/pnas.1006338107 Downloaded by guest on October 1, 2021 abling their escape from cellular senescence (16). Conversely, those also displayed normal background T-SCE frequencies (0.29 T-SCE cells inheriting shorter telomeres from an unequal exchange would per chromosome) (Fig. 1). be at risk for triggering senescence prematurely. Using a theoretical To evaluate the consequence of WRN and BLM deficiency on model and Monte Carlo simulations (23), we investigated the pos- T-SCE frequencies in the absence of telomerase, we used an RNA sibility that ALT arises from elevated T-SCE levels and concluded interference siRNA strategy to knock down their expression in it was unlikely unless there was an additional mechanism, such as normal human primary fibroblasts (telomerase-negative). The has been proposed by others (14, 24), through which longer telo- WRN-depleted cells displayed no significant increase in G-SCE meres segregate preferentially into the same daughter cell. This frequencies vs. the mock control (0.12 vs. 0.11) (Fig. 2), although study (23) strongly suggested that in ALT cells, T-SCE coexists with a statistically significant (P < 0.05) increase in T-SCE was ob- served (0.81 vs. 0.25) (Fig. 2). These results are consistent with our an as yet unknown telomere-lengthening mechanism. − − − − SCE is a relatively common event in normal human cells that previous study using cells derived from Wrn / ,Terc / double- occurs along the entire length of a chromosome. Although rec- knockout mice (19). ognized for over 50 y (25), their biological significance remains neither fully understood nor appreciated. SCE are induced by BLM Suppresses SCE Recombination Globally. In contrast to WS lym- DNA-damaging agents that block DNA replication (26), and can phoblasts, human
Recommended publications
  • Variant Requirements for DNA Repair Proteins in Cancer Cell Lines That Use
    Variant requirements for DNA repair proteins in cancer cell lines that use alternative lengthening of telomere mechanisms of elongation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alaina Rae Martinez Biomedical Sciences Graduate Program The Ohio State University 2016 Dissertation Committee: Dr. Jeffrey D. Parvin, Advisor Dr. Joanna Groden Dr. Amanda E. Toland Dr. Kay F. Huebner Copyright by Alaina Rae Martinez 2016 Abstract The human genome relies on DNA repair proteins and the telomere to maintain genome stability. Genome instability is recognized as a hallmark of cancer, as is limitless replicative capacity. Cancer cells require telomere maintenance to enable this uncontrolled growth. Most often telomerase is activated, although a subset of human cancers depend on recombination-based mechanisms known as Alternative Lengthening of Telomeres (ALT). ALT depends invariably on recombination and its associated DNA repair proteins to extend telomeres. This study tested the hypothesis that the requirement for those requisite recombination proteins include other types of DNA repair proteins. These functions were tested in ALT cell lines using C-circle abundance as a marker of ALT. The requirement for homologous recombination proteins and other DNA repair proteins varied between ALT cell lines compared. Several proteins essential for homologous recombination were dispensable for C-circle production in some ALT cell lines, while proteins grouped into excision DNA repair processes were required for C- circle production. The MSH2 mismatch repair protein was required for telomere recombination by intertelomeric exchange. In sum, our study suggests that ALT proceeds by multiple mechanisms that differ between human cancer cell lines and that some of these depend on DNA repair proteins not associated with homologous recombination pathways.
    [Show full text]
  • Deficiency in the DNA Repair Protein ERCC1 Triggers a Link Between Senescence and Apoptosis in Human Fibroblasts and Mouse Skin
    Lawrence Berkeley National Laboratory Recent Work Title Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Permalink https://escholarship.org/uc/item/73j1s4d1 Journal Aging cell, 19(3) ISSN 1474-9718 Authors Kim, Dong Eun Dollé, Martijn ET Vermeij, Wilbert P et al. Publication Date 2020-03-01 DOI 10.1111/acel.13072 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 10 June 2019 | Revised: 7 October 2019 | Accepted: 30 October 2019 DOI: 10.1111/acel.13072 ORIGINAL ARTICLE Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin Dong Eun Kim1 | Martijn E. T. Dollé2 | Wilbert P. Vermeij3,4 | Akos Gyenis5 | Katharina Vogel5 | Jan H. J. Hoeijmakers3,4,5 | Christopher D. Wiley1 | Albert R. Davalos1 | Paul Hasty6 | Pierre-Yves Desprez1 | Judith Campisi1,7 1Buck Institute for Research on Aging, Novato, CA, USA Abstract 2Centre for Health Protection Research, ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease National Institute of Public Health and that incises the damaged strand of DNA during nucleotide excision repair and inter- the Environment (RIVM), Bilthoven, The −/Δ Netherlands strand cross-link repair. Ercc1 mice, carrying one null and one hypomorphic Ercc1 3Department of Molecular Genetics, allele, have been widely used to study aging due to accelerated aging phenotypes Erasmus University Medical Center, −/Δ Rotterdam, The Netherlands in numerous organs and their shortened lifespan. Ercc1 mice display combined 4Princess Máxima Center for Pediatric features of human progeroid and cancer-prone syndromes.
    [Show full text]
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • The Interactions of DNA Repair, Telomere Homeostasis, and P53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction
    cancers Review The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction Pavel Vodicka 1,2,3, Ladislav Andera 4,5, Alena Opattova 1,2,3,† and Ludmila Vodickova 1,2,3,*,† 1 Institute of Experimental Medicine, AS CR, 142 20 Prague, Czech Republic; [email protected] (P.V.); [email protected] (A.O.) 2 First Medical Faculty, Charles University, 121 08 Prague, Czech Republic 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic 4 Institute of Biotechnology, AS CR, 252 50 Vestec, Czech Republic; [email protected] 5 Institute of Molecular Genetics, AS CR, 142 20 Prague, Czech Republic * Correspondence: [email protected] † These authors contribured eaqually to this paper. Simple Summary: p53 is a nuclear transcription factor with a pro-apoptotic function. Somatic mutations in this gene represent one of the most critical events in human carcinogenesis. The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and alteration of telomere homeostasis constitute the hallmarks of malignant diseases. The main aim of our review was to accentuate a complex comprehension of the interactions between fundamental players in carcinogenesis of solid malignancies such as DNA damage response, telomere homeostasis and TP53. Abstract: The disruption of genomic integrity due to the accumulation of various kinds of DNA Citation: Vodicka, P.; Andera, L.; Opattova, A.; Vodickova, L. The damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malig- Interactions of DNA Repair, Telomere nant diseases.
    [Show full text]
  • Open Full Page
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders.
    [Show full text]
  • The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency
    Published OnlineFirst March 9, 2010; DOI: 10.1158/1541-7786.MCR-09-0534 Molecular DNA Damage and Cellular Stress Responses Cancer Research The Bloom Syndrome Protein Limits the Lethality Associated with RAD51 Deficiency Kenza Lahkim Bennani-Belhaj1,2, Sébastien Rouzeau1,2, Géraldine Buhagiar-Labarchède1,2, Pauline Chabosseau1,2, Rosine Onclercq-Delic1,2, Emilie Bayart1, Fabrice Cordelières3,4, Jérôme Couturier5,6, and Mounira Amor-Guéret1,2 Abstract Little is known about the functional interaction between the Bloom's syndrome protein (BLM) and the re- combinase RAD51 within cells. Using RNA interference technology, we provide the first demonstration that RAD51 acts upstream from BLM to prevent anaphase bridge formation. RAD51 downregulation was associated with an increase in the frequency of BLM-positive anaphase bridges, but not of BLM-associated ultrafine bridges. Time-lapse live microscopy analysis of anaphase bridge cells revealed that BLM promoted cell survival in the absence of Rad51. Our results directly implicate BLM in limiting the lethality associated with RAD51 deficiency through the processing of anaphase bridges resulting from the RAD51 defect. These findings provide insight into the molecular basis of some cancers possibly associated with variants of the RAD51 gene family. Mol Cancer Res; 8(3); 385–94. ©2010 AACR. Introduction cently, SUMOylation of BLM has been shown to regulate its association with RAD51 and its function in HR-medi- Bloom's syndrome displays one of the strongest known ated repair of damaged replication forks (13). In several correlations between chromosomal instability and a high models, it has been proposed that BLM restarts replication risk of cancer at an early age.
    [Show full text]
  • Cadmium Induced Cell Apoptosis, DNA Damage, De
    Int. J. Med. Sci. 2013, Vol. 10 1485 Ivyspring International Publisher International Journal of Medical Sciences 2013; 10(11):1485-1496. doi: 10.7150/ijms.6308 Research Paper Cadmium Induced Cell Apoptosis, DNA Damage, De- creased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells Zhiheng Zhou1*, Caixia Wang2*, Haibai Liu1, Qinhai Huang1, Min Wang1 , Yixiong Lei1 1. School of public health, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China 2. Department of internal medicine of Guangzhou First People’s Hospital affiliated to Guangzhou Medical University, Guangzhou 510180, People’s Republic of China * These authors contributed equally to this work. Corresponding author: Yixiong Lei, School of public health, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People’s Republic of China. Fax: +86-20-81340196. E-mail: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.03.23; Accepted: 2013.08.12; Published: 2013.08.30 Abstract Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mech- anisms of DNA damage in cadmium-induced malignant transformation of human bronchial epi- thelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE NAME: Patricia Lynn Opresko BUSINESS ADDRESS: University of Pittsburgh Graduate School of Public Health Department of Environmental and UPMC Hillman Cancer Center 5117 Centre Avenue, Suite 2.6a Pittsburgh, PA15213-1863 Phone: 412-623-7764 Fax: 412-623-7761 E-mail: [email protected] EDUCATION AND TRAINING Undergraduate 1990 - 1994 DeSales University B.S., 1994 Chemistry and Center Valley, PA Biology Graduate 1994 - 2000 Pennsylvania State Ph.D., 2000 Biochemistry and University, College of Molecular Biology Medicine, Hershey, PA Post-Graduate 3/2000 - 5/2000 Pennsylvania State Postdoctoral Dr. Kristin Eckert, University, College of Fellow Mutagenesis and Medicine, Jake Gittlen Cancer etiology Cancer Research Institute Hershey, PA 2000-2005 National Institute on IRTA Postdoctoral Dr. Vilhelm Bohr Aging, National Fellow Molecular Institutes of Health, Gerontology and Baltimore, MD DNA Repair 1 APPOINTMENTS AND POSITIONS Academic 8/1/2018 – Co-leader Genome Stability Program, UPMC present Hillman Cancer Center 5/1/2018- Tenured Professor Pharmacology and Chemical Biology, present School of Medicine, University of Pittsburgh, Pittsburgh, PA 2/1/2018- Tenured Professor Environmental and Occupational Health, present Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 2014 – Tenured Associate Environmental and Occupational Health, 1/31/2018 Professor Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 2005 - 2014 Assistant Professor Environmental and Occupational Health, Graduate School
    [Show full text]
  • Herpes Simplex Virus Type 2: Bystander Or Active Player in Cervical Carcinogenesis?
    Journal of Gynecology and Women’s Health ISSN 2474-7602 Mini Review J Gynecol Women’s Health Volume 12 Issue 2 - October 2018 Copyright © All rights are reserved by Jude Ogechukwu Okoye DOI: 10.19080/JGWH.2018.12.555832 Herpes Simplex Virus Type 2: Bystander or Active Player in Cervical Carcinogenesis? Jude Ogechukwu Okoye* Department of Medical Laboratory Science, Babcock University, Nigeria Submission: September 19, 2018 ; Published: October 05, 2018 *Corresponding author: Jude Ogechukwu Okoye, Department of Medical Laboratory Science, Babcock University, Nigeria, Tel: ; Email: Abstract More emphasis have been placed on producing vaccines that prevent host cell entry by Human Papillomavirus (HPV) while less attention andhas beenits potential given to to Herpes up-modulate Simplex both virus HPV type regulatory 2 (HSV-2) andwhich oncogenic potentially gene promotes and downregulate acquisition hostand co-habitationtumour suppressor of human suggest immunodeficiency that it is not a virus (HIV), HPV and Epstein-Barr virus (EBV). The tendency for HSV-2 to induce ulcerations and chronic inflammation following reactivation, to reduce cervical cancer related mortality. bystander in cervical carcinogenesis. Thus, efforts geared towards finding HSV-2 effective microbicide and vaccine should be intensified so as Keywords: Herpes Simplex virus type 2; Human papillomavirus; Epstein-Barr virus; Cervical cancer Abbreviations: HPV: Human Papillomavirus; HIV: Human Immune virus; SSC: Squamous Cell Carcinoma; LMP1: Latent Membrane Protein 1; EBV: Epstein-Barr virus; CIN: Cervical Intraepithelial Neoplasia Introduction Cervical cancer is the second most common type of cancer in a woman’s lifetime and may also facilitate EBV infection, a (9.8%) affecting women worldwide [1-3].
    [Show full text]
  • Scaffolding Protein SPIDR/KIAA0146 Connects the Bloom Syndrome Helicase with Homologous Recombination Repair
    Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair Li Wan1, Jinhua Han1, Ting Liu1, Shunli Dong, Feng Xie, Hongxia Chen, and Jun Huang2 Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China Edited by James E. Cleaver, University of California, San Francisco, CA, and approved February 26, 2013 (received for review December 1, 2012) The Bloom syndrome gene product, BLM, is a member of the highly of the SDSA pathway (6, 7). The ability of BLM to yield non- conserved RecQ family. An emerging concept is the BLM helicase crossover products is thought to play a critical role in the avoidance collaborates with the homologous recombination (HR) machinery to of chromosomal rearrangements during the homolog-directed re- help avoid undesirable HR events and to achieve a high degree of pair of chromosomal lesions. As a result, cells defective for BLM fidelity during the HR reaction. However, exactly how such coordina- exhibit elevated rates of sister chromatid exchange (SCE) (19–21). tion occurs in vivo is poorly understood. Here, we identified a protein Upon the occurrence of DNA damage, BLM is able to form termed SPIDR (scaffolding protein involved in DNA repair) as the link discrete foci, where it colocalizes with other DNA repair proteins between BLM and the HR machinery. SPIDR independently interacts (22, 23). However, mechanistically how BLM is recruited to sites with BLM and RAD51 and promotes the formation of a BLM/RAD51- of DNA damage and how it collaborates with other proteins to containing complex of biological importance. Consistent with its role mediate recombination repair remain largely unexplored.
    [Show full text]
  • Malignant Transformation of Human Fibroblasts Caused by Expression Of
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 187-191, January 1989 Cell Biology Malignant transformation of human fibroblasts caused by expression of a transfected T24 HRAS oncogene (human cell transformation/infinite life-span human flbroblasts/pHO6T1/T24 HRAS expression/malignant fibrosarcoma) PETER J. HURLIN*, VERONICA M. MAHER, AND J. JUSTIN MCCORMICKt Carcinogenesis Laboratory, Fee Hall, Department of Microbiology and Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1316 Communicated by G. N. Wogan, September 19, 1988 ABSTRACT We showed previously that diploid human passage rodent cells were transfected with an HRAS onco- fibroblasts that express a transfected HRAS oncogene from the gene and any one of a number of genes considered to be human bladder carcinoma cell line T24 exhibit several char- involved in causing cellular immortalization, malignant trans- acteristics of transformed cells but do not acquire an infinite formation resulted (5-7). Not surprisingly, transfection of life-span and are not tumorigenic. To extend these studies ofthe HRAS oncogenes into infinite life-span rodent fibroblast cell T24 HRAS in human cells, we have utilized an infinite life-span, lines resulted in malignant transformation (5, 8) in the but otherwise phenotypically normal, human fibroblast cell majority of the studies (9). strain, MSU-1.1, developed in this laboratory after transfec- To test models proposed for ras transformation generated tion of diploid fibroblasts with a viral v-myc oncogene. Trans- from experiments with rodent fibroblasts for their relevance fection of MSU-1.1 cells with the T24 HRAS flanked by two to human cell transformation, we and our colleagues (10-12) transcriptional enhancer elements (pHO6T1) yielded foci of and several other groups (13-21) have used human fibroblasts morphologically transformed cells.
    [Show full text]
  • The RNA Helicase a in Malignant Transformation
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 19 The RNA helicase A in malignant transformation Marco Fidaleo1,2, Elisa De Paola1,2 and Maria Paola Paronetto1,2 1 Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy 2 Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy Correspondence to: Maria Paola Paronetto, email: [email protected] Keywords: RHA helicase, genomic stability, cancer Received: October 02, 2015 Accepted: January 29, 2016 Published: February 14, 2016 ABSTRACT The RNA helicase A (RHA) is involved in several steps of RNA metabolism, such as RNA processing, cellular transit of viral molecules, ribosome assembly, regulation of transcription and translation of specific mRNAs. RHA is a multifunctional protein whose roles depend on the specific interaction with different molecular partners, which have been extensively characterized in physiological situations. More recently, the functional implication of RHA in human cancer has emerged. Interestingly, RHA was shown to cooperate with both tumor suppressors and oncoproteins in different tumours, indicating that its specific role in cancer is strongly influenced by the cellular context. For instance, silencing of RHA and/or disruption of its interaction with the oncoprotein EWS-FLI1 rendered Ewing sarcoma cells more sensitive to genotoxic stresses and affected tumor growth and maintenance, suggesting possible therapeutic implications. Herein, we review the recent advances in the cellular functions of RHA and discuss its implication in oncogenesis, providing a perspective for future studies and potential translational opportunities in human cancer. INTRODUCTION females, which contain two X chromosomes [8]. The C. elegans RHA-1 displays about 60% of similarity with both RNA helicase A (RHA) is a DNA/RNA helicase human RHA and Drosophila MLE and is involved in gene involved in all the essential steps of RNA metabolism, silencing.
    [Show full text]